частота памяти видеокарты на что влияет в играх

На что влияет частота памяти видеокарты

частота памяти видеокарты на что влияет в играх. Na chto vliyaet chastota videopamyati. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-Na chto vliyaet chastota videopamyati. картинка частота памяти видеокарты на что влияет в играх. картинка Na chto vliyaet chastota videopamyati. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Влияние частоты видеопамяти

Специальная встроенная в видеокарту оперативная память называется видеопамятью и в своей аббревиатуре вдобавок к DDR (удвоенная передача данных) содержит букву G в начале. Это даёт понять, что речь идёт именно о GDDR (графическая удвоенная передача данных), а не о каком-то другом типе оперативной памяти. Данный подтип ОЗУ обладает более высокими частотами по сравнению с обычной оперативной памятью, установленной в любой современный компьютер, и обеспечивает достаточное быстродействие графического чипа в целом, давая ему возможность работать с большими объёмами данных, которые нужно обработать и вывести на экран пользователя.

частота памяти видеокарты на что влияет в играх. Kak prosmotret taktovuyu chastotu videopamyati. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-Kak prosmotret taktovuyu chastotu videopamyati. картинка частота памяти видеокарты на что влияет в играх. картинка Kak prosmotret taktovuyu chastotu videopamyati. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Пропускная способность памяти

Тактовая частота видеопамяти непосредственно влияет на её пропускную способность (ПСП). В свою очередь, высокие значения ПСП часто помогают добиться лучших результатов в производительности большинства программ, где необходимо участие или работа с 3D-графикой — компьютерные игры и программы для моделирования и создания трёхмерных объектов являются подтверждением данному тезису.

частота памяти видеокарты на что влияет в играх. Gde mozhet byit raspolozhena pamyat na videokarte. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-Gde mozhet byit raspolozhena pamyat na videokarte. картинка частота памяти видеокарты на что влияет в играх. картинка Gde mozhet byit raspolozhena pamyat na videokarte. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Ширина шины памяти

Тактовая частота видеопамяти и её влияние на производительность видеокарты в целом находится в прямой зависимости от другого, не менее важного компонента графических адаптеров — ширины шины памяти и её частоты. Из этого следует, что при выборе графического чипа для вашего компьютера необходимо обращать внимание и на эти показатели, чтобы не разочароваться в общем уровне производительности своей рабочей или игровой компьютерной станции. При невнимательном подходе легко попасть на удочку маркетологов, установивших в новый продукт своей компании 4 ГБ видеопамяти и 64-битную шину, которая будет очень медленно и неэффективно пропускать через себя такой огромный поток видеоданных.

Необходимо соблюдение баланса между частотой видеопамяти и шириной её шины. Современный стандарт GDDR5 позволяет сделать эффективную частоту видеопамяти в 4 раза большей от её реальной частоты. Можете не переживать, что вам постоянно придётся осуществлять подсчёты эффективной производительности видеокарты в голове и держать эту простую формулу умножения на четыре в уме — производитель изначально указывает умноженную, то есть настоящую частоту памяти видеокарты.

В обычных, не предназначенных для специальных вычислений и научной деятельности графических адаптерах используются шины памяти от 64 до 256 бит шириной. Также в топовых игровых решениях может встретиться шина шириной в 352 бита, но одна только цена подобной видеокарты может составлять стоимость полноценного ПК средне-высокого уровня производительности.

частота памяти видеокарты на что влияет в играх. Kak uznat shirinu shinyi pamyati 1. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-Kak uznat shirinu shinyi pamyati 1. картинка частота памяти видеокарты на что влияет в играх. картинка Kak uznat shirinu shinyi pamyati 1. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Если вам нужна «затычка» под слот для видеокарты на материнской плате для работы в офисе и решения исключительно офисных задач по типу написания отчёта в Word, создания таблицы в Excel (ведь даже просмотр видео с такими характеристиками будет затруднителен), то вы можете с уверенностью приобретать решение с 64-битной шиной.

