чем больше масса звезды тем температура звезды
Температура звезд и от чего она зависит
Как известно, температура внутри звезд очень высокая. Ведь благодаря ей и запускаются термоядерные реакции. При сжатии молекулярного облака гравитационными силами происходит нагрев, который при достаточной массе молекул всё увеличивается и увеличивается. Так, начинается синтез гелия из водорода или, проще говоря, рождается звезда.
Несмотря на то, что все облака состоят из молекул водорода, они отличаются друг от друга количеством его частиц. В итоге получается разная масса протозвезд. Хотя процесс формирования светил примерно одинаковый.
Главным образом, температура звезд повышается при их начальном образовании, а затем при реакциях, происходящих в их ядре. В свою очередь, тепло, производимое в центральной части светила, поднимается и в его верхние слои (то есть на поверхность). А так как у разных тел она разная в недрах, соответственно, она отличается и на поверхности.
От чего зависит температура звезды
В действительности, она обуславливается двумя основными факторами.
Во-первых, уровнем производимой ядром энергии. По данным учёных, ядро разогревается до 15 млн градусов. Однако излучается только тепло, полученное в результате термоядерных реакций. А вот энергия от гравитационного сжатия остаётся в самом центре.
Температура поверхности звезд напрямую зависит от силы внутренних процессов, а также какие элементы в них задействованы. Например, если происходит синтез не только гелия из водорода, но и синтез с участием тяжёлых элементов, то и излучающая энергия будет в разы больше. Как следствие, поверхностный нагрев увеличится.
А во-вторых, важное значение имеет площадь поверхности, которая излучает внутреннюю энергию. Дело в том, что звёздные объекты производят и в то же время отдают энергию в космическое пространство. И сколько они её отдадут, зависит от внешней оболочки, то есть от излучаемой поверхности.
Когда у звёзд расширяются внешние границы, увеличивается и ядро. А чем оно плотнее, тем горячее. Но так лишь внутри, а снаружи (в фотосфере) такие звезды имеют низкую температуру. Проще говоря, чем больше площадь, тем больше энергетический расход.
Помимо этого, прослеживается связь размеров, масс, светимостей и температур звёздных объектов. К примеру, чем массивнее звёздное тело, тем выше его светимость, а значит и нагрев. Стоит отметить, что температура звезды определяет её цвет. Взаимосвязь характеристик светил отображена на диаграмме Герцшпрунга-Расела.
Диаграмма Герцшпрунга — Рассела
Как видно, спектральные классы отличаются между собой набором характеристик.
Как определить и в чем измеряется температура звезд
Стоит отметить, что для данной характеристики используют эффективную величину нагретости тела. Другими словами, насколько горячий объект, настолько он излучает энергию. В случае со звёздными телами, их накал даёт характеристику светимости.
А вот для определения эффективной температуры звезд применяют закон Стефана-Больцмана. Он гласит, что мощность излучения нагретого тела прямо пропорциональна площади поверхности и температуры четвёртой степени.
P=σST⁴
где σ — это постоянный коэффициент 5,7*10-8,
S — площадь, а P — излучаемая мощность.
На самом деле, определяется температура звезд в Кельвинах (К). Правда, можно перевести в градусы Цельсия (С).
Какие температуры поверхности могут иметь звезды
По оценке учёных, показатели отдельных светил разные. Более холодные обладают теплом 2000-5000 К, средняя температура (у жёлтых и оранжевых) тел составляет 5000-7500 К, а горячие представители достигают значений 7500-80000 К.
Наос (самая горячая звезда)
Какие звезды имеют самую низкую температуру
Наименьшую температуру поверхности имеют звезды красных цветов. Правда, называть их холодными не совсем точно. Потому как их нагретость равняется 2000-3000К.
Звезда Барнарда (одна из самых холодных звёзд)
У какого типа звезд наибольшая температура
Как вы думаете, какая температура на поверхности самых горячих звезд?
Между прочим, наиболее жаркие светила имеют голубой или белый цвет. Хотя самый высокий уровень у синих. Только вдумайтесь, их уровень тепла может достигать 40000К.
