Что включает в себя кибернетическая система в отношении живых организмов
Кибернетика биологическая
Полезное
Смотреть что такое «Кибернетика биологическая» в других словарях:
КИБЕРНЕТИКА БИОЛОГИЧЕСКАЯ — биокибернетика (от греч. kubernetike искусство управления), научное направление, связанное с применением идей и методов кибернетики в биологии. Исторически зарождение и развитие К. б. связаны с эволюцией представлений об обратной связи в живых… … Биологический энциклопедический словарь
кибернетика биологическая — (син. биокибернетика) раздел кибернетики, изучающий закономерности управления и переработки информации в биологических системах … Большой медицинский словарь
Кибернетика медицинская — научное направление, связанное с проникновением идей, методов и технических средств кибернетики (См. Кибернетика)в медицину. Развитие идей и методов кибернетики в медицине осуществляется в основном в направлениях создания диагностических… … Большая советская энциклопедия
Кибернетика — I Кибернетика (от греч. kybernetike искусство управления, от kybernáo правлю рулём, управляю) наука об управлении, связи и переработке информации (См. Информация). Предмет кибернетики. Основным объектом исследования в К. являются … Большая советская энциклопедия
Кибернетика — I Кибернетика (от греч. kybernetike искусство управления, от kybernáo правлю рулём, управляю) наука об управлении, связи и переработке информации (См. Информация). Предмет кибернетики. Основным объектом исследования в К. являются … Большая советская энциклопедия
Биологическая кибернетика — представляет собой научное представление, в котором идеи, методы и технические средства кибернетики применяются к рассмотрению задач биологии и физиологии. Биологическая кибернетика состоит из теоретической и практической частей. Задачей… … Википедия
Кибернетика — (от др. греч. κυβερνητική «искусство управления»[1]) наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество. Содержание 1 Обзор … Википедия
Кибернетика — I Кибернетика в медицине. Кибернетика наука об общих законах управления в системах любой природы биологической, технической, социальной. Основной объект исследования в К. кибернетические системы, рассматриваемые вне зависимости от их материальной … Медицинская энциклопедия
кибернетика — (от греч. kybernētikē искусство управления), наука об общих закономерностях получения, хранения, передачи и переработки информации. Основной объект исследования так называемые кибернетические системы, рассматриваемые абстрактно, вне … Сельское хозяйство. Большой энциклопедический словарь
КИБЕРНЕТИКА — наука об управлении, связи и переработке информации (буквально искусство управления рулем ). Первым, кто употребил этот термин для управления в общем смысле, был, по видимому, древнегреческий философ Платон. А. М. Ампер (А. М. Ampere, 1834)… … Математическая энциклопедия
Кибернетика
Киберне́тика (от др.-греч. κυβερνητική — «искусство управления» [1] ) — наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество.
Содержание
Обзор
Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.
Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием, — теория управления, теория игр, теория систем (математический эквивалент кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.
Сфера кибернетики
Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. XX века этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники.
Кибернетика является междисциплинарной наукой. Она возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии. Ей присущ анализ и выявление общих принципов и подходов в процессе научного познания. Наиболее весомыми теориями, объединяемыми кибернетикой, можно назвать следующие:
Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.
Особенно велика роль кибернетики в психологии труда и таких ее отраслях, как инженерная психология и психология профессионально-технического образования. Кибернетика — наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем — от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма. Управление — это перевод управляемой системы из одного состояния в другое посредством целенаправленного воздействия управляющего. Оптимальное управление — это перевод системы в новое состояние с выполнением некоторого критерия оптимальности, например, минимизации затрат времени, труда, веществ или энергии. Сложная динамическая система — это любой реальный объект, элементы которого изучаются в такой высокой степени взаимосвязи и подвижности, что изменение одного элемента приводит к изменению других.
Направления
Кибернетика — более раннее, но всё ещё используемое общее обозначение для многих предметов. Эти предметы также простираются в области многих других наук, но объединены при исследовании управления системами.
Чистая кибернетика
Чистая кибернетика изучает системы управления как понятие, пытаясь обнаружить основные её принципы.
В биологии
Кибернетика в биологии — исследование кибернетических систем в биологических организмах, прежде всего сосредотачиваясь на том, как животные приспосабливаются к их окружающей среде, и как информация в форме генов передаются от поколения к поколению. Также имеется второе направление — киборги.
Теория сложных систем
Теория сложных систем анализирует природу сложных систем и причины, лежащие в основе их необычных свойств.
В компьютерной науке
Компьютерная наука напрямую применяет концепты кибернетики для управления устройствами и анализа информации.
В инженерии
Кибернетика в инженерии используется, чтобы проанализировать отказы систем, в которых маленькие ошибки и недостатки могут привести к сбою всей системы.
В экономике и управлении
В математике
В психологии
В социологии
История
В древности термин «кибернетика» использовался Платоном в контексте «исследования самоуправления» в «Законах», для обозначения управления людьми.
«КИБЕРНЕТИКА. Отношения народа к народу, изучаемые предшествующими науками, — лишь небольшая часть объектов, о которых должно печься правительство; его внимания также непрерывно требуют поддержание общественного порядка, исполнения законов, справедливое распределение налогов, отбор людей, которых оно должно назначать на должности, и всё, способствующее улучшению общественного состояния. Оно постоянно должно выбирать между различными мерами, наиболее пригодными для достижения цели; и лишь благодаря глубокому изучению и сравнению разных элементов, предоставляемых ему для этого выбора знанием всего, что имеет отношение к нации, оно способно управлять в соответствии со своим характером, обычаями, средствами существования процветания организацией и законами, которые могут служить общими правилами поведения и которыми оно руководствуется в каждом особом случае. Итак, только после всех наук, занимающихся этими различными объектами, надо поставить эту, о которой сейчас идёт речь и которую я называю кибернетикой, от слова др.-греч. κυβερνητιχη ; это слово, принятое в начале в узком смысле для обозначения искусства кораблевождения, получило употребление у самих греков в несравненно более широком значении искусства управления вообще». [5]
Первая искусственная автоматическая регулирующая система, водяные часы, была изобретена древнегреческим механиком Ктезибием. В его водяных часах вода вытекала из источника, такого как стабилизирующий бак, в бассейн, затем из бассейна — на механизмы часов. Устройство Ктезибия использовало конусовидный поток для контроля уровня воды в своём резервуаре и регулировки скорости потока воды соответственно, чтобы поддержать постоянный уровень воды в резервуаре, так, чтобы он не был ни переполнен, ни осушен. Это было первым искусственным действительно автоматическим саморегулирующимся устройством, которое не требовало никакого внешнего вмешательства между обратной связью и управляющими механизмами. Хотя они, естественно, не ссылались на это понятие как на науку кибернетику (они считали это областью инженерного дела), Ктезибий и другие мастера древности, такие как Герон Александрийский или китайский учёный Су Сун, считаются одними из первых, изучавших кибернетические принципы. Исследование механизмов в машинах с корректирующей обратной связью датируется ещё концом XVIII века, когда паровой двигатель Джеймса Уатта был оборудован управляющим устройством, центробежным регулятором обратной связи для того, чтобы управлять скоростью двигателя. А. Уоллес описал обратную связь как «необходимую для принципа эволюции» в его известной работе 1858 года. В 1868 году великий физик Дж. Максвелл опубликовал теоретическую статью по управляющим устройствам, одним из первых рассмотрел и усовершенствовал принципы саморегулирующихся устройств. Я. Икскюль применил механизм обратной связи в своей модели функционального цикла (нем. Funktionskreis ) для объяснения поведения животных.
XX век
Современная кибернетика началась в 1940-х как междисциплинарная область исследования, объединяющая системы управления, теории электрических цепей, машиностроение, логическое моделирование, эволюционную биологию, неврологию. Системы электронного управления берут начало с работы инженера Bell Labs Гарольда Блэка в 1927 году по использованию отрицательной обратной связи, для управления усилителями. Идеи также имеют отношения к биологической работе Людвига фон Берталанфи в общей теории систем.
Ранние применения отрицательной обратной связи в электронных схемах включали управление артиллерийскими установками и радарными антеннами во время Второй мировой войны. Джей Форрестер, аспирант в Лаборатории Сервомеханизмов в Массачусетском технологическом институте, работавший во время Второй мировой войны с Гордоном С. Брауном над совершенствованием систем электронного управления для американского флота, позже применил эти идеи к общественным организациям, таким как корпорации и города как первоначальный организатор Школы индустриального управления Массачусетского технологического института в MIT Sloan School of Management (англ.). Также Форрестер известен как основатель системной динамики.
У. Деминг, гуру комплексного управления качеством, в чью честь Япония в 1950 году учредила свою главную индустриальную награду, в 1927 году был молодым специалистом в Bell Telephone Labs и, возможно, оказался тогда под влиянием работ в области сетевого анализа). Деминг сделал «понимающие системы» одним из четырёх столпов того, что он описал как глубокое знание в своей книге «Новая экономика».
Уолтер был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Наряду с Великобританией и США, важным географическим местоположением ранней кибернетики была Франция.
Весной 1947 года Винер был приглашён на конгресс по гармоническому анализу, проведённому в Нанси, Франция. Мероприятие было организовано группой математиков Николя Бурбаки, где большую роль сыграл математик Ш. Мандельбройт.
Во время этого пребывания во Франции Винер получил предложение написать сочинение на тему объединения этой части прикладной математики, которая найдена в исследовании броуновского движения (т. н. винеровский процесс) и в теории телекоммуникаций. Следующим летом, уже в Соединённых Штатах, он использовал термин «кибернетика» как заглавие научной теории. Это название было призвано описать изучение «целенаправленных механизмов» и было популяризировано в книге «Кибернетика, или управление и связь в животном и машине» (Hermann & Cie, Париж, 1948). В Великобритании вокруг этого в 1949 году образовался Ratio Club (англ.).
В начале 1940-х Джон фон Нейман, более известный работами по математике и информатике, внёс уникальное и необычное дополнение в мир кибернетики: понятие клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже компьютерным вирусам, является дальнейшим доказательством универсальности кибернетических исследований.
Винер популяризировал социальные значения кибернетики, проведя аналогии между автоматическими системами (такими как регулируемый паровой двигатель) и человеческими институтами в его бестселлере «Кибернетика и общество» (The Human Use of Human Beings: Cybernetics and Society Houghton-Mifflin, 1950).
Одним из главных центров исследований в те времена была Биологическая компьютерная лаборатория в Иллинойском университете, которой в течение почти 20 лет, начиная с 1958 года, руководил Х. Фёрстер.
Кибернетика в СССР
Развитие кибернетики в СССР, было начато в 1940-х годах.
В 60-е и 70-е на кибернетику, как на техническую, так и на экономическую, уже стали делать большую ставку.
Упадок и возрождение
В течение последних 30 лет кибернетика прошла через взлёты и падения, становилась всё более значимой в области изучения искусственного интеллекта и биологических машинных интерфейсов (то есть киборгов), но, лишившись поддержки, потеряла ориентиры дальнейшего развития.
КИБЕРНЕТИКА БИОЛОГИЧЕСКАЯ
Полезное
Смотреть что такое «КИБЕРНЕТИКА БИОЛОГИЧЕСКАЯ» в других словарях:
Кибернетика биологическая — биокибернетика, научное направление, связанное с проникновением идей, методов и технических средств кибернетики (См. Кибернетика) в биологию. Зарождение и развитие К. б. связаны с эволюцией представления об обратной связи (См. Обратная… … Большая советская энциклопедия
кибернетика биологическая — (син. биокибернетика) раздел кибернетики, изучающий закономерности управления и переработки информации в биологических системах … Большой медицинский словарь
Кибернетика медицинская — научное направление, связанное с проникновением идей, методов и технических средств кибернетики (См. Кибернетика)в медицину. Развитие идей и методов кибернетики в медицине осуществляется в основном в направлениях создания диагностических… … Большая советская энциклопедия
Кибернетика — I Кибернетика (от греч. kybernetike искусство управления, от kybernáo правлю рулём, управляю) наука об управлении, связи и переработке информации (См. Информация). Предмет кибернетики. Основным объектом исследования в К. являются … Большая советская энциклопедия
Кибернетика — I Кибернетика (от греч. kybernetike искусство управления, от kybernáo правлю рулём, управляю) наука об управлении, связи и переработке информации (См. Информация). Предмет кибернетики. Основным объектом исследования в К. являются … Большая советская энциклопедия
Биологическая кибернетика — представляет собой научное представление, в котором идеи, методы и технические средства кибернетики применяются к рассмотрению задач биологии и физиологии. Биологическая кибернетика состоит из теоретической и практической частей. Задачей… … Википедия
Кибернетика — (от др. греч. κυβερνητική «искусство управления»[1]) наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество. Содержание 1 Обзор … Википедия
Кибернетика — I Кибернетика в медицине. Кибернетика наука об общих законах управления в системах любой природы биологической, технической, социальной. Основной объект исследования в К. кибернетические системы, рассматриваемые вне зависимости от их материальной … Медицинская энциклопедия
кибернетика — (от греч. kybernētikē искусство управления), наука об общих закономерностях получения, хранения, передачи и переработки информации. Основной объект исследования так называемые кибернетические системы, рассматриваемые абстрактно, вне … Сельское хозяйство. Большой энциклопедический словарь
КИБЕРНЕТИКА — наука об управлении, связи и переработке информации (буквально искусство управления рулем ). Первым, кто употребил этот термин для управления в общем смысле, был, по видимому, древнегреческий философ Платон. А. М. Ампер (А. М. Ampere, 1834)… … Математическая энциклопедия
ГЛАВА III
КИБЕРНЕТИКА, САМООРГАНИЗАЦИЯ, ИНТЕЛЛЕКТ
§ 1. Кибернетика и сложные самоорганизующиеся системы
Философские вопросы, поставленные кибернетикой, интенсивно обсуждаются в отечественной и мировой литературе. При этом результаты кибернетики и ее философских идей интерпретируются с разных позиций, нередко сторонниками противоположных философских направлений. Идеи и принципы новой науки используются буржуазной философией (неотомизм, позитивизм, операционализм), представители которой пытаются противопоставить положения кибернетики диалектическому материализму. Однако реальное развитие кибернетики в нашей стране и значительная работа, направленная на установление научного и философского статуса кибернетики, которую ведут философы совместно со специалистами в области естественных наук, выявляют действительные взаимосвязи философских идей кибернетики и материалистической диалектики, показывают методологическую плодотворность диалектико-материалистической трактовки основных принципов кибернетики.
Широкий спектр применения идей и методов кибернетики выражает определенные синтетические тенденции НТР. В этом плане непреходящее значение для разработки философских проблем современной науки имеет анализ революции в естествознании на рубеже XIX-XX вв., осуществленный В. И. Лениным в работе «Материализм и эмпириокритицизм». В указанном труде дано глубокое истолкование новых для того времени научных данных в период крутой «ломки принципов» в ведущих отраслях естествознания. Ленинский анализ революции в физике служит образцом философского рассмотрения современных достижений НТР. Ленинские методологические принципы необходимы в философском обосновании идей и методов кибернетики, процесса информатизации общества и других новейших тенденций, связанных с перестройкой социальной действительности и мышления в стране и в глобальном масштабе. Не случайно именно об этом шла речь на научно-теоретической конференции, посвященной актуальным проблемам перестройки [2].
В философии диалектического материализма в отличие от прежних философских систем онтология и гносеология не существуют обособленно, вне связи друг с другом. В диалектическом материализме речь идет не о бытии вообще, не о сущем как таковом. Философия начинается именно с постановки вопроса об отношении мышления к бытию. Вместе с тем оправданно и необходимо разграничивать онтологию и гносеологию, имеются в виду два аспекта, два типа методологии. Гносеологическая проблематика как выражение субъективной диалектики ориентирована в целом на исследование всеобщих логико-познавательных форм в их, так сказать, чистом виде. В объективной диалектике рассматривается реальная действительность с использованием логики исследования специфики объекта, которую К. Маркс называл специфической логикой специфического предмета [5].
Диалектическая обработка кибернетической проблематики, формирование диалектико-материалистической концепции кибернетики необходимо включают в себя выявление объективной и субъективной диалектики в ее предмете и методе.
Возникновение кибернетики ознаменовало становление новых методов познания и вызвало переосмысление некоторых принципов и понятий, сложившихся в классической науке. Кибернетика представляет собой научный синтез целого ряда относительно далеких друг от друга специальных дисциплин, чем и объясняется широта приложения ее основных принципов. Причем кибернетические исследования приобретают значение для традиционных (физических, биологических, химических, а также математических) фундаментальных наук.
Кибернетика впервые в истории науки вступила на путь объективного естественнонаучного и математически точного изучения процессов управления и переработки информации в природе, технике и обществе. Однако до сих пор область исследований кибернетики не установлена достаточно четко. Кроме того, имеющиеся в литературе определения кибернетики исходят из различных представлений о системе, информации, регулировании, управлении, алгоритме и так далее, связь между которыми не всегда ясна. Сферой, для которой существенны кибернетические понятия и закономерности, называют обычно и технику, и жизнь, и общество, и различные сочетания этих областей, и их все вместе.
Такая дефиниция предмета кибернетики не предполагает объяснения того, что собой представляет кибернетическая система. Уяснение понятия кибернетической системы составляет задачу кибернетической теории систем. Подход к определению науки, при котором выделяется круг исследуемых в ней систем, выступает ныне общепринятым способом раскрытия предмета той или иной науки. Например, современная алгебра, составная дисциплина математики, обычно трактуется как теория алгебраических структур. Аналогично обстоит дело с понятиями современной логики.
При сравнении предмета кибернетики с современным (расширительным) подходом к информатике [11] важно по достоинству оценить (и мы это стремились обосновать) системный характер кибернетического направления в науке и технике. В любом случае кибернетика изначально понимается как теория определенного класса систем; более того, можно утверждать, что она представляет собой конкретный и фундаментальный вариант общей теории систем.
Современное состояние кибернетики еще не привело к единому представлению об общей системе этой науки. Поэтому ее развитие идет внутри ряда дисциплин, которые, в свою очередь, также сложны. Сюда относятся теории, показывающие многообразие кибернетического способа мышления [12]: теории регулирования и управления, автоматов, нервных сетей, надежности, больших систем, информации, алгоритмов, игр и т.д. Подобно тому, как система понятий кибернетики развивается во взаимосвязи с понятийными системами традиционных наук, кибернетические методы соотносятся (или находятся в отношении дополнительности) с методами других научных дисциплин [13]. Это, например, методы моделирования и аналогий, черного ящика, проб и ошибок, которые, однако, модифицированы соответственно общему предмету кибернетики и приобрели математическую ориентацию.
Основные понятия и принципы кибернетики (как любой другой фундаментальной науки) тесно взаимосвязаны с категориями диалектики. Данная взаимосвязь выявляется при непосредственном рассмотрении проблем, ориентированных на диалектическое овладение сложностью [14]. И в специфически кибернетическом плане и на уровне философской методологии становится очевидной необходимость синтеза содержательных (качественных) и формально-математических (количественных) методов научного исследования сложных самоорганизующихся систем [15]. Кибернетика с ее математическим моделированием и общими эвристическими принципами и законами управления сложными саморазвивающимися системами являет собой пример синтеза, в рамках которого качественные суждения используются наряду с количественными методами и поддерживается непрерывная обратная связь между анализом проблемы и ее формализацией. Широкий структурный подход в современной науке означает непрерывную связь между формальным и конкретным.
Рассмотрение этих сторон кибернетики в диалектическом единстве позволяет составить представление о формально-содержательной природе кибернетики, имеющее важный философский смысл. Нередко отношение философии и кибернетики выражается в понятиях общего и особенного, что, конечно, недостаточно для характеристики связи между философией и системной наукой. К примеру, кибернетика рассматривает человека как элемент системы управления, не претендуя на то, чтобы на основе этого стать теорией человека. Здесь отношение системы и элемента есть общее философского положения о том, что человек является совокупностью конкретно-исторических общественных отношений. Такой подход редуцирует особенное, внутреннее психическое качество индивидуума, генетическую индивидуальность до общего, причем кибернетика исследует еще более общие отношения между элементом и системой управления. Г. Герц пишет, что «математика и кибернетика абстрагируются от специфических свойств элементов, от системных законов, которые регулируют существенные способы поведения определенных систем и исследуют всеобщие отношения систем, структур, возможных идеальных объектов и т.д. Философия, напротив, обобщает научные знания, чтобы научно обосновать свои ответы на основные вопросы мировоззрения» [17]. Иначе говоря, кибернетика и философия существенно различаются не столько степенью общности своих высказываний, сколько целью обобщений.
Неотделимый от моделирования функциональный подход, представляющий важную особенность кибернетики, выступает как основной путь изучения сложных систем. Сложность кибернетических систем нередко оказывается связанной с человеческим фактором, который все более проявляет себя в мире науки, техники и социального управления. Гуманитарный аспект входит в самую «сердцевину» кибернетической проблематики, например, в работы в области искусственного интеллекта. А для современных социальных структур характерен рост весомости не только человеческого, но и организационного фактора.
Изложенное подчеркивает актуальность кибернетической проблематики, ориентированной на изучение законов функционирования и развития сложных самоорганизующихся систем. Диалектическое осмысление предмета кибернетики и особенностей ее метода приводит к постановке вопроса о взаимосвязи кибернетических аспектов самоорганизации с диалектическим принципом самодвижения и саморазвития материи.
При дальнейшем анализе необходимо учитывать то обстоятельство, что с каждым этапом в развитии естествознания проблема самодвижения материи наполняется новым содержанием; в рамках самого естествознания вырабатываются принципы и понятия, эвристический смысл которых позволяет уточнять существующие взгляды на природу движения материи. В современном естествознании не подлежит сомнению ведущая роль функционально-структурных методов [20], что является следствием проникновения науки в сложный, организованный мир. В связи с этим возникает необходимость в конкретизации и дальнейшем развитии идеи самодвижения применительно к высшим уровням организации материи, которые находятся в поле зрения теоретической биологии, экологии и некоторых других наук. При анализе проблемы самодвижения под таким углом зрения неизбежно привлечение идей кибернетики и общей теории систем. Действительно, кибернетический и общесистемный принципы позволяют вычленить из общей идеи самодвижения организационные аспекты и прежде всего аспект самоорганизации.
Философская трактовка самоорганизации включает в себя определение основных понятий кибернетической теории самоорганизующихся систем, соотнесение их философского содержания с диалектическими принципами материального единства мира, саморазвития, причинности, внутреннего и внешнего и др. Вопрос о философском статусе принципов самоорганизации тесно связан с методологическими проблемами теории самодвижения и саморазвития материи. Поэтому значимость обретает осмысление естественнонаучных (в частности, биокибернетических) принципов самоорганизации в соотношении с диалектическим принципом саморазвития. Уже при постановке вопроса о том, каковы естественнонаучные механизмы перехода от одного уровня организации материи к другому (в особенности от неживой материи к живой) необходимо привлечение современных диалектико-материалистических представлений. Вместе с тем следует акцентировать внимание на естественнонаучном выражении принципа саморазвития применительно к высшим уровням организации материи, то есть на выяснении специфических механизмов самоорганизации. В этом отношении «самоорганизация» может рассматриваться как общенаучная конкретизация философского принципа саморазвития.
Понятие самоорганизации используется в различных смыслах. Например, о самоорганизации говорят тогда, когда повышение организации в большей или меньшей мере происходит само по себе, спонтанно; ее также связывают с автономным развитием, которое управляется изнутри, а не извне; под самоорганизующейся системой понимают кроме того систему, способную изменять внутреннюю структуру и способы поведения. В последнем случае понятие самоорганизации оказывается связанным с понятием обучения. Однако такие (однофакторные) характеристики самоорганизации показывают, что для раскрытия содержания этого интегрального принципа одного признака недостаточно.
В обосновании философского статуса самоорганизующейся системы это понятие предложено рассматривать на основе четырех системных принципов: активности, целенаправленности, надежности функционирования и вероятностно-стохастической детерминации [21]. Данная концептуальная «модель» самоорганизации, выражающая ее системный характер, получает интерпретацию и развитие в различных областях естественнонаучного, технического и социального познания. При этом концепция самоорганизации реализует исследовательскую установку на выявление внутренних факторов развития, которые позволяют показать доминирующую роль внутренних противоречий, находящихся в соответствии с системой внешних закономерностей. Иначе говоря, подобное понимание самоорганизации раскрывает внутренние механизмы и внутренние причины самодвижения тех форм материи, к которым принадлежат самоорганизующиеся системы. Как бы качественно ни различались такого рода системные объекты, они обладают общими характеристиками самодвижения, которые выражены в принципах самоорганизации. В этом отношении самоорганизация представляет собой высшую форму развития динамических систем и может рассматриваться как одно из специфических проявлений самодвижения материи [22].
Понятие самоорганизации в отличие от понятия организации выражает диалектический аспект последней, включая в себя в основном те организации, которые воплощены в сложных саморазвивающихся (относительно автономных) системах. В общем случае под самоорганизацией понимается способность системы к стабилизации некоторых параметров посредством направленного упорядочения ее структурных и функциональных отношений с тем, чтобы противостоять энтропийным факторам среды. Процессы самоорганизации характеризуются при этом возрастанием упорядоченности системы, энергоинформационным взаимодействием со средой и процессами самоуправления. Исходя из необходимости взаимодействия системы с окружающей средой и приняв тезис о том, что наличие подходящего окружения есть необходимое условие самоорганизации, важно раскрыть определяющую роль внутренних факторов системы в организации своего поведения. Именно такой, диалектический подход к пониманию самоорганизации представляет наибольший интерес.
Кибернетика, по-новому поставив проблему самоорганизации, внесла важный вклад в решение вопроса о том, «каким образом связывается материя, якобы не ощущающая вовсе, с материей, из тех же атомов (или электронов) составленной и в то же время обладающей ясно выраженной способностью ощущения» [23]. Результаты кибернетики подтверждают выдвинутую В. И. Лениным гипотезу о генезисе психического в процессе эволюции материи. Плодотворность ленинской идеи об отражении как общем свойстве материи проявляется в том, что она дает ключ к теоретическому осмыслению моделирования особенностей высших форм самоорганизующейся материи на качественно ином субстрате.
Идеи современной кибернетики позволяют детально анализировать и облекать в конкретную форму философские принципы активности. Концепция активности кибернетических систем основывается на диалектических принципах решения проблемы источника развития. Признание активности свойством развивающейся материи помогает глубже понять законы материального мира и, в частности, переход от неживой материи к живой. Анализ самоорганизующей активности кибернетических систем открывает новый аспект общей концепции активности. Благодаря обратным связям возможности реализации активности резко возрастают; обеспечивается избирательность взаимодействия, обусловливающая устойчивость систем и приводящая их к упорядоченному состоянию.
Самоорганизующую активность кибернетических систем не следует отождествлять со способностью к гомеостатическим формам стабилизации в ответ на воздействия внешней среды. Самоорганизующая активность, будучи одним из факторов прогрессивного развития (саморазвития), базируется на оптимальном сочетании стабилизирующих форм самоорганизации (с преобладанием отрицательных обратных связей) с целенаправленной трансформацией систем (на основе положительной обратной связи). Поэтому такая активность выступает как необходимое и существенное внутреннее свойство самоуправляемой и саморегулируемой системы, проявляющееся не только в ее относительной самостоятельности, независимо от изменения внешних условий, но и в преодолении возмущающих воздействий среды и в подчинении последней своим внутренним целям.
В теории самоорганизующихся систем важное значение имеет понятие сложности. Для того, чтобы система приобрела способность к самоорганизации, самообучению, самовоспроизведению, необходим некоторый критический уровень сложности. Отсюда следует, что понятие сложности способно выражать не только количественные, но и качественные особенности систем.
Диалектический подход к кибернетической проблематике самоорганизующихся систем необходим в философском рассмотрении проблемы искусственного интеллекта, которая является одной из центральных в кибернетике.
§ 2. Самоорганизация биологических систем (кибернетический подход)
Выдвинутая диалектическим материализмом идея соединения, совмещения принципа развития с принципом единства мира получает воплощение в интегративных концепциях современной науки. Возникновение таких необычных с классической точки зрения новых научных дисциплин, как молекулярная биология, экология, генетика, биофизика, синергетика, кибернетика, выражающих стиль мышления науки XX в., ставит целый ряд философско-методологических проблем. В общем виде эти проблемы связаны с обоснованием методологического единства структуры науки, осознание которого облегчает ее развитие. Процессы математизации, кибернетизации и физикализации научного знания побуждают к исследованию природы научных теорий, к анализу путей и способов, с помощью которых наука преодолевает силу традиций как естественнонаучных, так и философских. Представляется, например, конструктивным распространение методов и идей более развитых наук о «низшем» на область менее развитых наук о «высшем». В этом процессе междисциплинарного обмена информацией «науки более развитые, описывающие относительно простые объекты, могут существенно влиять на науки, исследующие явления более сложной природы. Эта всеобщая закономерность познания проявляется в современную эпоху в процессе воздействия математики, кибернетики, физики и химии на биологию» [26].
Взаимодействие и взаимопроникновение наук физико-биолого-кибернетического направления важно в концептуальном отношении: оно позволяет вырабатывать научные стратегии большого методологического значения. Объединение концепции эволюции с концепцией структуры, выражая диалектическую природу научного познания, формирует вместе с тем понятийный аппарат, адекватный новым проблемам познания сущности жизни. Одной из таких проблем, выдвинутых на передний план бурно развивающейся биологической наукой, становится проблема самоорганизации живого как в смысле возникновения жизни, так и на уровне формирования структурных элементов современных живых систем [28].
Проблема самоорганизации была поставлена основоположниками кибернетики; идеи самоорганизации в различных вариантах впервые получили обоснование в работах Н. Винера, Дж. Неймана, Г. Паска, Р. Эшби, Ст. Бира. Н. Винер придавал большое значение разработке этой проблемы [29], понимая под самоорганизацией процесс втягивания в синхронизм, образования единого ритма работы многочисленных и разрозненных до этого элементов системы. Такой подход к самоорганизации как к достаточно специфическому принципу функционирования различных по природе систем открывает возможности его биофизического истолкования.
В современных теориях происхождения жизни концепция самоорганизации занимает важное место. Как пишут С. Фокс и К. Дозе, снабдив свою работу историческим обзором развития идей самоорганизации, «приблизительно с 1960 г. наступила новая эра в исследовании проблемы возникновения жизни. Исключительно возрос интерес к процессам самоорганизации, или самосборки, макромолекул, образующих микросистемы» [30]. Понятие самосборки рассматривается как понятие, служащее краеугольным камнем происхождения жизни. Показано, что эволюция шла и продолжает идти по пути самоупорядочения при образовании макромолекул, самосборки этих молекул и самовоспроизведения собранной микросистемы. Все эти процессы теоретически не укладываются в рамки случайных явлений.
Самоорганизация, таким образом, представляет собой проблему для биофизики, кибернетики и молекулярной биологии. Ее концептуальное оформление позволяет соотнести принципы и понятия данных наук с их предметом и методом. По замечанию М. Бунге, «подобная контекстуальность, или относительность статуса основных идей, несомненно, желательна, поскольку открывает новые возможности для поиска все более плодотворных и глубоких идей, все более содержательных понятий и постулатов, из которых в свою очередь могут быть выведены понятия, бывшие первичными ранее» [31].
Современное естествознание в основном базируется на теории абиогенного происхождения жизни, впервые развитой А.И.Опариным (1924 г.). Согласно этой теории, информационные макромолекулы типа нуклеиновых кислот и белков могли возникать из сравнительно простых органических соединений, образовавшихся на Земле в условиях ее первичной восстановительной атмосферы. Успешный синтез важных для жизни биохимических соединений в условиях, имитирующих существовавшие ранее на Земле, подтверждает эту теорию. Характерным является следующее положение А. И. Опарина: «. Сейчас все более и более становится очевидным, что нельзя (как это было еще недавно) рассматривать возникновение жизни как какое-то внезапное, изолированное явление, как какую-то счастливую случайность. Оно представляет собой неотъемлемую составную часть общего закономерно протекающего процесса развития Вселенной» [32].
Такой подход позволяет, по крайней мере, ввести кибернетические принципы самоорганизации в изучение пограничных между физикой и биологией вопросов. Поскольку кибернетика занимается системами на уровне их организации, то здесь, говоря методологически, она выступает как физика биологии. В аспекте кибернетики биологические процессы с их целесообразностью могут быть объяснены исходя из физических законов. Именно Н. Винер впервые определил информацию как новую физическую переменную [34].
Комплементарность информации и энтропии ясно показывает ограниченную применимость классической теории информации к проблемам эволюции [36]. Для понимания процессов эволюции нужно знать не количество информации, а программу биологического развития, заложенную в генах, и способ ее реализации. Значит, встает вопрос о содержании информации, о ее ценности для развития. Информация возникает или приобретает ценность посредством отбора.
Важно заметить, что упорядоченность открытых систем возрастет или останется постоянной не вопреки второму началу термодинамики, а вследствие ее законов. Упорядоченность поддерживается оттоком энтропии в окружающую среду. Строгая количественная формулировка таких фактов требует построения термодинамики открытых систем, термодинамики неравновесных процессов. Поскольку в описание подобных процессов в явной форме входит время, речь идет уже не о термостатике, но о физической кинетике [43]. И. Пригожин и его сотрудники показали, что в результате химических нестабильностей автокаталитические гомогенные системы вдали от равновесия могут образовывать структурные неоднородности в пространстве и времени, в частности, создавать осциллирующие структуры. По И. Пригожину, отклонение от равновесия и характеризует уровень диссипации. Вдали от равновесия и за пределами неустойчивости флюктуации усиливаются. В этом отношении диссипативная структура является гигантской флюктуацией, стабилизированной потоком энергии и вещества из внешнего мира.
Л. Тьюринг показал, как в совершенно однородной системе может возникать весьма правильная структура при условии, что эта система неустойчива и в определенное время подвергается случайному воздействию [45]. Тем самым констатировалось возникновение порядка, могущего лежать в основе формирования биологических структур. Интересуясь специальными формами морфогенетических путей в ходе эмбрионального развития, А. Тьюринг полагал, что такого рода новообразования структур весьма специфичны. Однако развитие синергетики продемонстрировало [46], что появление упорядоченных структур вслед за неустойчивыми значительно более общее явление. Становится возможным заключить, что «образующаяся впоследствии диссипативная структура действительно является новым состоянием вещества, которое индуцируется потоком свободной энергии в неравновесных условиях. В этом новом состоянии мы имеем новую физическую химию на супермолекулярном уровне. » [47]. Вполне вероятно, что появление диссипативных структур на предбиологической стадии могло привести систему к условиям, далеким от равновесия, а также к сохранению этих условий, что необходимо для возникновения определенных ключевых реакций, обеспечивающих дальнейшую эволюцию.
Концепция самоорганизации Винера содержит в качестве основного элемента признание колебательно-ритмических процессов, которые в структурном отношении являются общими для различных систем, достигших уровня самоорганизации. Необходимо подчеркнуть, что качественный уровень процессов самоорганизации, происходящих, например, в технических, биологических или других системах, различен. Это обстоятельство, по-видимому, и послужило причиной дифференциации феномена самовоспроизведения у автоматов и кристаллообразования. Одна из трудностей в определении того, что понимать под самовоспроизведением, по мнению Дж. фон Неймана, заключается в том, что некоторые организации, такие, как растущие кристаллы, по любому наивному определению самовоспроизведения будут самовоспроизводящими, однако никому не хочется признавать их такими [51]. Чтобы обойти эту трудность, можно считать, что самовоспроизведение включает в себя не только способность создавать другой организм, подобный оригиналу, но и подвергаться наследственным мутациям.
Самовоспроизведение выступает разновидностью самоорганизации. Понятие самовоспроизведения в данном контексте употребляется для характеристики автоматов, дающих на выходе нечто похожее на них самих. Речь идет об автоматах, способных мидифицировать объекты, подобные себе, или осуществлять синтез, выбирая части и соединяя их друг с другом, или разбирать синтезированные объекты. В процессе самовоспроизведения решающую роль играет свойство сложности, проявляющееся в том, что для каждого автомата имеется критическое число элементарных частей, ниже которого процесс синтезирования вырождается, а выше (при условии правильной организации) приобретает характер взрыва. Другими словами, синтез автоматов может протекать так, что каждый автомат будет создавать другие автоматы, более сложные и обладающие большими, чем он, возможностями.
Самовоспроизведение, понимаемое таким образом, соотнесено с процессами самоусложнения и саморазвития. Действительно, если самовоспроизведение возможно лишь на определенном (критическом) уровне сложности, то система, решающая задачу воспроизведения себе подобных, должна быть «запрограммирована» на самоусложнение и, стало быть, на саморазвитие. Поэтому правомерен вопрос, поставленный в общей и динамической форме, «как может нечто, что кажется простым, самостоятельно стать сложным» [52]. Этот подход показывает, что модели воспроизведения, предложенные Дж. фон Нейманом, содержат сильные ограничения, которые снимаются в процессах воспроизведения естественных автоматов. М. Аптер комментирует этот факт следующим образом: «В моделях фон Неймана новая машина хотя и строится постепенно, шаг за шагом, а не создается готовой в один момент, все же этот рост управляется полностью извне той машиной, которая ее строит. То есть одна машина строит другую машину, а не вторая машина строится сама на основе инструкций, данных ей первой машиной. Конечно, интересно, почему животные самовоспроизводятся не по способу фон Неймана, а развиваются автономно из чего-то на вид гораздо более простого, чем их родители» [53].
Самовоспроизведение как аспект самоорганизации необходимо рассматривать не только структурно, но и генетически. Феномен самовоспроизведения нельзя адекватно истолковать, не привлекая понятий самоусложнения и саморазвития. Последние выражают структурно-генетическое содержание развития определенных материальных форм, модельная идентификация которых в информационно-логическом плане осуществляется, в частности, в теории самовоспроизводящихся автоматов. Понятия самоусложнения и саморазвития, безусловно, имеют и структурный и генетический аспекты. Однако в научной теории определенный аспект того или иного понятия приобретает преобладающее значение. Так, в теории автоматов содержание понятия сложности ограничивается структурно-функциональным выражением.
Под функцией понимается свойство структуры, включающее в себя закономерные отношения между элементами структуры и основанные на них воздействия данной структуры на другие структуры целенаправленного поведения. Анализ соотношения функций и структур приводит к выводу о том, что чем выше уровень организации систем, тем сильнее зависимость структуры от функций. На относительно высоких уровнях организации усиливается самостоятельность и активность функции по отношению к структуре. Основой их единства служит функционирование системы в целом. В кибернетических системах одна и та же функция поведения может соответствовать внутренним структурам системы. Вместе с тем структура и функция системы в одинаковой мере формируют статус ее сложности.
Математическая интерпретация и физическое представление эволюционной теории Ч. Дарвина [54] позволяют считать эту теорию выводимым из физики законом, определяющим самоорганизацию живой природы. В такой интерпретации теория Ч. Дарвина оказывается оптимальным принципом, вытекающим из определенных физических предпосылок, а вовсе не «несводимым» феноменом, относящимся только к биосфере. Подчеркивая необходимость целостных структур развития в эволюционной биологии, Ч. Новиньский пишет: «Путь от положений общей теории эволюции к их подтверждению или отклонению на основе эмпирического материала, а также экспериментальных результатов, идет через ряд редукционных ступеней абстракции» [55]. При этом считается, что непосредственное сведение положений эволюционной теории к генетическому уровню невозможно. Ибо механизмы биологической эволюции изменяются в ходе развития жизни на Земле. В качестве теории, представляющей эволюционный процесс как целостное развитие, называется теория И. И. Шмаль-гаузена [56]. Согласно ей весь процесс эволюции приобретает характер самоорганизации в том смысле, в каком последняя понимается в кибернетике.
Процесс дупликации генов дает возможность избежать давления естественного отбора. В результате дупликаций создаются избыточные копии генов. Естественный отбор часто игнорирует изменения в избыточных копиях, благодаря чему в них накапливаются ранее запрещенные мутации и возникает новый ген с не существовавшей ранее функцией. Оценить значение дупликаций генов стало возможно после того, как была выяснена природа генетического кода. Естественный отбор может элиминировать запрещенные мутации и эффективно охранять последовательность ДНК в цистронах тогда, когда в геноме содержится только по одной копии каждого гена. В тех же случаях, когда ген представлен большим числом копий, охранительная деятельность естественного отбора перестает быть эффективной. Подобно тому, как мутации возникают вследствие ошибок при репликации ДНК, дупликации генов также появляются как редкие ошибки митотических и мейотических процессов.
Образование пространственной дифференцировки как явления самоорганизации в онтогенезе остается, однако, необъясненным, несмотря на замечательные успехи в генетике и в биохимии нуклеиновых кислот. Это понятно, если учесть, что рассмотренные проблемы являются комплексными. Состояние разработанности последних свидетельствует о том, что общие биологические закономерности нельзя понять, не выходя за их пределы.
Предпосылки самоорганизации, которые обычно рассматриваются в той или иной науке (биологии, химии, физике), носят комплексный характер; причем синтезирующая роль по отношению к разнокачественной проблематике в этой области принадлежит понятиям и принципам кибернетики [62]. Характерно, что понятие самоорганизации помогает разъяснению многих проблем, связанных с искусственным интеллектом, машинизацией мышления, автоматизацией восприятия, усилением мыслительных способностей, с машинами для индуктивного вывода, с клеточной организацией, ростом, эволюцией и т.д. Поэтому можно считать, что не только к многочисленным феноменам самоорганизации, но и к предпосылкам собственно самоорганизации (как явления возникновения жизни) следует подходить в известном смысле как к проблемам биокибернетики. Если по признанию специалистов в области биофизики высокая сложность биологически эволюционирующих систем делает пока что нереальным построение физической теории эволюции в целом, то с помощью кибернетики эта проблема разрешима. Кибернетика ориентирована на такого рода сложные задачи. Понятие сложности, вызванное первоначально оценкой системы с позиции «из чего она состоит», постепенно с развитием кибернетики эволюционировало до понятия, включающего как структурные, так и функциональные характеристики.
Биофизические концепции самоорганизации материи свидетельствуют о трансспецифичности материальных атрибутов жизни, выявляя тем самым псевдонаучный характер неовиталистического истолкования сущности жизни. Они смещают основание существования биологических наук в сторону биофизических и биокибернетических принципов, создавая методологическую основу для стиля мышления с существенно дедуктивно-аксиоматической ориентацией.
§ 3. Принципы самоорганизации и природа интеллекта
Поведение биологических объектов отличается от поведения существующих ЭВМ наличием процессов самоорганизации. Принципы самоорганизации (в особенности эвристической самоорганизации) служат методологическим базисом в восхождении от абстрактных постулатов к конкретным разработкам проблемы искусственного интеллекта. Это непосредственно относится, например, к области эвристической теории поведения, где «работа по эвристическому программированию характеризуется поисками новых, более мощных эвристических методов для решения сложных задач и мало интересуется тем, какая физическая основа (нервная или иная) была бы минимально достаточна для реализации эвристической программы» [63].
В понимании интеллекта необходимо найти разумный компромисс между требованиями эффективности и надежности. Понятие «эффективный» в общем плане не должно рассматриваться как нечто, противоположное понятию «надежный» [64]. Хотя вполне вероятны ситуации, в которых повышение эффективности управления достигается ценой потери надежности. Если предполагается, что среда почти независима, увеличение эффективности может быть оправдано. Если, однако, среда оказывается «противником», более целесообразно было бы пожертвовать эффективностью ради надежности [65].
Интеллект в известной мере сам себя ограничивает. Это проявляется во взаимодействиях со средой. По мере того как разумная система для принятия решений приобретает все больший контроль над средой, ослабевают требования к оставшейся части задачи. Только новые цели или радикальное изменение среды позволяют полностью обнаружить возможности интеллекта. Наибольшее развитие интеллекта требует непрерывных упражнений с подходящими антагонистическими средами. Аналогично этому духовное развитие человека зависит от возможности дальнейшего совершенствования как модели «самого себя», так и модели внешнего мира. При изучении человеческого мозга «должны быть соотнесены между собой три плоскости исследования: мозг в его отношении к организму, к самому себе (ибо он есть самоорганизующаяся система) и к внешнему миру» [68]. Важнейшей необходимой предпосылкой для развития интеллекта служит способность человека к восприятию и переработке информации.
Философски более четко, с привлечением понятий диалектического материализма этот вопрос рассмотрен Л. Б. Баженовым [71]. Он, в частности, обращает внимание на то, что мышление является функцией определенным образом организованной системы и детерминировано структурой этой системы. Подчеркивается, что, с гносеологической точки зрения, не знание функции следует из знания структуры, а наоборот, знание структуры является выводом, сделанным в результате все более полного изучения способов функционирования.
