неоднородное электрическое поле это

Работа и энергия в электростатическом поле

Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Работа по перемещению заряда в электростатическом поле.

Соотношение (3) удобно для поиска работы, в случае заряда в однородном электростатическом поле.

Важно: в задачах однородное поле должно быть задано самим выражением «считать поле однородным», также электростатическое поле плоского конденсатора можно считать однородным.

Неоднородным называется поле, напряжённость которого непостоянно в различных точках пространства. В случае неоднородности поля, воспользуемся выражением (3):

Мы воспользовались определением перемещения: разность конечного ( ) и начального ( ) положения тела.

Исходя из определения потенциала:

Т.е. в неоднородном электростатическом поле (а на самом деле, в любом), работа по переносу заряда численно равна переносимому заряду, умноженному на разность потенциалов между точками переноса.

Важно: неоднородное поле в задаче вводится через саму фразу «поле неоднородное» и через источники: точечный заряд, шар, которые также создают неоднородные поля.

Вывод: в задачах на нахождение работы по переносу заряда необходимо выяснить характер поля (однородное или неоднородное) и применить соответствующее выражение (3) или (6).

Энергия взаимодействия зарядов

А теперь обсудим энергию взаимодействия зарядов. Энергия взаимодействие зарядов на школьном уровне даётся без вывода, поэтому мы тоже ещё просто зафиксируем:

неоднородное электрическое поле это. . неоднородное электрическое поле это фото. неоднородное электрическое поле это-. картинка неоднородное электрическое поле это. картинка . Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.(7)

Источник

Что такое электрическое поле, его классификация и характеристики

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

неоднородное электрическое поле это. opredelenie elektricheskogo polya. неоднородное электрическое поле это фото. неоднородное электрическое поле это-opredelenie elektricheskogo polya. картинка неоднородное электрическое поле это. картинка opredelenie elektricheskogo polya. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле. Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

неоднородное электрическое поле это. primer odnorodnosti. неоднородное электрическое поле это фото. неоднородное электрическое поле это-primer odnorodnosti. картинка неоднородное электрическое поле это. картинка primer odnorodnosti. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле. Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.

неоднородное электрическое поле это. elektricheskij dipol. неоднородное электрическое поле это фото. неоднородное электрическое поле это-elektricheskij dipol. картинка неоднородное электрическое поле это. картинка elektricheskij dipol. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле. Рис. 3. Электрический диполь неоднородное электрическое поле это. vihrevye polya. неоднородное электрическое поле это фото. неоднородное электрическое поле это-vihrevye polya. картинка неоднородное электрическое поле это. картинка vihrevye polya. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле. Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

неоднородное электрическое поле это. elektricheskoe pole polozhitelnogo i otricatelnogo vektora napryazhyonnosti. неоднородное электрическое поле это фото. неоднородное электрическое поле это-elektricheskoe pole polozhitelnogo i otricatelnogo vektora napryazhyonnosti. картинка неоднородное электрическое поле это. картинка elektricheskoe pole polozhitelnogo i otricatelnogo vektora napryazhyonnosti. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле. Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

неоднородное электрическое поле это. napravlenie linij napryazhyonnosti polozhitelnyh i otricatelnyh zaryadov. неоднородное электрическое поле это фото. неоднородное электрическое поле это-napravlenie linij napryazhyonnosti polozhitelnyh i otricatelnyh zaryadov. картинка неоднородное электрическое поле это. картинка napravlenie linij napryazhyonnosti polozhitelnyh i otricatelnyh zaryadov. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

неоднородное электрическое поле это. obshhij sluchaj raspredeleniya zaryadov. неоднородное электрическое поле это фото. неоднородное электрическое поле это-obshhij sluchaj raspredeleniya zaryadov. картинка неоднородное электрическое поле это. картинка obshhij sluchaj raspredeleniya zaryadov. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Источник

Тема 1.1. Электрическое поле.

Идея электрического поля была введена М. Фарадеем и теоретически обоснована Дж. Максвеллом.

Электрическое поле это вид материи посредством которого осуществляется взаимодействие электрических зарядов.

Свойства электрического поля :

Порождается электрическим зарядом.

Обнаруживается по действию на заряд.