Итак, мы выяснили, что температура и размеры звёзд могут быть разными. Вдобавок их характеристики связаны между собой.
Также очевидно, что температура в центре звезды отличается от температуры поверхности, которые они могут иметь. Это лишний раз доказывает, что каждый небесный объект уникален. Даже если одни его свойства схожи с другими телами, обязательно будет отличие в каком-либо другом параметре.
Чем больше масса звезды тем температура звезды
Невооруженным глазом и тем более при наблюдениях в бинокль или телескоп нетрудно заметить, что звезды различаются по цвету. Цвет звезд в значительной степени определяется температурой их видимой поверхности.
При хорошей остроте зрения на небе видно около 6000 звёзд, по 3000 в каждом полушарии.
РАССТОЯНИЯ ДО ЗВЁЗД
Расстояние до далёкого предмета можно определить, не добираясь до него физически. Нужно измерить направления на этот предмет с двух концов известного отрезка (базиса), а затем рассчитать размеры треугольника, образованного концами отрезка и удалённым предметом. Это можно сделать, потому что в треугольнике известна одна сторона (базис) и два прилежащих угла. При измерениях на Земле этот метод называют триангуляцией.
Годичным параллаксом звезды называется угол, под которым с неё был бы виден средний радиус земной орбиты, перпендикулярный направлению на звезду.
Параллаксы даже самых близких звёзд чрезвычайно малы, меньше 1″. Здесь требуются очень точные инструменты, поэтому не удивительно, что долгое время (до середины XIX в.) измерить параллаксы не удавалось. И разумеется, это было совершенно невозможно во времена Коперника, который впервые предложил метод параллаксов как прямое следствие своей гелиоцентрической системы (в геоцентрической системе параллактических смещений быть не должно).
Из соотношений в параллактическом треугольнике легко вычислить, что 1 парсек (пк) равен 206 265 а. е., или примерно 30 трлн километров. Это очень большая величина, свет преодолевает такой путь за 3,26 года.
Сейчас методом параллакса определены расстояния до многих тысяч звёзд. К сожалению, лишь для ближайших соседей это удаётся сделать с большой точностью. Однако существует ряд методов, с помощью которых расстояние до звезды можно получить косвенным путём, используя различные астрофизические или статистические соотношения. Так, светимость переменных звёзд, называемых цефеидами, оказалась связанной с периодом изменения их блеска. Зная период далёкой переменной звезды и её видимую звёздную величину, легко найти расстояние до звезды. Методы изучения двойных звёзд также позволяют вычислить расстояния до некоторых из них. Есть и другие косвенные способы определения расстояний до звёзд и звёздных систем.
Химический состав звезд
Определяется по спектру (интенсивности фраунгоферовых линий в спектре).Разнообразие спектров звезд объясняется прежде всего их разной температурой, кроме того вид спектра зависит от давления и плотности фотосферы, наличием магнитного поля, особенностями химического состава. Звезды состоят в основном из водорода и гелия (95-98% массы) и других ионизированных атомов, а у холодных в атмосфере присутствуют нейтральные атомы и даже молекулы.
Когда были измерены расстояния до ярких звёзд, стало очевидным, что многие из них по светимости значительно превосходят Солнце. Если светимость Солнца принять за единицу, то, к примеру, мощность излучения четырёх ярчайших звёзд неба, выраженная в светимостях Солнца, составит:
ЦBET И ТЕМПЕРАТУРА
Человеческий глаз не способен очень точно определить цвет звезды. Для более точных оценок служат фотографические и фотоэлектрические приёмники излучения, чувствительные к различным участкам видимого (или невидимого) спектра. Ведь цвет звезды зависит от того, на какой участок спектра приходится наибольшая энергия излучения. Сравнение звёздных величин в разных интервалах спектра (например, в голубом и жёлтом) позволяет количественно охарактеризовать цвет звезды и оценить её температуру.
СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЁЗД
В горячих голубых звёздах с температурой свыше 10-15 тыс. кельвинов большая часть атомов ионизована, так как лишена электронов. Полностью ионизованные атомы не дают спектральных линий, поэтому в спектрах таких звёзд линий мало. Самые заметные принадлежат гелию. У звёзд с температурой 5-10 тыс. кельвинов (к ним относится Солнце) выделяются линии водорода, кальция, железа, магния и ряда других металлов. Наконец, у более холодных звёзд преобладают линии металлов и молекул, выдерживающих высокие температуры (например, молекул окиси титана).
Солнце G2 Сириус А1 Канопус F0 Арктур К2 Вега А0 Ригель В8 Денеб А2 Альтаир А7 Бетельгейзе М2
Полярная F8
Звёзды так далеки, что даже в самый большой телескоп они выглядят всего лишь точками. Как же узнать размер звезды?
На помощь астрономам приходит Луна. Она медленно движется на фоне звёзд, по очереди «перекрывая» идущий от них свет. Хотя угловой размер звезды чрезвычайно мал, Луна заслоняет её не сразу, а за время в несколько сотых или тысячных долей секунды. По продолжительности процесса уменьшения яркости звезды при покрытии её Луной определяют угловой размер звезды. А зная расстояние до звезды, из углового размера легко получить её истинные (линейные) размеры.
позволяющую найти радиус звезды по её температуре и светимости (величины R®, L® и Т® = 6000 К известны).
Итак, по своим размерам, звезды делятся (название: карлики, гиганты и сверхгиганты ввел Генри Рессел в 1913г, а открыл их в 1905г Эйнар Герцшпрунг, введя название «белый карлик»), введены с 1953 года на:
Важнейшей характеристикой звезды является масса. Чем больше вещества собралось в звезду, тем выше давление и температура в её центре, а это определяет практически все остальные характеристики звезды, а также особенности её жизненного пути.
Прямые оценки массы могут быть сделаны только на основании закона всемирного тяготения. Такие оценки удалось получить для большого числа звёзд, входящих в двойные системы, измеряя скорости их движения вокруг общего центра масс. Все другие способы вычисления массы считаются косвенными, поскольку они строятся не на законе анализе тех звёздных характеристик, которые так или иначе связаны с массой Чаще всего это светимость. Для многих звёзд выполняется простое правило: чем выше светимость, тем больше масса. Эта зависимость нелинейна: например, с увеличением массы вдвое светимость возрастает более чем в 10 раз.
Анализируя важнейшие характеристики звёзд, сопоставляя их друг с другом, учёные смогли установить и то, что недоступно прямым наблюдениям: как устроены звёзды, как они образуются и изменяются в течение жизни, во что превращаются, растратив запасы своей энергии.
Класс В – это бело-голубые звезды. Температура их 14 000 °С. Температура их 14 ООО °С. Типичные звезды: Эпсилон в созвездии Ориона, Ригель, Колос.
Класс F – это бело-желтые звезды. Температура их поверхности 6700 °С. Типичные звезды Канопус, Процион, Альфа в созвездии Персея.
Кроме звезд главной последовательности, астрономы выделяют такие типы звезд:
Красные гиганты и сверхгиганты — это звезды с довольно низкой эффективной температурой в 2700- 4700°С, однако с огромной светимостью. Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.
Нейтронные звезды – класс звезд, как и белые карлики, образуются после гибели звезды с массой 8-10 масс Солнца (звезды с большей массы уже образуют черные дыры). В данном случае ядро сжимается до тех пор, пока большинство частиц не превратится в нейтроны. Одной из особенности нейтронных звезд является сильное магнитное поле. Благодаря ему и быстрому вращению, приобретенному звездой из-за несферического коллапса, в космосе наблюдаются радио- и рентгеновские источники, которые называются пульсары.
Звёздная эволюция — как это работает
Людей давно занимали причины горения звёзд на небе, однако по настоящему понимать эти процессы мы стали с первой половины 20-го века. В данной статье я постарался описать все основные процессы, протекающие во время жизненного цикла звезды.