Система, которая действует и обучается разумно, предстает неадекватной, пока мы, человеческие существа, не можем пос-стичь, как она обучается, не можем следить за развитием ее понятийной структуры. Мы понимаем системы, которые строим, либо потому, что они являются автоматами, выполняющими алгоритмы, либо потому, что (когда системы похожи на нас) они механически вынуждены действовать подобно человеческим существам. «Весьма различные конструкции такого типа систем наиболее естественно взять за образцы искусственного разума. Однако. они ни в коей мере не выражают всех имеющихся здесь возможностей и не могут рассматриваться как нечто наиболее желательное» [73]. По мнению Г. Паска, в конструкции искусственной системы должно быть учтено, что хорошее обучение или тренировка дают обучаемому возможность действовать подобно самоорганизующейся системе.
Некоторые авторы подчеркивают, однако, что неточно называть автоматом машину, работающую без участия человека. Так, И. Б. Новик приводит по этому вопросу следующие аргументы [74].
Способность к автономным решениям не означает разрыва со средой. Автономность поведения системы достигается лишь в определенной среде, предполагает связь между системой и средой. Система, способная вести себя автономно и разумно, очевидно, должна состоять из элементов, обладающих определенной структурой и функциональной автономией. В нервной системе человека, например, такая автономия очень сильна. В более общем плане важно заметить, что если части автономны и могут реорганизовываться, если имеются несколько органов, каждый из которых в случае необходимости способен взять на себя управление, то между частями могут развиваться внутренние противоречивые взаимоотношения. Это вновь приводит к проблеме структурно-функциональной сложности организаций с разумным поведением. Естественно принять тезис Дж. Неймана: «Сложность здесь означает не то, как сложен объект, а то, как сложны его целенаправленные действия. В этом смысле объект обладает очень высокой сложностью, если он способен решать весьма трудные и сложные задачи» [75].
В самоорганизующихся системах функциональная организация приобретает решающее значение: в том случае, когда вычислительная машина может самоорганизовываться, способ первоначального соединения элементов не играет большой роли. Поэтому конструкторы перцептрона, например, допускают, чтобы первоначальная структура была случайной, а та структура, которая необходима для распознавания образов, возникла в результате изменений, вызванных правилами поощрения.
Идея полной случайности первоначальной структуры самоорганизующейся системы связана, очевидно, с сильными ограничениями. «Имеются умственные акты, доступные ребенку, но совершенно недоступные для гориллы. Это происходит, возможно, вследствие генетически детерминированных различий в структуре. Дарвиновской эволюции понадобились тысячелетия, чтобы сделать наш мозг способным узнавать образы. Было бы крайне удивительно, если бы случайная сеть приобрела такую способность за несколько часов обучения» [76]. Эти и другие аргументы (рассмотренные выше) позволяют сделать заключение о диалектической взаимосвязи механизмов жесткой детерминации с процессами стохастической оптимизации. Такое сочетание существенно зависит от целевого назначения системы и критериев оптимизации.
Проблема искусственного интеллекта включает в себя вопрос о продолжительности жизни автомата [77]. Принципиальные идеи в этом плане высказаны, в частности, Л. Лёфгреном [78]. Он пришел к выводу о том, что конечное время существования самовосстанавливающихся полностью локализованных автоматов соответствует конечному времени жизни любого растения или животного в природе. Неограниченное время существования самовосстанавливающегося нелокализованного автомата соответствует неограниченному времени (бессмертию) развития человеческого общества.
В литературе по философским вопросам кибернетики возможность создания искусственного интеллекта ставится в зависимость от решения проблемы самоорганизации. При этом обычно отмечается, что самоорганизацией в строгом смысле обладают лишь живые существа. Автоматы современного типа, не отличающиеся подлинной автономностью, то есть допускающие косвенное участие человека, не являются в полном смысле слова самоорганизующимися; они реализуют лишь отдельные стороны самоорганизации. Так, В. С. Тюхтин пишет: «Создание технических систем, являющихся автономными носителями интеллектуальных функций (т. е. систем искусственного интеллекта в строгом смысле слова), возможно лишь на уровне самоорганизующихся систем. А поскольку до сих пор не созданы искусственные самоорганизующиеся системы, обладающие активностью, эквивалентной активно-потребностному началу живых систем, то современные технические системы не могут обладать интеллектуальными, творческими функциями. В строгом смысле слова термин «искусственный интеллект» применим не к машинам как таковым, а к человеко-машинным системам» [80]. Этот автор предлагает вначале создать хоть бы простейшую самоорганизующуюся систему [81], понимая под самоорганизацией самосовершающийся и самопрограммирующийся процесс, автономность которого осуществляется без вмешательства внешних по отношению к данной системе факторов и систем того же типа или выше его.
В этом заключено, однако, некоторое противоречие: 1) требуется создать самоорганизующую систему; 2) самоорганизация происходит без вмешательства внешних по отношению к данной системе факторов. В известном смысле системы искусственного интеллекта должны «сами себя создать», что успешно осуществляется, если тем более рассматривать этот процесс с точки зрения не субъективной, а объективной логики. Однако в самоорганизующихся системах с искусственным интеллектом большое значение имеет диалектика внутреннего и внешнего.
Необходимо также обратить внимание на то, что современные ЭВМ, не достигая еще высших уровней самоорганизации, успешно выполняют функции усилителя человеческого интеллекта. Однако дальнейший прогресс в области искусственного интеллекта, по существу, упирается в проблему самоорганизации. Как замечает В. С. Тюхтин, «проблема самоорганизации есть ключ к моделированию естественного интеллекта и к оптимизации взаимодействий человека и компьютера. Но в настоящее время еще не выявлен полный набор принципов самоорганизации, не созданы приемлемые модели и схемы, выражающие специфику самоорганизации» [82]. Вместе с тем концептуальная модель самоорганизации [83], предложенная на основе системно-кибернетического подхода и конкретизированная применительно к различным классам самоорганизующихся систем, позволяет по-новому взглянуть на проблему искусственного интеллекта. Она раскрывает эвристическое значение для этой области таких принципов, как самоорганизующая активность, внутренняя целенаправленность, оптимальная надежность и стохастическая детерминация.
Таким образом, самоорганизация заключает в себе проблематику, исследование которой позволяет ныне говорить о важных вопросах философии, науки и культуры. Самоорганизация питает стиль мышления, адекватный уровню общенаучных принципов, понятий и идей. Понятия организации и самоорганизации выступают как узловые категории общенаучного уровня знания и подхода к проблеме эволюции материи. Так, использование этих понятий в эволюционном учении способствует исследованию отношений между специфическими законами организации различных уровней эволюции.