В любых других случаях необходимо обращать внимание на 128-битную шину или 192, а лучшим и самым производительным решением будет шина памяти в 256 бит. Такие видеокарты в большинстве своём имеют достаточный запас видеопамяти с высокой её частотой, но бывают и недорогие исключения с 1 ГБ памяти, чего для сегодняшнего геймера уже недостаточно и надо иметь как минимум 2 ГБ карточку для комфортной игры или работы в 3D-приложении, но тут уж можно смело следовать принципу «чем больше, тем лучше».

Расчёт ПСП

К примеру, если у вас есть видеокарта оснащённая памятью GDDR5 с эффективной тактовой частотой памяти 1333 МГц (чтобы узнать реальную частоту памяти GDDR5, необходимо эффективную поделить на 4) и с 256-битной шиной памяти, то она будет быстрее видеокарты с эффективной частотой памяти 1600 Мгц, но с шиной в 128 бит.

Чтобы рассчитать пропускную способность памяти и затем узнать, насколько производительный у вас видеочип, необходимо прибегнуть к данной формуле: ширину шины памяти умножаем на частоту памяти и полученное число делим на 8, ведь именно столько бит в байте. Полученное число и будет нужным нам значением.

Вернёмся к нашим двум видеокартам из примера выше и рассчитаем их пропускную способность: у первой, лучшей видеокарты, но с меньшим показателем тактовой частоты видеопамяти она будет следующей — (256*1333)/8 = 42,7 ГБ в секунду, а у второй видеокарты всего лишь 25,6 ГБ в секунду.

Вы также можете установить программу TechPowerUp GPU-Z, которая способна выводить развёрнутую информацию об установленном в ваш компьютер графическом чипе, в том числе и объём видеопамяти, её частоту, битность шины и пропускную способность.

частота памяти видеокарты на что влияет в играх. Kak uznat shirinu shinyi pamyati. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-Kak uznat shirinu shinyi pamyati. картинка частота памяти видеокарты на что влияет в играх. картинка Kak uznat shirinu shinyi pamyati. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Вывод

Исходя из информации выше, можно понять, что частота видеопамяти и её влияние на эффективность работы находится в прямой зависимости от ещё одного фактора — ширины памяти, вместе с которой они создают значение пропускной способности памяти. Она и влияет на скорость и количество передаваемых данных в видеокарте. Надеемся, что эта статья помогла вам узнать что-то новое о строении и работе графического чипа и дала ответы на интересующие вопросы.

Помимо этой статьи, на сайте еще 12461 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Источник

NVIDIA водит нас за нос! Сравнение видеокарт GT 1030 с памятью GDDR5 и DDR4

На рынке сегодня можно встретить две видеокарты с одинаковым названием и по схожей цене, но с абсолютно разной производительностью. Речь идет о GeForce GT 1030 от NVIDIA. Одна часть видеокарт оборудована актуальной GDDR5-памятью, другая — памятью DDR4, которая по своим характеристикам и производительности является старьем из прошлого. Об удивительной политике NVIDIA, вводящей в заблуждение, мы и рассказываем сегодня.

Весной 2017 года без особой помпы на виртуальных прилавках появилась видеокарта GeForce GT 1030 с памятью GDDR5 из ультрабюджетного сегмента. Она находится примерно на заднем крае прогресса и предназначена для самых дешевых сборок, где и игры-то особо не рассчитывают запускать. Хотя для нетребовательного гейминга при разрешении Full HD эта видеокарта подходит.

Весной 2018 года тише и скромнее вышла еще одна видеокарта GeForce GT 1030. Слегка модифицированная. Она комплектуется другим типом памяти (DDR4), который позволил незначительно, но удешевить видеокарту.

