хладагент r290 что это такое
Хладагент R290: описание и свойства
Качественная и быстрая отделка балконов под ключ в Кирове от компании Гелиос с гарантией.
Общее описание R290
Химическая формула С3Н8 (пропан). Относится к группе ГФУ (HFC). Потенциал разрушения озона ODP = 0, потенциал глобального потепления GWP = 3.
Физические свойства R290
Параметр | Значение |
---|---|
Химическая формула | С3Н8 |
Молярная масса, г/моль | 44.1 |
Нормальная температура кипения (p=101 кПа), °С | -42.09 |
Температура замерзания (плавления), °С | -187.6 |
Плотность при 45 o С, кг/м 3 | 585.3 |
Потенциал разрушения озона (ODP) | 0 |
Потенциал глобального потепления (GWP) | 3 |
Температура самовоспламенения в воздухе (p=101кПа) | 466°С |
Образует с воздухом взрывоопасные смеси при концентрации паров: от 2,1 до 9,5%.
Применение R290
В промышленных холодильных установках пропан используют уже в течение многих лет. В последние годы все чаще предлагается применять пропан в холодильных транспортных установках.
В Германии в 1994 г. было произведено более 1000 бытовых холодильников на пропане, изобутане или их смесях. Подобные холодильники изготовляют в Китае, Бразилии, Аргентине, Индии, Турции и Чили. По оценкам создателей этой техники, холодильный коэффициент при использовании углеводородов практически такой же (+(-)1%), как при работе на R12. Требуются только небольшие изменения в конструкции компрессора. Применяются те же минеральные масла, та же электроизоляция, те же уплотняющие материалы, трубы того же диаметра, практически не изменяется процедура сервисного обслуживания. Температура нагнетания становится ниже, чем при работе на R22 или R502. Пропан можно сразу заправить в систему, где до этого был озоноопасный хладагент. Как показали исследования, в этом случае теряется до 10% холодопроизводительности, если в системе ранее был R22, и 15%, если R502. Ряд специалистов считают, что и этого снижения можно было бы избежать, добавив к пропану полипропилен.
В США же запрещено использовать углеводороды в бытовых холодильниках. Агентство США по охране окружающей среды прогнозирует в случае их применения до 30 000 пожаров в год.
При размещении торгового холодильного оборудования, работающего на пропане, в общедоступных помещениях необходимо соблюдать правила безопасности. В случае превышения указанных норм заправки (более 2,5 кг R290) холодильное оборудование следует устанавливать в отдельном, специально оборудованном помещении, что увеличивает капитальные затраты.
Пропан применяют и в тепловых насосах. В Лиллехаммере (Норвегия) работает тепловой насос на пропане мощностью 45 кВт с полугерметичным компрессором и пластинчатыми теплообменниками. В системе теплового насоса масса пропана чуть больше 1 кг, оборудование находится в отдельном здании. По мнению специалистов, контроль за пожароопасностью возможен.
Также пропан используется в качестве топлива, основной компонент так называемых сжиженных углеводородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.
Экологические характеристики и пожароопасность R290
R290 нетоксичен, но пожароопасен. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%. Температура самовоспламенения пропана в воздухе при давлении 0,1 МПа (760 мм рт. ст.) составляет 466 °С.
Хладагент (фреон) R290 5 кг
Относится к группе ГФУ (HFC). Потенциал разрушения озона ODP = 0, потенциал глобального потепления GWP = 3.
Применение: в промышленных холодильных установках, в холодильных транспортных установках.
Особенности: R290 может быть использован в качестве замены фреонов R22 и R502.
Отзывы
Только зарегистрированные клиенты, купившие данный товар, могут публиковать отзывы.
Доставка по Москве и МО
Избавьте себя от забот при перевозке товара — мы бережно и быстро доставим вашу покупку в квартиру или офис.
Условия доставки товара:
– Мы доставим Ваш товар по адресу, указанному при оформлении заказа на сайте. Пожалуйста, проверьте, правильно ли указаны адрес доставки и Ф.И.О. получателя.
– Мы доставим Ваш товар в срок, указанный в заказе, и свяжемся с Вами за час до прибытия по адресу доставки.
– Мы доставим Ваш товар за входную дверь квартиры (офиса), в указанное Вами место, распакуем и продемонстрируем товар.
– Мы попросим Вас оплатить товар и услуги согласно Товарным чекам предварительно или непосредственно сотруднику Службы доставки.
– Мы попросим Вас расписаться в получении товара. Если у Вас есть замечания, укажите их в разделе «Особые отметки».
Самовывоз
Наш интернет-магазин предлагает Вам выгодную услугу — самовывоз товара. Просто выберите удобное время и сами заберите свою покупку.
Выгодно, удобно и просто!
– Вы экономите деньги на стоимости курьерской доставки;
– Вы не ждете доставки заказа, а забираете его в любое подходящее для Вас время.
Как оформить заказ
Оформить заказ на самовывоз Вы можете на сайте.
О готовности Вашего заказа Вы будете уведомлены по электронной почте.
Как получить заказ
Вы приезжаете в пункт самовывоза. Сообщаете номер заказа, оплачиваете и забираете свой заказ.
Перед тем как ехать в точку самовывоза, убедитесь в том, что у Вас есть номер Вашего заказа. Узнать его Вы можете из письма заказа.
Хладагент R290: описание и свойства
20.01.2010 © Хомутский Юрий
Общее описаниеR290
Химическая формула С3Н8 (пропан). Относится к группе ГФУ (HFC). Потенциал разрушения озона ODP = 0, потенциал глобального потепления GWP = 3.
Физические свойства R290
Молярная масса, г/моль
Нормальная температура кипения (p=101 кПа), o С
Температура замерзания (плавления), o С
Плотность при 45 o С, кг/м 3
Потенциал разрушения озона (ODP)
Потенциал глобального потепления (GWP)
Температура самовоспламенения в воздухе (p=101кПа)
Образует с воздухом взрывоопасные смеси при концентрации паров: от 2,1 до 9,5%.
Применение R290
В промышленных холодильных установках пропан используют уже в течение многих лет. В последние годы все чаще предлагается применять пропан в холодильных транспортных установках.
В Германии в 1994 г. было произведено более 1000 бытовых холодильников на пропане, изобутане или их смесях. Подобные холодильники изготовляют в Китае, Бразилии, Аргентине, Индии, Турции и Чили. По оценкам создателей этой техники, холодильный коэффициент при использовании углеводородов практически такой же (+(-)1%), как при работе на R12. Требуются только небольшие изменения в конструкции компрессора. Применяются те же минеральные масла, та же электроизоляция, те же уплотняющие материалы, трубы того же диаметра, практически не изменяется процедура сервисного обслуживания. Температура нагнетания становится ниже, чем при работе на R22 или R502. Пропан можно сразу заправить в систему, где до этого был озоноопасный хладагент. Как показали исследования, в этом случае теряется до 10% холодопроизводительности, если в системе ранее был R22, и 15%, если R502. Ряд специалистов считают, что и этого снижения можно было бы избежать, добавив к пропану полипропилен.
При размещении торгового холодильного оборудования, работающего на пропане, в общедоступных помещениях необходимо соблюдать правила безопасности. В случае превышения указанных норм заправки (более 2,5 кг R290) холодильное оборудование следует устанавливать в отдельном, специально оборудованном помещении, что увеличивает капитальные затраты.
Пропан применяют и в тепловых насосах. В Лиллехаммере (Норвегия) работает тепловой насос на пропане мощностью 45 кВт с полугерметичным компрессором и пластинчатыми теплообменниками. В системе теплового насоса масса пропана чуть больше 1 кг, оборудование находится в отдельном здании. По мнению специалистов, контроль за пожароопасностью возможен.
Также пропан используется в качестве топлива, основной компонент так называемых сжиженных углеводородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.
Экологические характеристики и пожароопасность R290
R290 нетоксичен, но пожароопасен. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%.
Нижний предел воспламеняемости (LEL) 2.1% Около 39 г/m³
Верхний предел воспламеняемости (UEL) 9.5% Около 117г/m³
Минимальная температура воспламенения 470 °C
Зависимость критических параметров
бинарных смесей, используемых
в работающих на R32 +R290, R32 +R600а, R290 +
+ R600a системах, от состава
Higashi Y.// Proc. Vicenza Conf., IIR, FR/IT, 2005.08.31–09.02; 2005–3; 015- TP-058; 7 p.
Компрессоры на углеводороде для
небольших торговых установок
P.Valero, M.Zgliczynski // Proc. Compressors 2004, Casta Papiernicka Meet., IIR. SK/FR, 2004.09.29–10.01; 2004–3; 8 p.
Характеристики смесей хладагента –
альтернативы R502 – для
Исследовали два чистых углеводородных хладагента – R127 (пропилен) и R290 (пропан) и три бинарные смеси, состоящие из R127, R290, R152a, на испытательном холодильном стенде со спиральным компрессором с целью найти замену для R502, используемого в большинстве случаев в низкотемпературных стационарных и транспортных
установках. Производительность стенда 3. 3,5 кВт, а в качестве вторичных теплопередающих жидкостей использовали воду и смесь воды/гликоля. Все исследования проводили при одних и тех же параметрах наружного воздуха, в результате были достигнуты средние температуры насыщения в испарителе и конденсаторе – соответственно –28 и +45 оС. Исследования показали, что при использовании R127 и R290 производительность на 9,6–18,7 % и холодильный коэффициент на 17,1–27,3 % выше, чем на R502. Температура нагнетания в компрессоре, работающем на R127, была аналогичной температуре нагнетания при работе на R502, а температуры нагнетания всех остальных хладагентов на 23,7. 27,9 оС ниже, чем у R502. Для всех альтернативных хладагентов зарядка по сравнению с R502 снижалась до 60 %.
D.Jung, Y.Ham // Proc. Vicenza Conf., IIR, FR/IT, 2005.08.30–31; 2005–3; 028-CR 022; 9 p.
Сравнение углеводорода R290 и двух
HFC-смесей R404A и R410A, используемых
для получения низкой температуры
Чтобы лучше понять потенциальные возможности R290 по сравнению с R404A и R410A для охлаждения торгового оборудования, была разработана экспериментальная программа оценки в рамках Программы ARI (Американского холодильного института) GREEN. Холодильная установка холодопроизводительностью 4 кВт, состоящая из охладителя и компрессорно-конденсаторного агрегата, которая первоначально работала на R404A, служила в качестве экспериментальной. По соображениям безопасности было решено свести к минимуму ее зарядку хладагентом R290 путем исключения ресивера. Конденсатор также был модифицирован: в него была включена схема переохладителя жидкости. В связи с оптимизацией конденсатора, являющегося самым важным элементом низкотемпературной системы охлаждения, использовали конденсатор с двумя схемами для исследования R410A и конденсатор с тремя схемами для R404А и R290. При допущении одного и того же КПД компрессора повышение холодильного коэффициента хладагентов R410A и R290 по сравнению с R404A составляет 10 % как для R410A, так и для R290 в условиях полной нагрузки и 4 и 5 % для R410A и R290 соответственно в условиях частичной нагрузки. Этот результат показывает, что повышение характеристик R290 по сравнению с R404A почти такое же, как и с R410A при полной и частичной нагрузке, если компрессор, работающий на R410A, оптимизирован до уровня компрессора, работающего на R404A.
Y.Hwang, D.H.Jin, R.Radermacher // Proc. Vicenza Conf., IIR, FR/IT, 2005.08.30–31; 2005–3; 029–CR 034; 6 p.
Короткие фундаментальные уравнения
состояния для новых хладагентов
Для многих широко используемых хладагентов в настоящее время имеются очень точные уравнения состояния с большим количеством параметров, которые в международном масштабе согласованы как стандарты теплофизических свойств соответствующих жидкостей. В области галогенизированных углеводородов рабочая группа «Annex 18» Международного агентства по вопросам энергии (IEA) установила стандарты на самые чистые хладагенты. Кроме того, она явилась вдохновителем координированной работы по некоторым другим галогенизированным хладагентам и смесям, используемым в холодильной технике и кондиционировании воздуха. Для природных хладагентов – диоксида углерода, аммиака и изобутана – за последние 15 лет в Германии были составлены контрольные уравнения состояния. Национальный институт стандартов и технологии США (NIST) почти закончил работу по новому контрольному уравнению для пропана.
R.Gavriliuc// Proc. Vicenza Conf., IIR, FR/IT. 2005.08.31–09.02; 2005–3; 016-TP-105; 9 p.
В промышленных холодильных установках пропан используют уже в течение многих лет. В последние годы все чаще предлагается применять пропан в холодильных транспортных установках.
В Германии в 1994 г. было произведено более 1000 бытовых холодильников на пропане, изобутане или их смесях. Подобные холодильники изготовляют в Китае, Бразилии, Аргентине, Индии, Турции и Чили. По оценкам создателей этой техники, холодильный коэффициент при использовании углеводородов практически такой же (+(-)1%), как при работе на R12. Требуются только небольшие изменения в конструкции компрессора. Применяются те же минеральные масла, та же электроизоляция, те же уплотняющие материалы, трубы того же диаметра, практически не изменяется процедура сервисного обслуживания. Температура нагнетания становится ниже, чем при работе на R22 или R502. Пропан можно сразу заправить в систему, где до этого был озоноопасный хладагент. Как показали исследования, в этом случае теряется до 10% холодопроизводительности, если в системе ранее был R22, и 15%, если R502. Ряд специалистов считают, что и этого снижения можно было бы избежать, добавив к пропану полипропилен.
В США же запрещено использовать углеводороды в бытовых холодильниках. Агентство США по охране окружающей среды прогнозирует в случае их применения до 30 000 пожаров в год.
В Новой Зеландии углеводороды разрешено использовать в торговом холодильном оборудовании.
При размещении торгового холодильного оборудования, работающего на пропане, в общедоступных помещениях необходимо соблюдать правила безопасности. В случае превышения указанных норм заправки (более 2,5 кг R290) холодильное оборудование следует устанавливать в отдельном, специально оборудованном помещении, что увеличивает капитальные затраты.
Основные физические свойства R6ООа в сравнении с R12 и R134a
Нормальная температура кипения (p = 0,1МПа), o С
Температура замерзания, o С
Критическая температура, o С
Критическое давление, МПа
Растворимость в масле
Растворимость воды в контуре (при 15.5 o С), мас. %
Потенциал разрушения озона (ODP)
В настоящее время итальянские и немецкие фирмы применяют R600a в бытовой холодильной технике. В частности, фирмы «Necci compressori» и «Zanussi» международного концерна Electrolux compressors» выпускают компрессоры, работающие на изобутане. Холодильные агрегаты с R600a характеризуются меньшим уровнем шума из-за низкого давления в рабочем контуре хладагента.
Использование изобутана в существующем холодильном оборудовании связано с необходимостью замены компрессоров на компрессоры большей производительности, так как по удельной объемной холодопроизводительности R600a значительно проигрывает хладагенту R12 (практически в два раза).
Вместе с тем R125 имеет более низкую (по сравнению с R22 и R502) температуру нагнетания и высокий массовый расход при низких давлениях всасывания. Поршневые холодильные компрессоры, работающие на R125, характеризуются оптимальным наполнением цилиндра, а следовательно, имеют большой коэффициент подачи.
