Что влияет на точность получения результатов
Факторы, влияющие на точность решения
Применение прямых методов решения систем алгебраических уравнений не всегда позволяет получить решение с приемлемой точностью.
К причинам возникновения недопустимо большой погрешности относятся следующие:
а) неточность исходных данных ( что характерно для инженерных задач), которая в ряде случаев может вызвать несоразмерно большое снижение точности расчетов;
б) округление результатов вычислений.
При решении инженерных задач исходные данные всегда известны с некоторой погрешностью, определяемой конечной точностью измерения или вычисления параметров системы и ее режима. Как правило, погрешность результатов, получаемых при решении систем линейных алгебраических уравнений соизмерима с погрешностями исходных данных. Однако могут быть случаи, когда относительная погрешность решения во много раз превосходит относительные погрешности исходных данных. Причина этого состоит в плохой обусловленности матрицы коэффициентов системы уравнений. Приближенным показателем плохой обусловленности является близкое к нулю значение определителя матрицы А.
=
.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Что влияет на точность полученных результатов?
Что влияет на точность полученных результатов?
Ответ : Объяснение : На точность полученных результатов могут влиять многие факторы.
Кратко остановимся на этих факторах.
1) Объект измерения необходимо изучить.
Желательно составить его математическую модель.
2) Человек, проводящий измерения, может внести неточности психологического характера («человеческий фактор»).
3) От правильно выбранного метода измерений в конечном счете зависит и точность проведенных измерений.
Здесь всё зависит профессионализма экспериментатора (каким методом он воспользуется).
4) Средства измерений существенным образом влияют на точность (например, диаметр цилиндрика можно измерить штангенциркулем, а можно и микрометром, тем самым увеличив точность измерений).
5) И, конечно, условия измерений (температура, влажность, давление, наводки электромагнитных полей, трение и др.
Как влияет на полученные результаты участие в теплообмене калориметра всегда ли можно этим влиянием пренебречь?
Как влияет на полученные результаты участие в теплообмене калориметра всегда ли можно этим влиянием пренебречь.
Объясните, как влияет на полученные результаты участие в теплообмене калориметр?
Объясните, как влияет на полученные результаты участие в теплообмене калориметр.
Всегда ли можно этим влиянием пренебречь?
Как цена деления линейки влияет на точность измерений?
Как цена деления линейки влияет на точность измерений.
Точность и погрешность измерения?
Точность и погрешность измерения.
Влияет ли на точность определения времени одного колебания маятника число отсчитываемых колебаний?
Влияет ли на точность определения времени одного колебания маятника число отсчитываемых колебаний?
Чем определяется точность измерения?
Чем определяется точность измерения?
А в каком виде лёгкой атлетики (олимпийском) встречный ветер заметно улучшает результат спортсмена?
Если с помощью этих линеек измерить длину экватора (40 000 км), то чему будет равно расхождение между полученными результатами?
Ответ выразите в метрах.
Экспериментально проверьте, как влияет на период обращения груза по окружности уменьшение длины нити, на которой он закреплен?
Экспериментально проверьте, как влияет на период обращения груза по окружности уменьшение длины нити, на которой он закреплен.
M * g = k * x m = k * x / g = 90 * 0, 03 / 10 = 0, 27 кг.
Факторы, влияющие на точность измерений.
Все в окружающем нас мире взаимосвязано и взаимообусловлено. Поэтому результат измерения, то есть то, что, мы получаем при проведении измерительной процедуры, определяется не только значением измеряемой величины, но и совместным влиянием целого ряда факторов, учет которых представляет иногда довольно сложную задачу.
Объект измерений. Перед проведением измерения необходимо хорошо изучить объект измерения и представить себе модель исследуемого объекта, которая в дальнейшем, по мере получения измерительной информации, может уточняться. Чем точнее модель соответствует реальному объекту, тем корректнее измерительный эксперимент.