Действует на заряд с некоторой силой.

Распространяется в пространстве с конечной скоростью с=3·10 8 м/с.

Направление вектора напряженности совпадает с направлением вектора кулоновской силы.

Напряженность поля не зависит от значения пробного заряда q ; определяется зарядами – источниками поля, является силовой характеристикой этого поля.

Единица в СИ – Н/Кл или В/м.

Неоднородное электрическое поле :

Силовая линия (линия напряженности) электрического поля – линия, в каждой точке которой напряженность поля направлена по касательной. Силовые линии поля в электростатике начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий пропорциональна модулю вектора напряженности.

Однородное электрическое поле:

На электрический заряд помещенный в однородное электрическое поле действует кулоновская сила способная совершать работу по перемещению электрического заряда.

Энергетической характеристикой электрического поля является потенциал (разность потенциалов), скалярная физическая величина, выражаемая в вольтах (В); 1В = 1 Дж / 1 Кл.

Потенциал поля в данной точке, находящейся на расстоянии R от заряда Q :

Потенциал поля может быть как положительным, так и отрицательным. Следуя принципу суперпозиции полей, можно утверждать, что если в данной точке пространства известен потенциал поля, созданного отдельно каждым из N зарядов (тел), то потенциал суммарного поля равен алгебраической сумме потенциалов каждого из полей

На практике используют разность потенциалов :

В электрическом поле разность потенциалов между двумя любыми точками равна напряжению между этими точками.

Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение.

На рисунке показаны эквипотенциальные поверхности точечных положительного и отрицательного зарядов и системы двух положительных зарядов.

Связь между напряженностью электрического поля и напряжением:

Электри́ческий ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда.

Такими носителями могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определённых условиях — электроны, в полупроводниках — электроны или дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

изменение химического состава проводников (наблюдается преимущественно в электролитах);

создание магнитного поля (проявляется у всех без исключения проводников)

Различают постоянный и переменный электрические токи, а также всевозможные разновидности переменного тока. В таких понятиях часто слово «электрический» опускают.

Постоянный ток — ток, направление и величина которого не меняются во времени.

Период переменного тока — наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

термическое (ожоги, нагрев и повреждение кровеносных сосудов);

электролитическое (разложение крови, нарушение физико-химического состава);

биологическое (раздражение и возбуждение тканей организма, судороги);

механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови).

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;

минимально ощутимый человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;

пороговым неотпускающим называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;

фибрилляционным порогом называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

Источник

Электрическое поле и его характеристики

теория по физике 🧲 электростатика

Вокруг заряженных тел существует особая среда — электрическое поле. Именно это поле является посредником в передаче электрического взаимодействия.

Свойства электрического поля

Характеристики электрического поля

Напряженность численно равна электрической силе, действующей на единичный положительный заряд:

q 0 — пробный заряд.

Пример №1. Сила, действующая в поле на заряд в 20 мкКл, равна 4Н. Вычислить напряженность поля в этой точке.

20 мкКл = 20∙10 –6 Кл

Силовые линии — линии, касательные к которым совпадают с вектором напряженности.

Потенциальная энергия взаимодействия двух зарядов W (Дж) в вакууме:

Потенциальная энергия взаимодействия двух зарядов W (Дж) в среде:

Знак потенциальной энергии зависит от знаков заряженных тел:

Потенциал — энергетическая характеристика электрического поля. Обозначается как ϕ. Единица измерения — Вольт (В).

Численно потенциал равен отношению потенциальной энергии взаимодействия двух зарядов к единичному положительному заряду:

q 0 — пробный заряд.

Потенциал — скалярная физическая величина. Знак потенциала зависит от знака заряда, создающего поле. Отрицательный заряд создает отрицательный потенциал, и наоборот.

Значение потенциала зависит от выбора нулевого уровня для отсчета потенциальной энергии, а разность потенциалов — от выбора нулевого уровня не зависит.

Напряжение — разность потенциалов. Обозначается как U. Единица измерения — Вольт (В). Численно напряжение равно отношению работы электрических сил по перемещению заряда из точки 1 в точку 2:

Эквипотенциальные поверхности — поверхности, имеющие одинаковый потенциал. Они равноудалены от заряженных тел и обычно повторяют их форму. Эквипотенциальные поверхности перпендикулярны силовым линиям.