Хладагент R134a нетоксичен и не воспламеняется во всем диапазоне температур эксплуатации. Однако при попадании воздуха в систему и сжатии могут образовываться горючие смеси. Не следует смешивать R134a с R12, так как образуется азеотропная смесь высокого давления с массовыми долями компонентов 50 и 50%. Давление насыщенного пара этого хладагента несколько выше, чем у R12 (соответственно 1,16 и 1,08 МПа при 45 o С). Пар R134a разлагается под влиянием пламени с образованием отравляющих и раздражающих соединений, таких, как фторводород.
Для R134a характерны небольшая температура нагнетания (она в среднем на 8. 10 o С ниже, чем для R12) и невысокие значения давления насыщенных паров.
В среднетемпературных холодильных установках и системах кондиционирования воздуха холодильный коэффициент R134a равен коэффициенту для R12 или выше его.
В высокотемпературных холодильных установках удельная объемная холодопроизводительность при работе на R134a также несколько выше (на 6% при t0 = 10 o С), чем у R12. Диапазоны применения хладагента R134a приведены на рис., а зависимость холодопроизводительности и холодильного коэффициента от температуры кипения показана далее на рисунке.
Из-за значительного потенциала глобального потепления GWP рекомендуется применять R134a в герметичных холодильных системах. Влияние R134a на парниковый эффект в 1300 раз сильнее, чем у СО2. Так, выброс в атмосферу одной заправки R134a из бытового холодильника (около 140 г) соответствует выбросу 170 кг СО2. В Европе в среднем 448 г СО2 образуется при производстве 1 кВт*ч энергии, т.е. этот выброс соответствует производству 350 кВт*ч энергии.
Для работы с хладагентом R134a рекомендуются только полиэфирные холодильные масла, которые характеризуются повышенной гигроскопичностью.
R134a широко используют во всем мире в качестве основной замены R12 для холодильного оборудования, работающего в среднетемпературном диапазоне. Его применяют в автомобильных кондиционерах, бытовых холодильниках, торговом холодильном среднетемпературном оборудовании, промышленных установках, системах кондиционирования воздуха в зданиях и промышленных помещениях, а также на холодильном транспорте. Хладагент можно использовать и для ретрофита оборудования, работающего при более низких температурах. Однако в этом случае, если не заменить компрессор, то холодильная система будет иметь пониженную холодопроизводительность.
R134a совместим с рядом уплотняющих материалов, в частости с прокладками, сделанными из таких материалов, как «Буна-Н», «Хайпалон 48», «Неопрен», «Нордел», а также со шлангами, футурованными нейлоном. Как показал анализ, проведенный фирмой «Du Pont», изменение массы и линейное набухание таких материалов, применяемых в отечественном холодильном оборудовании, как фенопластовые и полиамидные колодки, текстолит, паронит и полиэтилентерефталатовые пленки, при старении в смеси SUVA R134a с полиэфирным маслом «Castrol SW100» при 100 o С в течение 2 недель были незначительными.
Анализ зарубежных публикаций и результаты исследований отечественных специалистов свидетельствуют о том, что замена R12 на R134a, имеющий высокий потенциал глобального потепления GWP, в холодильных компрессорах сопряжена с решением ряда технических задач, основные из которых:
Все это должно привести к значительному увеличению стоимости холодильного оборудования. Вместе с тем в водоохладительных установках с винтовыми и центробежными компрессорами применение R134a имеет определенные перспективы.
Хладагент R143a. Химическая формула CF3-СН3 (трифтор-этан). Относится к группе ГФУ (HFC).
R143a имеет потенциал разрушения озона ODP = 0 и сравнительно высокий потенциал глобального потепления GWP = 1000, нетоксичен и пожароопасен, не взаимодействует с конструкционными и прокладочными материалами. Наличие трех атомов водорода в молекуле R143a способствует хорошей растворимости в минеральных маслах. Удельная теплота парообразования 19,88 кДж/моль при нормальной температуре кипения, что несколько выше, чем для R125 (18,82кДж/моль). Температура нагнетания ниже, чем у R12, R22 и R502. Как показал эксергетический анализ, энергетическая эффективность двухступенчатого цикла с R143a близка к эффективности цикла с R502, ниже, чем у R22, и выше, чем у R125. Хладагент R143a входит в состав многокомпонентных альтернативных смесей, предлагаемых для замены R12, R22 и R502.
Хладагент R32. Химическая формула CF2H2 (дифторметан). Относится к группе ГФУ (HFC). Характеристики R32 приведены в приложении 9. R32 имеет потенциал разрушения озона ODP = 0 и низкий по сравнению с R125 и R143a потенциал парникового эффекта GWP = 220. Нетоксичен, пожароопасен. Имеет большую удельную теплоту парообразования 20,37 кДж/моль при нормальной температуре кипения и крутую зависимость давления насыщенных паров от температуры, вследствие чего для R32 характерна высокая температура нагнетания, самая высокая из всех альтернативных хладагентов, за исключением аммиака. R32 растворим в полиэфирных маслах.
Для R32 при использовании его в холодильных установках характерны высокие холодопроизводительность и энергетическая эффективность, но он несколько уступает R22 и R717. Высокая степень сжатия R32 вызывает необходимость в значительном изменении конструкции холодильной установки при ретрофите и, следовательно, приводит к увеличению ее металлоемкости и стоимости. Поэтому R32 рекомендуется использовать в основном в качестве компонента альтернативных рабочих смесей. Вследствие малых размеров молекулы R32 по сравнению с молекулами хладагентов этанового ряда возможна селективная утечка R32 через неплотности в холодильной системе, что может изменить состав многокомпонентной рабочей смеси.
Хладон R290
Химическое название – пропан.
Природный газ без цвета и запаха.
R-290 используется в качестве альтернативы R22 и R502 в низкотемпературных, средне- и высокотемпературных системах охлаждения и кондиционирования воздуха, тепловых насосах и бытовых холодильниках и кондиционерах.
Высокая энергоэффективность при низком давлении.
Горюч, легко воспламеняется.
Нетоксичный хладон R290 допускается использовать совместно с системами, включающими конденсаторы, компрессоры и испарители из разных материалов. Он растворяется в минеральных маслах. Нулевая озоноразрушающая угроза и равный 3 потенциал глобального потепления делают его экологичным. Однако фреон является горючим, что ограничивает сферы его использования.
Подробное описание хладона R290
Молекулярная масса, г/моль 44,1
Критическая температура, °С 96,6
Критическое давление, МПа 4,25
Невозвратный баллон 15 л (5,0 кг)
Невозвратный баллон 400, 600 мл
При размещении оборудования на этом фреоне в местах с присутствием людей необходимо обеспечить соблюдение правил безопасности. Так, в случае превышения норм заправки (разрешается не более 2,5 кг газа), устройство допускается размещать исключительно в специально подготовленном помещении.
Транспортировка и хранение
Хладагент относится к грузам с опасностью 4-го класса. Его перевозка допускается любым наземным крытым транспортом. В качестве тары используются невозвратные баллоны. Хранят фреон в закрытых помещениях в местах, где на него не попадают прямые солнечные лучи.
Условия доставки
Хладоны, холодильные масла и оборудование, купленные в компании «Русский Холод», вы можете получить в любом из филиалов в городах:
Москва, Санкт-Петербург, Красноярск, Севастополь, Пермь, Астрахань, Нижний Новгород, Волгоград, Псков, Краснодар.
Доставка до терминалов Транспортных Компаний в Санкт-Петербурге выполняется бесплатно.
Возможна доставка от филиала до указанного клиентом места, условия обсуждаются при согласовании заказа.
При выполнении транспортировки хладона соблюдаются предписания паспортов безопасности по его перевозке.
Условия оплаты
При расчете клиенты могут воспользоваться несколькими способами оплаты:
Подходящий клиенту вариант оплаты в наших филиалах согласовывается при подтверждении заказа.