Рождение звёзд
Формирование звезды начинается с молекулярного облака (к которым относятся 1% от всего межзвёздного вещества по массе) — они отличаются от обычных, для межзвёздной среды газо-пылевых облаков тем, что имеют бОльшую плотность, и значительно меньшую температуру — чтобы из атомов могли начать образовываться молекулы (в основном — H²). Само это свойство не имеет особого значения, но огромное значение имеет повышенная плотность этого вещества — от этого зависит, сможет ли вообще сформироваться протозвезда, и сколько времени на это потребуется.
Сами эти облака, при невысокой относительной плотности, за счёт своих огромных размеров могут обладать значительными массами — до 10 6 Солнечных масс. Новорожденные звёзды, не успевшие отбросить остатки своей «колыбели» разогревают их, что для таких больших скоплений очень «эффектно» выглядит, и является источником прекрасных астрономических фотографий:
«Столпы творения» и видео об этой фотографии телескопа «Хаббл»:
Туманность Омега (часть звёзд — является «фоном», газ светится за счёт нагрева излучением звёзд):
Сам процесс отбрасывания остатков молекулярного облака обусловлен так называемым «солнечным ветром» — это поток заряженных частиц, которые разгоняются электромагнитным излучением звезды. Солнце теряет за счёт этого процесса миллион тонн вещества в секунду, что для него (массой в 1,98855±0,00025 * 10 27 тонн) — сущие пустяки. Сами частицы имеют огромную температуру (порядка миллиона градусов) и скорость (около 400 км/с и 750 км/с для двух разных составляющих):
Однако низкая плотность этого вещества означает то, что особого вреда они нанести не могут.
Когда начинают действовать гравитационные силы, сжатие газа вызывает сильный нагрев, благодаря которому и начинаются термоядерные реакции. Этот же эффект разогрева сталкивающегося вещества послужил основой для первого прямого наблюдения экзопланеты в 2004 году:
Планета 2M1207 b на расстоянии 170 св. лет от нас.
Однако различие между малыми звёздами и планетами-газовыми гигантами состоит как раз в том, что их массы оказывается не достаточно для поддержания начальной термоядерной реакции, которая в целом заключается в образовании гелия из водорода — в присутствии катализаторов (так называемый CNO-цикл — он действителен для звёзд II и I поколения, о которых речь пойдёт ниже):
Речь идёт как раз об самоподдерживающейся реакции, а не просто о наличие её факта — потому что хоть энергия для этой реакции (а следовательно и температура) строго ограничены снизу, но энергии движения отдельных частиц в газе определяется распределением Максвела:
И поэтому даже если средняя температура газа ниже «нижней границы» термоядерной реакции в 10 раз, всегда найдутся «ушлые» частицы, которые соберут энергию от соседей, и наберут её достаточно для единичного случая. Чем выше средняя температура — тем больше частиц могут преодолеть «барьер», и тем больше в ходе этих реакций выделяется энергии. Поэтому общепризнанной границей между планетой и звездой является порог, при котором термоядерная реакция не просто имеет место, но и позволяет поддерживать внутреннюю температуру не смотря на излучение энергии с её поверхности.
Прежде чем говорить о классификации звёзд, необходимо сделать отступление, и вернуться на 13 млрд лет назад — в момент, когда после рекомбинации вещества стали появляться первые звёзды. Этот момент для нас показался бы странным — ведь никаких звёзд, кроме голубых гигантов в тот момент, мы не увидели бы. Причина этого — отсутствие в ранней Вселенной «металлов» (а в астрономии так называют все вещества «тяжелее» гелия). Их отсутствие означало то, что для загорания первых звёзд требовалась значительно большая масса (в пределах 20-130 масс Солнца) — ведь без «металлов» CNO-цикл не возможен, а вместо него идёт лишь прямой цикл водород + водород = гелий. Таковым должно было быть звёздное население III (из-за их огромного веса, и раннего появления — в видимой части Вселенной их уже не осталось).