Пылинка, имеющая массу 10 −6 кг, влетела в однородное электрическое поле в направлении против его силовых линий с начальной скоростью 0,3 м/с и переместилась на расстояние 4 см. Каков заряд пылинки, если её скорость уменьшилась при этом на 0,2 м/с, а напряжённость поля 105 В/м?

Источник

Электрическое поле

Исследование взаимодействия заряженных легких алюминиевых гильз и электрических султанов.

неоднородное электрическое поле это. pic9. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic9. картинка неоднородное электрическое поле это. картинка pic9. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Каким образом осуществляется взаимодействие зарядов?

Идея электрического поля была введена М. Фарадеем и теоретически обоснована Дж. Максвеллом.

Электрическое поле это вид материи посредством которого осуществляется взаимодействие электрических зарядов.

Свойства электрического поля:

Силовой характеристикой электрического поля является напряженность.

неоднородное электрическое поле это. pic5. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic5. картинка неоднородное электрическое поле это. картинка pic5. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Направление вектора напряженности совпадает с направлением вектора кулоновской силы.

Напряженность поля не зависит от значения пробного заряда q; определяется зарядами – источниками поля, является силовой характеристикой этого поля.

Единица в СИ – Н/Кл или В/м.

Поле, напряженность которого в любой точке одинакова (E = const), называют однородным.

Напряженность точечного электрического заряда в данной точке зависит от модуля заряда Q и от расстояния до этого заряда R.

неоднородное электрическое поле это. pic10. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic10. картинка неоднородное электрическое поле это. картинка pic10. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

неоднородное электрическое поле это. pic11. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic11. картинка неоднородное электрическое поле это. картинка pic11. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Неоднородное электрическое поле

неоднородное электрическое поле это. pic4. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic4. картинка неоднородное электрическое поле это. картинка pic4. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Силовая линия (линия напряженности) электрического поля – линия, в каждой точке которой напряженность поля направлена по касательной. Силовые линии поля в электростатике начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий пропорциональна модулю вектора напряженности.

Однородное электрическое поле

неоднородное электрическое поле это. pic16. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic16. картинка неоднородное электрическое поле это. картинка pic16. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

На электрический заряд помещенный в однородное электрическое поле действует кулоновская сила способная совершать работу по перемещению электрического заряда.

неоднородное электрическое поле это. pic13. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic13. картинка неоднородное электрическое поле это. картинка pic13. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Работа электрического поля не зависит от формы траектории и на замкнутой траектории равна нулю. Такие поля называются потенциальными. Для этих поле характерна незамкнутость линий напряженности.

Энергетической характеристикой электрического поля является потенциал (разность потенциалов), скалярная физическая величина, выражаемая в вольтах (В); 1В = 1 Дж / 1 Кл.

неоднородное электрическое поле это. pic14. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic14. картинка неоднородное электрическое поле это. картинка pic14. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Потенциал поля в данной точке, находящейся на расстоянии R от заряда Q:

неоднородное электрическое поле это. pic1. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic1. картинка неоднородное электрическое поле это. картинка pic1. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Потенциал поля может быть как положительным, так и отрицательным. Следуя принципу суперпозиции полей, можно утверждать, что если в данной точке пространства известен потенциал поля, созданного отдельно каждым из N зарядов (тел), то потенциал суммарного поля равен алгебраической сумме потенциалов каждого из полей

На практике используют разность потенциалов :

неоднородное электрическое поле это. pic20. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic20. картинка неоднородное электрическое поле это. картинка pic20. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

В электрическом поле разность потенциалов между двумя любыми точками равна напряжению между этими точками.

Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение.

неоднородное электрическое поле это. pic17. неоднородное электрическое поле это фото. неоднородное электрическое поле это-pic17. картинка неоднородное электрическое поле это. картинка pic17. Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

На рисунке показаны эквипотенциальные поверхности точечных положительного и отрицательного зарядов и системы двух положительных зарядов.

Связь между напряженностью электрического поля и напряжением:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *