частота системной шины процессора на что влияет
Что такое частота шины процессора и как она влияет на работу?
Всем привет! Сегодня разберем тему — частота шины процессора: что это за параметр и на что он влияет. А также для чего нужна шина и как она работает.
Центральный процессор — самый резвый компонент компьютера. Скорость его работы измеряется уже в гигагерцах, то есть миллионах вычислительных операций в секунду. Прочие компоненты уже подстраиваются под CPU, фактически обеспечивая его эффективную эксплуатацию.
Со всеми компонентами ЦП связан с помощью последовательной шины на системной плате типа DMI (Direct Media Interface). Называется она FSB — сокращенно от Front Side Bus.
Скорость ее работы приличная и может достигать до 8 Gt s, то есть миллионов микротранзакций в секунду, но у топовых моделей. У массовых системных плат такой параметр обычно ниже.
Не буду слишком углубляться в дебри и расписывать в целом, как работает каждый из компонентов компьютера — акцентируем внимание именно на шине. Единственная ее задача — транспортировать данные, которые обрабатывает CPU, к прочим деталям ПК.
А насколько быстро это будет происходить, и определяется ее базовой частотой. Обычно FSB оборудована контроллером, с помощью которого можно снизить или поднять ее частоту.
Как я уже говорил, частота процессора выше в несколько раз частоты FSB. Такая особенность обусловлена тем, что нет необходимости отправлять все данные прочим компонентам — многие цифры «перевариваются» внутри ЦП, пока не получится итоговый результат, который уже можно переслать в дальнейшую обработку.
Кратность, на которую герцовка ЦП превышает частоту шины, называется множителем. Фактически, можно поднять производительность системы в целом, если поднять герцовку шины FSB, что успешно практикуется многими оверклокерами.
Однако и тут есть некоторые ограничения — сам CPU должен поддерживать такую «фичу». О возможности его разгона свидетельствует буква K в маркировке. Настраивается все это через BIOS или UEFI.
И в завершение хочу отметить, что разогнать в несколько раз ни шину, ни сам «камень» не получится. Максимум, что удается выжать в большинстве случаев — прирост производительности до 30% от номинальной мощности. С другой стороны, это тоже неплохо — почти на треть.
Подписывайтесь на меня в социальных сетях, чтобы не пропустить уведомления о новых публикациях. До скорой встречи!
Влияние скорости шины материнской платы на скорость процессора.
в Компьютеры 27.05.2017 0 313 Просмотров
Скорость шины системной платы не влияет на скорость установленного процессора. В компьютере, материнская плата и процессор – это две отдельные составляющие. Тем не менее, пользовательский опыт измерений заключается в том, насколько хорошо они работают вместе.
Процессор
Процессор, или основной процессор компьютера, имеет определенную скорость. На некоторых компьютерах скорость процессора может быть изменена через настройки BIOS материнской платы. Ошибки совместимости оборудования в сторону скорости процессора не меняются из-за любой другой части компьютера. Но процессор является самой быстрой частью компьютера и часто другое оборудование не может за ним угнаться. Процессор обрабатывает всю вычислительную работу компьютера за пределами крупной графической работы которая выполняется с помощью GPU.
Шина материнской платы
Шина материнской платы – это часть устройства, которая передает данные между деталями. Термин “скорость шины” относится к тому, как быстро системная шина может перемещать данные с одного компонента компьютера к другому. Чем быстрее шина, тем больше данных она может передвигать в течение определенного количества времени. К системной “шине” подключается процессор для компьютера через “северный мост”, который организует обмен данными между оперативной памятью компьютера и процессором. Это самая быстрая часть шины материнской платы и обрабатывает наиболее жизненно важную нагрузку компьютера.
Шина для процессора
Сам процессор не будет иметь смысла, если для обработки данных он будет использовать шину материнской платы чтобы получить данные. Шина материнской платы не может увеличивать или уменьшать скорость процессора для получения потока данных в и из устройств, и играет ключевую роль в том, как хорошо будет работать процессор. Это та точка, где скорость шины материнской платы может повлиять на производительность процессора — процессор работает в режиме циклического процесса, с данными получаемыми в или из устройства через определенные промежутки времени. Если процессор не имеет каких-либо данных для работы с циклом, он теряет цикл и не обрабатывает какие-либо другие данные.
Недостаточная скорость шины материнской платы
Недостаточная скорость шины материнской платы может оставить процессор компьютера висящий в ожидании большего количества информации для обработки. Это создает “узкое место”, или точку, в которой одна часть компьютера, замедляет производительность для другой части системы. Если скорость шины материнской платы слишком медленная, то центральный процессор будет тратить значительное количество циклов и компьютер пользователя будет воспринимать это как снижение производительности.
Достаточная скорость шины материнской платы
Материнская плата, которая имеет достаточную или избыточную скорость шины процессора предложит оптимальную скорость работы. Если скорость шины материнской платы достаточно быстрая, то центральный процессор будет постоянно иметь новые данные в процессе, и будет готов обрабатывать новые данные, когда он завершает цикл. Пока процесс не идеален и всегда есть неиспользуемые циклы, достаточная скорость шины материнской платы поможет максимально использовать эти циклы.
Что такое тактовая частота?
Основные моменты:
Технология Intel® Turbo Boost.
Тактовая частота — это одна из главных технических характеристик процессора, но какую роль она играет? 1
Тактовая частота — это одна из главных технических характеристик процессора, но какую роль она играет? 1
Процессор — это мозг вашего компьютера, и его производительность имеет решающее значение для скорости загрузки программ и стабильности их работы. Однако существует несколько способов измерения производительности процессора. Тактовая частота или просто «частота» — один из самых важных показателей.
Если вы хотите узнать тактовую частоту своего компьютера, откройте меню «Пуск» (или нажмите клавишу Windows*) и введите текст «О системе». Модель и тактовая частота вашего процессора будут показаны в графе «Процессор».
Что такое тактовая частота?
Обычно чем больше тактовая частота, тем быстрее работает процессор. Однако существует и много других факторов.
Ваш процессор каждую секунду обрабатывает множество команд различных программ (в форме низкоуровневых расчетов, таких как арифметические операции). Тактовая частота определяет количество циклов, выполняемых процессором за секунду и измеряется в гигагерцах (ГГц).
С технической точки зрения цикл представляет собой импульс, синхронизируемый внутренним осциллятором, но для наших целей это базовая единица, помогающая понять концепцию тактовой частоты процессора. В течение каждого цикла в процессоре открываются и закрываются миллиарды транзисторов.
Частота определяет количество операций, выполняемых за заданное время, как указывалось выше.
Процессор с тактовой частотой 3,2 ГГц выполняет 3,2 млрд. циклов в секунду. (В старых процессорах тактовая частота измерялась в мегагерцах или миллионах циклов в секунду).
Иногда в одном тактовой цикле выполняется несколько команд, а в других случаях одна команда обрабатывается за несколько тактовых циклов. Поскольку разные архитектуры процессоров обрабатывают команды по разному, лучше всего сравнивать тактовую частоту процессоров одной марки и одного поколения.
Например, новый процессор может легко обойти по производительности процессор пятилетней давности с более высокой тактовой частотой, поскольку новая архитектура обрабатывает команды более эффективно. Процессор Intel® серии X может обойти по производительности процессор серии K с более высокой тактовой частотой за счет того, что он распределяет задачи между большим количеством ядер и имеет больший размер встроенной кэш-памяти. Но в пределах одного поколения процессор с более высокой тактовой частотой обычно превосходит по производительности процессор с более низкой тактовой частотой при работе в нескольких приложениях. Именно поэтому важно сравнивать процессоры одной марки и одного поколения.
Современные внутренние шины – смена приоритетов!
Среди наиболее динамично развивающихся областей компьютерной техники стоит отметить сферу технологий передачи данных: в отличие от сферы вычислений, где наблюдается продолжительное и устойчивое развитие параллельных архитектур, в «шинной» 1 сфере, как среди внутренних, так и среди периферийных шин, наблюдается тенденция перехода от синхронных параллельных шин к высокочастотным последовательным. (Заметьте, «последовательные» – не обязательно значит «однобитные», здесь возможны и 2, и 8, и 32 бит ширины при сохранении присущей последовательным шинам пакетной передачи данных, то есть в пакете импульсов данные, адрес, CRC и другая служебная информация разделены на логическом уровне 2 ).
1 Компьютерная шина (магистраль передачи данных между отдельными функциональными блоками компьютера) – совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление), которые имеют определённые электрические характеристики и протоколы передачи информации. Шины отличаются разрядностью, способом передачи сигнала (последовательные или параллельные), пропускной способностью, количеством и типами поддерживаемых устройств, протоколом работы, назначением (внутренняя, интерфейсная).
Шины могут быть синхронными (осуществляющими передачу данных только по тактовым импульсам) и асинхронными (осуществляющими передачу данных в произвольные моменты времени), а также могут использовать мультиплексирование (передачу адреса и данных по одним и тем же линиям) и различные схемы арбитража (то есть способа совместного использования шины несколькими устройствами).
2 Основным отличием параллельных шин от последовательных является сам способ передачи данных. В параллельных шинах понятие «ширина шины» соответствует её разрядности – количеству сигнальных линий, или, другими словами, количеству одновременно передаваемых («выставляемых на шину») битов информации. Сигналом для старта и завершения цикла приёма/передачи данных служит внешний синхросигнал. В последовательных же каналах передачи используется одна сигнальная линия (возможно использование двух отдельных каналов для разделения потоков приёма-передачи). Соответственно, информационные биты здесь передаются последовательно. Данные для передачи через последовательную шину облекаются в пакеты (пакет – единица информации, передаваемая как целое между двумя устройствами), в которые, помимо собственно полезных данных, включается некоторое количество служебной информации: старт-биты, заголовки пакетов, синхросигналы, биты чётности или контрольные суммы, стоп-биты и т. п. Но в свете последних достижений в «железной» сфере компьютерной индустрии малое количество сигнальных линий и логически более сложный механизм передачи данных последовательных шин оборачиваются для них существенным преимуществом – возможностью практически безболезненного наращивания рабочих частот в таких пределах, каких никогда не достичь громоздким параллельным шинам с их высокочастотными проблемами ожидания доставки каждого бита к месту назначения. Проблема в том, что каждая линия такой шины имеет свою длину, свою паразитную ёмкость и индуктивность и, соответственно, своё время прохождения сигнала от источника к приёмнику, который вынужден выжидать дополнительное время для гарантии получения данных по всем линиям. Так, к примеру, каждый байт, передаваемый через линк шины PCIExpress, для увеличения помехозащищённости «раздувается» до 10 бит, что, однако, не мешает шине передавать до 0,25 ГБ за секунду по одной паре проводов. Да, ширина последовательной шины на самом деле является количеством одновременно задействованных отдельных последовательных каналов передачи.
Все эти нововведения и смена приоритетов преследуют в конечном итоге одну цель – повышение суммарного быстродействия системы, ибо не все существующие архитектурные решения способны эффективно масштабироваться. Несоответствие пропускной способности шин потребностям обслуживаемых ими устройств приводит к эффекту «бутылочного горлышка» и препятствует росту быстродействия даже при дальнейшем увеличении производительности вычислительных компонентов – процессора, оперативной памяти, видеосистемы и так далее.
Процессорная шина
3 Кстати, именно результирующей «учетверённой» частотой передачи данных (как и в случае с «удвоенной» передачей DDR-шины, где данные передаются дважды за такт) хвастаются производители и продавцы, умалчивая тот факт, что для многочисленных мелких запросов, где данные в большинстве своём умещаются в одну 64-байтную порцию (и, соответственно, не используются возможности DDR или QDR/QPB), на чтение/запись важнее именно частота тактирования.
В архитектуре же AMD64 (и её микроархитектуре K8), используемой компанией AMD в своих процессорах линеек Athlon 64/Sempron/Opteron, применён революционно новый подход к организации интерфейса центрального процессора – здесь имеет место наличие в самом процессоре нескольких отдельных шин. Одна (или две – в случае двухканального контроллера памяти) шина служит для непосредственной связи процессора с памятью, а вместо процессорной шины FSB и для сообщения с другими процессорами используются высокоскоростные шины HyperTransport. Преимуществом данной схемы является уменьшение задержек (латентности) при обращении процессора к оперативной памяти, ведь из пути следования данных по маршруту «процессор – ОЗУ» (и обратно) исключаются такие весьма загруженные элементы, как интерфейсная шина и контроллер северного моста.
Различия реализации классической архитектуры и АМD-K8
Различия реализации классической архитектуры и АМD-K8
Ещё одним довольно заметным отличием архитектуры К8 является отказ от асинхронности, то есть обеспечение синхронной работы процессорного ядра, ОЗУ и шины HyperTransport, частоты которых привязаны к «шине» тактового генератора (НТТ), которая в этом случае является опорной. Таким образом, для процессора архитектуры К8 частоты ядра и шины HyperTransport задаются множителями по отношению к НТТ, а частота шины памяти выставляется делителем от частоты ядра процессора 4
4 Пример: для системы на базе процессора Athlon 64-3000+ (1,8 ГГц) с установленной памятью DDR-333 стандартная частота ядра (1,8 ГГц) достигается умножением на 9 частоты НТТ, равной 200 МГц, стандартная частота шины HyperTransport (1 ГГц) – умножением НТТ на 5, а частота шины памяти (166 МГц) – делением частоты ядра на 11.
В классической же схеме с шиной FSB и контроллером памяти, вынесенным в северный мост, возможна (и используется) асинхронность шин FSB и ОЗУ, а опорной частотой для процессора выступает частота тактирования 5 (а не передачи данных) шины FSB, частота же тактирования шины памяти может задаваться отдельно. Из наиболее свежих чипсетов возможностью раздельного задания частот FSB и памяти обладает NVIDIA nForce 680i SLI, что делает его отличным выбором для тонкой настройки системы (разгона).
Частота системной шины процессора на что влияет
Технологии шагнули очень далеко вперед
Частота шины процессора
Частота шины процессора
Front Side Bus
Front Side Bus (FSB, системная шина) — шина, обеспечивающая соединение между x86/x86-64-совместимым центральным процессором и внутренними устройствами.
Как правило, современный персональный компьютер на базе x86- и x64-совместимого микропроцессора устроен следующим образом:
Получил распространение подход, при котором к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express x16, а менее производительные устройства (микросхема BIOS’а, устройства с шиной PCI) подключаются к «южному мосту» (англ. Southbridge), который соединяется с северным мостом специальной шиной. Набор из «южного» и «северного» мостов называют набором системной логики, но чаще применяется калька с английского языка «чипсет» (англ. chipset).
Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.
Некоторые компьютеры имеют внешнюю кэш-память, подключённую через «заднюю» шину (англ. back side bus), которая быстрее, чем FSB, но работает только со специфичными устройствами.
Каждая из вторичных шин работает на своей частоте (которая может быть как выше, так и ниже частоты FSB). Иногда частота вторичной шины является производной от частоты FSB, иногда задаётся независимо.
Влияние на производительность компьютера
Частота процессора
Частоты, на которых работают центральный процессор и FSB, имеют общую опорную частоту, и в конечном счёте определяются, исходя из их коэффициентов умножения (частота устройства = опорная частота * коэффициент умножения).
Память
Следует выделить два случая:
Контроллер памяти в системном контроллере
До определённого момента в развитии компьютеров частота работы памяти совпадала с частотой FSB. Это, в частности, касалось чипсетов на сокете LGA 775, начиная с 945GC и вплоть до X48.
Основная статья: Список чипсетов Intel
То же касалось и чипсетов NVIDIA для платформы LGA 775 (NVIDIA GeForce 9400, NVIDIA nForce4 SLI/SLI Ultra и др.)
Основная статья: Сравнение чипсетов Nvidia Основная статья: nForce 700 Основная статья: nForce 600
Спецификации стандартов системной шины чипсетов на сокете LGA 775 и оперативной памяти DDR3 SDRAM
Стандартное название | Частота памяти, МГц | Время цикла, нс | Частота шины, МГц | Эффективная (удвоенная) скорость, млн. передач/с | Название модуля | Пиковая скорость передачи данных при 64-битной шине данных в одноканальном режиме, МБ/с |
---|---|---|---|---|---|---|
DDR3‑800 | 100 | 10,00 | 400 | 800 | PC3‑6400 | 6400 |
DDR3‑1066 | 133 | 7,50 | 533 | 1066 | PC3‑8500 | 8533 |
DDR3‑1333 | 166 | 6,00 | 667 | 1333 | PC3‑10600 | 10667 |
DDR3‑1600 | 200 | 5,00 | 800 | 1600 | PC3‑12800 | 12800 |
DDR3‑1866 (O.C.) | 233 (O.C.) | 4,29 (O.C.) | 933 (O.C.) | 1866 (O.C.) | PC3‑14900 (O.C.) | 14933 (O.C.) |
O.C. — в режиме overclocking (разгона)
Поскольку процессор работает с памятью через FSB, то производительность FSB является одним из важнейших параметров такой системы.
На современных персональных компьютерах, начиная с сокета LGA 1366 частоты компьютерной шины, которая называется QuickPath Interconnect, и шины памяти могут различаться.
Периферийные шины
Существуют системы, преимущественно старые, где FSB и периферийные шины ISA, PCI, AGP имеют общую опорную частоту, и попытка изменения частоты FSB не посредством её коэффициента умножения, а посредством изменения опорной частоты приведёт к изменению частот периферийных шин, и даже внешних интерфейсов, таких как Parallel ATA. На других системах, преимущественно новых, частоты периферийных шин не зависят от частоты FSB.
В системах с высокой интеграцией контроллеры памяти и периферийных шин могут быть встроены в процессор, и сама FSB в таких процессорах отсутствует принципиально. К таким системам можно отнести, например, платформу Intel LGA1156.
Центральный процессор
Центральный процессор – устройство, непосредственно осуществляющее процесс обработки данных. Основная задача процессора – это интерпретация команд и рассылка соответствующих управляющих сигналов к другим устройствам. Процессоры в ПЭВМ выполнены в виде одной микросхемы и потому называются такжемикропроцессорами.
Основные характеристики процессора:
длина слова (разрядность);
Тактовая частотапроцессора число элементарных операций — тактов, выполняемых в течение одной секунды. В современных ПЭВМ под тактовой частотой понимается внутренняя частота. Обмен данными с внешним миром осуществляется на частоте системной шины, которая всегда меньше внутренней частоты процессора. Тактовая частота грубо характеризует скорость работы процессора.
Длина слова(разрядность процессора) – это максимальное количество разрядов двоичного кода, которые могут передаваться или обрабатываться одновременно за один такт. Все современные микропроцессоры 32 или 64 разрядные.
Применительно к ПЭВМ понятие «разрядность» включает:
разрядность внутренних регистров (внутренняя длина слова);
разрядность шины данных (внешняя длина слова);
разрядность шины адреса.
Разрядность внутренних регистров определяет формат команд процессора и размер данных, с которыми можно оперировать в командах.
Разрядность шины данных определяет скорость передачи информации между процессором и другими устройствами.
Разрядность шины адреса определяет размер адресного пространства, т.е. максимальное число байтов, к которым можно осуществить доступ. Например, если разрядность шины адреса равна 16, то возможный размер памяти в ЭВМ равен 216=65536 или 65 Кб.
Архитектура процессора – это очень ёмкое понятие, в составе которого можно рассматривать следующие элементы:
способ организации вычислительного процесса;
Большинство ЭВМ использует CISC-архитектуру. Основная идеяRISC– так упростить команды процессора, чтобы они могли быть выполнены за один такт. Это позволяет спроектировать очень эффективный конвейер команд.
Набор команд процессора определяет его функциональное назначение, в соответствии с которым различают универсальные и специализированные процессоры.
Универсальный процессор способен реализовать любой алгоритм и используется в качестве центрального процессора. Специализированный процессор служит для решения задач определённого класса. Среди таких сопроцессоров можно выделить математические и графические процессоры.
С системой команд связано такое важное свойство, как совместимость. Два процессора называются совместимыми, если их системы команд одинаковы.
Программу ускорения клавиатуры можно записать в машинном языке:
B8 05 03 BB-00 00 CD 16-CD 20
или в переводе на автокод
B80503 mov ax,00305
BB0000 mov bx,00000
Данная программа использует систему команд процессора Intel8086 и без изменений может быть перенесена на процессорыIntel80286, 80386, 80486,PentiumI,PentiumII,PentiumIII. Поэтому все эти процессоры называются совместимыми снизу вверх. Сверху вниз эти процессоры несовместимы, так как, например,PentiumIIIимеет команды, которые не поддерживаются процессоромPentiumI.
Для повышения эффективности вычислительного процесса в современных микропроцессорах применяется конвейернаяисуперскалярнаяобработки данных.
Процессор может иметь устройства, которые позволяют использовать его в многопроцессорной конфигурации. Работа в мультипроцессорномрежиме обеспечивается как архитектурой процессора, так и возможностями операционной системы. Например,Windows95 не имеет такой поддержки, аWindowsNTServerподдерживает четыре процессора.
Архитектура микропроцессора Pentiumимеет следующие особенности:
суперскалярная конвейерная архитектура;
конвейерное вычисление с плавающей точкой;
повышенная разрядность внешней шины данных.
Разрядность регистров – 32 бит, шины адреса — 32 бит, шины данных — 64 бит. Производительность микропроцессора PentiumIс тактовой частотой 66 МГц оценивается в 112MIPS.
Оценка производительности различных микропроцессоров приведена в табл. 2.3.