Население II – это звёзды, образовывавшиеся из остатков звёзд III населения, они имеют возраст более 10 млрд лет, и уже содержат в своём составе «металлы». Поэтому попав в этот момент, мы не заметили бы каких-то особых странностей — среди звёзд уже присутствовали и гиганты, и «середнячки» — как наша звезда, и даже красные карлики.
Население I – это звёзды образуются уже из второго поколения остатков сверхновых, содержащие ещё больше «металлов» — к ним относится большинство современных звёзд, и наше Солнце — в том числе.
Современная классификация звёзд (гарвардская) очень проста — она основывается на разделении звёзд по их цветам. В маленьких звёздах реакции идут значительно медленнее, и эта непропорциональность вызывает разницу в поверхностной температуре, чем больше масса звезды — тем интенсивнее с её поверхности идёт излучение:
Распределения цветов, в зависимости от температуры (в градусах Кельвина)
Как видно из графика распределения Максвелла выше, скорости реакций растут в зависимости от температуры растут не линейно — когда температура подходит к «критической точке» очень близко, реакции начинают идти в десятки раз быстрее. Поэтому жизнь больших звёзд может быть весьма короткой в астрономических масштабах — всего пару миллионов лет, это ничто в сравнении с расчётным временем существования красных карликов — в целый триллион лет (по понятным причинам, ни одной такой звезды ещё не погасло, и мы в данном случае можем полагаться только на расчёты, но продолжительность их жизни — явно превышает сотню миллиардов лет).
Жизнь большинства звёзд протекает на главной последовательности, которая представляет из себя кривую линию, проходящую из верхнего-левого к нижнему-правому углу:
Диаграмма Герцшпрунга — Рассела
Этот процесс может показаться довольно унылым: водород превращается в гелий, и этот процесс продолжается миллионы и даже миллиарды лет. Но на самом деле, на Солнце (и остальных звёздах) даже во время этого процесса на поверхности (и внутри) всё время что-то происходит:
Видео за 5-летний период, сделанное из фотографий «Обсерватории солнечной динамики» NASA запущенной в рамках программы «Жизнь со Звездой», отображён вид Солнца в видимом, ультрафиолетовом и рентгеновских спектрах света.
Полный процесс термоядерных реакций в тяжёлых звёздах выглядит так: водород — гелий — бериллий и углерод, а дальше начинают идти несколько параллельных процессов, заканчивающихся на образовании железа:
Это обусловлено тем, что железо обладает минимальной энергией связи (в расчёте на нуклон), и дальнейшие реакции идут уже с поглощением, а не выделением энергии. Звезда всю свою долгую жизнь находится в равновесии между силами гравитации, сжимающими её, и термоядерными реакциями, которые излучают энергию и стремятся «растолкать» вещество.
Переход от сжигания одного вещества к другому происходит с увеличением температуры в ядре звезды (так как каждая последующая реакция требует всё большей температуры — порою на порядки величины). Но не смотря на рост температуры — в целом «баланс сил» сохраняется до самого последнего момента…
Происходящие при этом процессы можно разделить на четыре варианта развития событий:
1) От массы зависит не только продолжительность жизни звезды, но и то, каким образом она закончится. Для «самых маленьких» звёзд — коричневых карликов (класс M) он завершится уже после выгорания водорода. Но тот факт, что перенос тепла в них осуществляется исключительно конвекцией (перемешиванием) означает то, что звезда максимально эффективно использует весь его запас. А также — максимально бережно будет его расходовать долгие миллиарды лет. Но после расходования всего водорода — звезда медленно остынет, и окажется в состоянии твёрдого шара (на подобии Плутона) состоящего почти полностью из гелия.
2) Далее идут более тяжёлые звёзды (к коим относится и наше Солнце) — масса этого, возможного будущего звезды ограничена сверху в 1,39 массы Солнца для остатка, образующегося после этапа красного гиганта (предел Чандрасекара). Звезда имеет достаточный вес, чтобы зажглась реакция образования углерода из гелия (естественно, самых распространённых нуклидов — гелий-4 и углерод-12). Но и реакции водород-гелий не перестают идти — просто область их протекания переходят в внешние, всё ещё насыщенные водородом слои звезды. Наличие двух слоёв, в которых протекают термоядерные реакции ведёт к значительному росту светимости, что вызывает «раздувание» звезды в размерах.