1. При измерении диаметра вала необходимо быть уверенным, что он круглый (иначе неясно какое значение принимать за диаметр). При контроле отклонений формы, наоборот измеряют отклонение от округлости.
2. При измерении периода обращения Земли вокруг Солнца можно пренебречь неравномерностью периода, а можно, наоборот сделать его объектом исследования (измерения).
3. При измерении меняющихся во времени величин часто определяют их средние значения, пренебрегая их измерением. В то же время, существует целое направление – Флуктуационные методы измерений и контроля. Оно основано на изучении флуктуаций (изменений) величины. С помощью этих методов получают необходимую информацию о качестве объекта измерений и осуществляют прогнозирование его технического состояния.
Эксперт или экспериментатор – субъект измерений. Экспериментатор привносит в результат измерения элемент субъективизма, который, по возможности, необходимо стремиться уменьшить. Этот эффект зависит от квалификации измерителя, состояния его здоровья, соблюдения эргономических требований и т.д. Субъективная погрешность измерений исключается путем автоматизации измерений. Если нет возможности перехода к автоматизированным или автоматическим инструментальным измерениям, проводят комплекс мероприятий:
1. к измерениям допускаются лица, прошедшие специальную подготовку, имеющие соответствующие знания, умения, практические навыки;
2. последовательность действий экспериментатора строго регламентируется методикой выполнения измерений.
Важное значение имеет режим работы экспериментатора, степень его устойчивости. На рисунке 1.1 представлен график зависимости работоспособности экспериментатора в течение рабочей смены.
Важное значение имеют также санитарно-гигиенические условия труда:
Освещенность – мелкие предметы различаются при освещенности 50…70лк. Максимальная острота зрения при освещенности 600…1000лк. При естественном освещении производительность труда примерно на 10% выше, чем при искусственном. Применяют три вида освещения:
· общее – освещение всего помещения (при проведении механических измерений невысокой точности);
· местное – освещение непосредственно рабочего места (при измерении применять не рекомендуется, так как получается неравномерное распределение яркости в поле зрения, что снижает производительность труда, приводит к появлению ошибок, повышает утомляемость).
· комбинированное – сочетание общего и местного освещения (при проведении высокоточных измерений, когда необходимо, чтобы свет на мелкие объекты падал под разными углами).
Неточность измерения, обусловленная субъективным фактором, называется субъективной или личной погрешностью. Одной из составляющих такого вида погрешности является погрешность параллакса, обусловленная отклонением от перпендикулярности, шкалы отсчетного устройства, к линии зрения оператора. Для определения этой составляющей рассмотрим рисунок 1.2.
Применяются различные конструктивные приемы для уменьшения субъективной погрешности параллакса (рисунок 1.3).
Уровень шума – не должен превышать 40..45дБ. Оказывает существенное влияние на результат измерения, на утомляемость и производительность экспериментатора.
Часто для снижения утомляемости применяют функциональную музыку: мелодичные ненавязчивые мелодии со спокойным темпом. Рекомендуемое время звучания музыки – 1,5 …2,5часа за смену.
Метод измерения. Оказывает существенное влияние на результат измерения.
Примеры: 1) измерение сопротивления методом амперметра-вольтметра; 2) измерение ЭДС вольтметром; 3) измерение времени (время течет непрерывно, а сигнал поступает дискретно).
Неточность измерений, обусловленная несовершенством метода измерения, называется погрешностью метода или теоретической погрешностью.
Средство измерения. Оказывает двоякое действие на результат измерения. С одной стороны, подключение СИ к объекту измерения может привести и как правило приводит к некоторым изменениям измеряемых величин.
Пример: 1) измерение тока амперметром; 2) измерение температуры жидкости ртутным термометром.
С другой стороны, само СИ, в силу ряда причин, допускает неточность при измерении входной величины. К этим причинам можно отнести:
o нелинейность функции преобразования СИ, которая заменяется линейной;
o отклонения действительных значений параметров деталей и элементов СИ от заданных значений;
o износ деталей и элементов СИ;
o зазоры в подвижных соединениях, приводящие к неопределенности во взаимном положении деталей;
o наводки при работе электронных устройств;
o паразитные емкости и индуктивности и т.д.
Неточность измерения, обусловленная используемыми СИ, называют инструментальной погрешностью измерений.
Условия измерения. Это температура окружающей среды, влажность, давление, электромагнитное и гравитационное поля, напряжение в сети, вибрация и т.д.
Очевидно, что все эти факторы влияют на результат измерения, поскольку они приводят к изменениям параметров и размеров деталей и элементов СИ, приводят к возникновению различных помех (изменение сопротивления от температуры – ТКС, изменение линейных размеров от температуры).
Неточность измерений, вызванная условиями измерений, называют погрешностью от изменения условий измерения.
ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования.
Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем.
ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Факторы, влияющие на точность измерений
Точность измерений не может быть выше точности воспроизведения единицы государственным первичным или специальным эталоном (по определению). Никакое техническое устройство не может рассматриваться в качестве измерительного прибора, если ему установленным порядком не передана информация о размере единицы. А передача этой информации от государственного эталона всегда сопровождается потерей точности.
Однако, кроме этого, точность измерений зависит от множества других факторов, связанных с измерительным процессом. Рассмотрение этих факторов следует начать с рассмотрения самого понятия «измерительный процесс», под которым понимают весь объем информации, оборудования и операций, относящихся к данному измерению (МОЗМ, МД № 16).
При этом под понятием – «элемент измерительного процесса» понимают любой отдельный фактор, способный повлиять на результат измерений. Такими факторами являются:
— субъект измерения (оператор);
— метод (способ) измерения;
Объект измерения должен быть достаточно изучен и сформирована его модель, степень детализации которой (глубина изучения объекта измерения) должна быть адекватна цели измерения.
Оператор вносит в измерительный процесс элемент субъективизма, который, по возможности, должен быть уменьшен. Субъективизм оператора зависит от его квалификации, психофизиологического состояния, комфортности (санитарно-гигиенических) условий труда и многого другого. Оператор может оказывать существенное влияние на точность измерений.
Большое значение имеют используемые методы и способы измерений. Очень часто измерения одной и той же величины различными способами и с помощью различных средств измерений дают совершенно различные результаты. Каждый из этих вариантов имеет свои достоинства и свои недостатки и выбор наиболее оптимального (для данной измерительной задачи) является искусством экспериментатора. В таких случаях не может быть готовых решений и рекомендаций.
Практикой измерений накоплен значительный арсенал приемов, позволяющих существенно уменьшить отдельные составляющие погрешности измерений. Целесообразность применения тех или иных приемов определяется по результатам анализа источников возникновения погрешностей и их возможного влияния на конечный результат измерения для каждой конкретной измерительной задачи.
Средства измерений должны выбираться в соответствии с назначением (целью) измерительного процесса и условиями его проведения. Любые средства измерений имеют ограниченную точность, обусловленную наличием проектных, конструктивных и технологических дефектов конструкции прибора, неточности его настройки и регулировки, неточности поддержания режимов работы и т.д., а также вследствие нестабильности параметров элементов и материалов из-за старения, износа и другими причинами.
Кроме того, невозможно создать измерительный прибор, метрологические характеристики которого абсолютно точно соответствовали бы проектным, а определение их экспериментальным путем, в свою очередь, имеет ограниченную точность.
Необходимо также помнить, что в процессе измерения объект и средство измерений вступают во взаимодействие. В процессе этого взаимодействия средство измерений оказывает влияние на объект, проявляющийся в изменении измеряемой величины. Например, подключение амперметра или вольтметра для измерений характеристик электрических сигналов меняет параметры самой контролируемой электрической цепи и, соответственно, вносит погрешность в результат измерений.
В итоге результат измерения оказывается искаженным по сравнению с тем, каким он должен был бы быть, если бы средство измерений не влияло на объект. Как бы ни учитывалось это обстоятельство (а во многих случаях им просто пренебрегают), оно снижает точность результата измерения.
Таким образом, несовершенство средств измерений, некоторая неопределенность их реальных метрологических характеристик и взаимодействие средства измерения с объектом измерения вносят свой вклад в ограничение точности результатов измерений.
Условия проведения измерений, влияющие на точность измерений, включают в себя внешние и внутренние влияющие факторы. Под внутренними понимаются факторы, действующие внутри самого средства измерения. К ним относятся взаимные и паразитные электромагнитные влияния элементов и их соединений друг на друга, тепловыделение, трение, акустическая эмиссия и т.д.
Внешние влияющие факторы включают в себя изменение параметров окружающей среды (температуры, влажности, давления), напряжения в сети питания, наводки от расположенных поблизости электрических, магнитных, электромагнитных гравитационных полей, ускорений и т.п. Исключение, компенсация и учет влияющих факторов в рабочих условиях измерений с помощью функций влияния являются не только наукой, но и искусством.
Все вышеперечисленные факторы, влияющие на точность измерений, учитываются при разработке, стандартизации и аттестации методик выполнения измерений.
Методы и способы повышения точности измерений*. Часть 2
После тщательно выполненного анализа, как правило, выявляют и оценивают отдельные составляющие погрешности измерений расчетными или расчетно-экспериментальными способами и определяют, какие составляющие погрешности измерений доминируют. В результате этой работы устанавливают, насколько снизится суммарная погрешность после того, как будет значительно уменьшена та или иная ее составляющая.
Пример. Пусть погрешность измерений складывается из составляющих Δ1 и Δ2, причем Δ2 = Δ1/2.
Примем закон распределения плотностей вероятностей для обеих составляющих одинаковым (например, нормальным), а значение вероятности, которой соответствуют границы Δ1 и Δ2, одним и тем же. Тогда суммарную погрешность можно найти по известной формуле квадратического суммирования:
Отсюда видно, что «подавив» погрешность Δ2, мы получим всего лишь десятипроцентный выигрыш в значении суммарной погрешности измерений. Поэтому, в данном случае, рассматривая метод повышения точности измерений, следует стремиться к «подавлению» именно погрешности Δ1.
Сегодня метрологи сходятся на том, что в большинстве практических ситуаций не удается оценить характеристики погрешности измерений с относительной погрешностью меньшей, чем на 20-25 %. Из этого, в частности, следует, что более или менее спокойно решаться проводить мероприятия, направленные на повышение точности измерений, можно лишь в тех случаях, когда, согласно оценкам, будет обеспечен выигрыш в точности, по крайней мере, в полтора-два раза.
Рассмотрим конкретные методы повышения точности измерений, которые используются в случаях доминирования:
При доминировании случайной составляющей погрешности измерений наиболее эффективным методом ее уменьшения является выполнение многократных наблюдений с последующим усреднением их результатов. Более подробно этот метод описан в РМГ 64, поэтому я лишь напомню его суть.
Если случайная составляющая погрешности измерений доминирует, то при вышеуказанном условии коэффициент снижения погрешности измерений приближенно составляет
Теперь поговорим о методах повышения точности измерений, которые используются в случаях, когда преобладают систематические составляющие погрешности измерений. Систематические погрешности возникают на различных этапах проведения измерений. На них же они и исключаются (см. рис. 1).
Остановимся на каждом из этих этапов более подробно.
При подготовке к измерениям, то есть на 1-м их этапе, проводят так называемую профилактику или устранение источников погрешностей. Под устранением источника погрешностей следует понимать как непосредственное его удаление (например, удаление источника тепла), так и защиту измерительной аппаратуры и объекта измерений от воздействия этого источника.
Внешние факторы, влияющие на погрешность измерений, можно разделить на виды:
С целью уменьшения погрешности измерений к условиям их проведения предъявляют жесткие требования. Для конкретных областей измерений, например, устанавливают единые условия, называемые нормальными.
В качестве мероприятия, предупреждающего появление температурной погрешности, широко применяют термостатирование, то есть обеспечение определенной температуры окружающей среды с допускаемыми колебаниями. Термостатируют большие помещения (лаборатории), небольшие помещения (камеры), отдельные СИ или их части (меры сопротивления, нормальные элементы, свободные концы термопар, кварцевые стабилизаторы частоты и т.п.).
В зависимости от требований, предъявляемых к температурному режиму, применяют различные способы термостатирования.
В первую очередь следует назвать естественное термостатирование, т.е. сохранение существующей в помещении температуры неизменной путем его теплоизоляции. Примером такого термостатирования могут служить некоторые помещения ВНИИМ им. Д.И. Менделеева в С-Петербурге, благодаря специальному устройству здания в его центральных помещениях сохраняется постоянная температура.
В настоящее время термостатирование во многих случаях заменяют кондиционированием воздуха. При кондиционировании обеспечивается поддержание на требуемом уровне не только температуры, но других параметров окружающего воздуха и, в первую очередь, влажности.
Термостатирование, а также кондиционирование воздуха являются хорошей защитой и от направленного действия тепла. Однако, неудачное расположение подогревателей в термостате или в термостатированной комнате, а также отсутствие устройств (мешалок и т.п.), обеспечивающих равномерное распределение тепла по всему объему, может само по себе стать источником погрешностей.
Влияние такого фактора, как изменение атмосферного давления, устранить непросто. В тех случаях, когда соблюдение определенных требований является обязательным, применяют барокамеры с регулируемым давлением. Обычно в этих камерах можно одновременно регулировать влажность и температуру.
Система контроля метрологической пригодности СИ в процессе их эксплуатации и рекомендуемые способы обнаружения метрологической непригодности СИ более подробно изложены в МИ 2233-2000 «ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Основные положения».
В ряде случаев добиться уменьшения систематических погрешностей можно, выбрав более совершенное (точное) СИ. Такой метод повышения точности измерений носит название замена менее точного СИ наболее точное (приобретение или разработка специальных СИ). Он эффективен при доминирующих инструментальных составляющих погрешности измерений. Для достоверной оценки реального выигрыша в точности измерений характеристики погрешности того СИ, которое предполагается заменить, и того, которое предполагается использовать, должны быть выражены в сопоставимой форме. Такой формой может служить, например, класс точности СИ.
Уменьшения относительной погрешности можно добиться, выбрав СИ, для которых нормированы приведенные погрешности с таким верхним пределом измерений, чтобы ожидаемые значения измеряемой величины (показания) находились в последней трети диапазона измерений.
Составляющая погрешности измерения, обусловленная погрешностью применяемого СИ, как известно, называется инструментальной погрешностью измерения. Она обусловлена свойствами применяемых СИ и, в свою очередь, состоит из ряда составляющих, вызванных неидеальностью собственных свойств СИ (элементов и материалов, используемых в СИ), реакцией СИ на изменения влияющих величин и на скорость (частоту) изменения измеряемых величии, воздействием СИ на объект измерений, способностью СИ различать малые изменения измеряемых величин во времени и т.д.
Составляющие инструментальной погрешности измерений представлены на рис.2.
Часто замена менее точного СИ на более точное дает существенный эффект в случае доминирования основной погрешности СИ.
Если же доминируют дополнительные погрешности СИ, которые вызваны существенными отклонениями действительных значений внешних влияющих величин от их значений, принятых соответствующими нормативными документами в качестве нормальных, то применяют другой способ повышения точности измерений. Он называется ограничение условий применения СИ. Существенное ограничение условий эксплуатации СИ и связанное с этим уменьшение различных дополнительных погрешностей характерно для помещений так называемых центральных пунктов управления (ЦПУ) производствами с помощью различных АСУТП. В таких помещениях специальные кондиционеры поддерживают в узких интервалах температуру и влажность воздуха, а специальные электромагнитные экраны защищают от воздействия электромагнитных полей.
Индивидуальная градуировка СИ — способ повышения точности измерений, который эффективен при доминирующих систематических составляющих погрешности СИ. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа (например, вследствие разброса нелинейности характеристик чувствительного элемента) так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений.
Градуировка СИ представляет собой процесс нанесения отметок на шкалы СИ, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам для составления градуировочных кривых или таблиц. Для термопар и термометров сопротивления систематическая составляющая погрешности при узком диапазоне измеряемых температур доминирует и остается практически неизменной в течение нескольких месяцев.
Такая погрешность может быть значительно снижена путем внесения в результаты измерений поправок, полученных при индивидуальной градуировке. Этот способ может быть успешно применен в ИИС и АСУТП.
Мы рассмотрели способы повышения точности измерений и мероприятия, с помощью которых исключают систематические погрешности на 1-м этапе измерений, а теперь рассмотрим способы исключения систематических погрешностей на 11-м этапе, то есть в процессе измерений.
Если при измерениях используются преобразователи электрических и неэлектрических величин, то для автоматической коррекции погрешности ряда таких преобразователей применяют метод обратногопреобразования.
Для реализации этого метода используют обратный преобразователь, реальная статическая функция преобразования которого совпадает с функцией, обратной номинальной характеристике преобразования СИ. Этот метод эффективен только в том случае, если обратный преобразователь значительно точнее прямого преобразователя.
На вход обратного преобразователя подают реальный выходной сигнал СИ. Разность двух сигналов (входной сигнал средства измерений минус выходной сигнал обратного преобразователя) соответствует погрешности СИ и может быть использована для выработки корректирующего сигнала как в системе самонастройки, так и в системе введения поправок. Обратный преобразователь в данном методе играет роль как бы многозначной меры, по которой корректируется статическая характеристика прямого преобразователя. Метод обратного преобразования позволяет уменьшать в зависимости от используемого алгоритма коррекции аддитивную и мультипликативную погрешности СИ.
Метод обратного преобразования обладает следующими особенностями:
а) в состав системы коррекции входит эталонный обратный преобразователь, от точности которого существенно зависит точность коррекции;
б) корректирующий сигнал соответствует суммарной погрешности СИ в точке диапазона измерений, соответствующей значению входной величины, т.е. коррекции подвергнуты инструментальные погрешности любого
происхождения;
в) коррекцию осуществляют непрерывно в течение рабочего режима (режима измерений). Пример использования этого метода приведен в приложении В в рекомендациях РМГ64.
Метод замещения — метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.
Пример. При измерении электрического сопротивления на мосте постоянного тока этот мост уравновешивают при включенном измеряемом сопротивлении rх, после чего вместо rх включают переменную эталонную меру. Изменяя значение меры, добиваются равновесия моста и по значению эталонной меры определяют измеряемое сопротивление rх. Благодаря такому измерению удается исключить влияние неполной уравновешенности моста, термоконтактных э.д.с. и других причин, вызывающих систематические погрешности.
Метод противопоставления заключается в том, что об отличии сравниваемых размеров физических величин (массы, электрического сопротивления,электрической емкости, индуктивности и др.) судят по показанию специального двухканального компаратора, на оба входа которого сравниваемые физические величины действуют одновременно. Обусловленная несимметрией компаратора составляющая погрешности измерений часто является доминирующей. Она может быть уменьшена методом противоположного влияния.
Пример. Измерение массы на равноплечих весах (см. рисунок 3)
одинаковы, то тх = т0. Если же /1 ≠ /2 (например, из-за технологического разброса длин плеч при их изготовлении), то при взвешивании каждый раз возникает систематическая погрешность