Многие ошибочно считают, что до момента красного гиганта, светимость Солнца (и других подобных звёзд) постепенно уменьшается, а затем резко начинает расти, на самом деле рост светимости идёт всю основную часть жизни звезды:
И на основе этого строят неверные теории, что в долгосрочной перспективе — Венера является лучшим вариантом для заселения человеком — на самом деле, к тому моменту, когда у нас появятся технологии для терраформирования современной Венеры, они могут оказаться безнадёжно устаревшими, и просто-напросто бесполезными. Тем более Земля по современным данным, имеет высокие шансы пережить состояние «красного гиганта» Солнца, на его границе, а вот у Венеры — шансов нет, и «всё что нажито непосильным трудом» — станет частью «пополневшего» Солнца.
На стадии красного гиганта звезда не только значительно увеличивает светимость, но также и начинает быстро терять массу, за счёт этих процессов запасы топлива быстро заканчиваются (этот этап как минимум в 10 раз меньше этапа сжигания водорода). После чего звезда уменьшается в размерах, превращается в белого карлика и постепенно остывает.
3) Когда масса выше первого предела, массы таких звёзд достаточно чтобы зажечь последующие реакции, вплоть до образования железа, эти процессы в конечном итоге приводят к взрыву сверхновой.
Железо уже практически не участвует в термоядерных реакциях (и точно — не выделяет энергии), и просто собирается в центре ядра до тех пор, пока давление действующее на него снаружи (и действия силы гравитации самого ядра изнутри) не достигает критической точки. В этот момент сила, сжимающая ядро звезды становится столь сильной, что давление электромагнитного излучения больше не в состоянии удерживать вещество от сжатия. Электроны «вдавливаются» в атомное ядро, и нейтрализуются с протонами, так что внутри ядра остаются практически одни нейтроны.
Этот момент имеет квантовую основу, и имеет очень чёткую границу, а состав ядра — состоит из довольно чистого железа, так что процесс оказывается катастрофически быстрым. Предполагается, что этот процесс происходит за секунды, а объём ядра падает в 100 000 раз (и соответственно растёт его плотность):
Эти процессы имеют в своей основе захват нейтрона (r-процесс и s-процесс) или захват протона (p-процесс и rp-процесс), с каждой такой реакцией химический элемент увеличивает своё атомное число. Но в обычной ситуации такие частицы не успевают «поймать» ещё один нейтрон/протон, и распадается. В процессах же протекающих внутри сверхновой реакции протекают настолько быстро, что атомы успевают «проскочить» большую часть таблицы Менделеева, так и не распавшись.
Таким образом происходит образование нейтронной звезды:
4) Когда же масса звезды превосходит и второй, предел Оппенгеймера — Волкова (1,5 — 3 массы Солнца для остатка или 25 — 30 масс для изначальной звезды), в процессе взрыва сверхновой остаётся слишком большая масса вещества, и давление не в состоянии сдерживать даже квантовые силы.
В данном случае — имеется ввиду предел обусловленный принципом Паули, гласящим что две частицы (в данном случае — речь идёт об нейтронах) не могут находиться в одном квантовом состоянии (на этом основана структура атома, состоящего из электронных оболочек, число которых постепенно растёт с атомным числом).
Давление сдавливает нейтроны, и дальнейший процесс становится не обратим — всё вещество стягивается в одну точку, и образуется чёрная дыра. Сама она уже никак не воздействует на окружающую среду (за исключением гравитации конечно), и может светиться лишь за счёт аккреации (попросту — падения) вещества на неё:
Как можно видеть по сумме всех этих процессов — звёзды это настоящий кладезь физических законов. А в некоторых областях (нейтронные звёзды и чёрные дыры) — это настоящие физические лаборатории с экстремальными энергиями и состояниями вещества.
Постнаука — Нейтронные звёзды и чёрные дыры (серия видео):