частота памяти видеокарты на что влияет в играх. 5695b03bb0576c5cc9a91262627d8f7d. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-5695b03bb0576c5cc9a91262627d8f7d. картинка частота памяти видеокарты на что влияет в играх. картинка 5695b03bb0576c5cc9a91262627d8f7d. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Эту разницу мы и продемонстрируем на конкретных видеокартах в некоторых играх, а также воспользуемся поводом разъяснить, как пропускная способность памяти влияет на производительность. Отметим, что в статье фигурируют видеокарты от Palit. Но аналогичная ситуация характерна и для других контрактных производителей, которые работают с NVIDIA (MSI, ASUS и другие), так как они находятся в жесткой зависимости от спецификаций производителя.

частота памяти видеокарты на что влияет в играх. 1a00f82a4fa570689c876af5a8aee184. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-1a00f82a4fa570689c876af5a8aee184. картинка частота памяти видеокарты на что влияет в играх. картинка 1a00f82a4fa570689c876af5a8aee184. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Но прежде чем приступить к конкретному разбору, отметим, что изменять в продукте некоторые нюансы — это не преступление. Криминалом попахивает лишь тогда, когда производитель старается целенаправленно запутать покупателя, выпуская две разные видеокарты под одним наименованием. Намного честнее по отношению к пользователям было бы дать видеокарте 2018 года имя GT 1020 или GT 1030 SuperShit Edition. Но NVIDIA почему-то решила подмочить свою репутацию на такой ультрабюджетной мелочи.

Видеоускоритель GT 1030 vs «видеозамедлитель» GT 1030

Для начала представим наших подопытных. Это две видеокарты GT 1030 в исполнении компании Palit. Их нам во временное пользование предоставил интернет-магазин Socket.by, за что мы безмерно ребятам благодарны.

частота памяти видеокарты на что влияет в играх. 52771a3ab4f5c0d74014cd77e23a412e. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-52771a3ab4f5c0d74014cd77e23a412e. картинка частота памяти видеокарты на что влияет в играх. картинка 52771a3ab4f5c0d74014cd77e23a412e. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

У образца 2017 года частота графического процессора равна 1227 МГц (1468 МГц в режиме Turbo), тогда как у более новой модели — 1151 МГц (1379 МГц). Разница по частотам заметная, но отнюдь не она играет ключевую роль в разбежке по производительности.

Та видеокарта, что вышла в 2017 году, — длиннее, оборудована 2 ГБ памяти GDDR5, которая обладает пропускной способностью в 48 ГБ/с. Вариант 2018 года чуть короче и имеет 2 ГБ памяти DDR4 с пропускной способностью в 16,8 ГБ/с. В обоих случаях ширина шины памяти идентичная — 64 бита, но вот частота работы памяти в живых примерах кардинально разнится: у DDR4 она составляет 1050 МГц, у GDDR5 — 3000 МГц.

По итогу дряхлая пропускная способность DDR4 на видеокарте GT 1030 сравнима с устаревшей скоростью видеопамяти, которая применялась на устройствах 4—6-летней давности.

Практика тестов

Нагляднее всего разница между двумя типами памяти в графических приложениях видна в играх. Мы вставили видеокарту GT 1030 GDDR5 в компьютер с Intel Core i-5 4690 и 8 ГБ оперативной памяти и прогнали ее на нескольких играх в разрешении Full HD. Затем то же самое и на тех же настройках графики сделали с видеокартой GT 1030 DDR4.

Специальный бенчмарк World of Tanks Encore на средних настройках графики в первом случае выдал нам в среднем 82 кадра в секунду, во втором — 37 кадров в секунду. Разница более чем в два раза.

частота памяти видеокарты на что влияет в играх. bc7f661a457d16b30439e7a5d2a741c0. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-bc7f661a457d16b30439e7a5d2a741c0. картинка частота памяти видеокарты на что влияет в играх. картинка bc7f661a457d16b30439e7a5d2a741c0. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

В игре «Ведьмак 3» на самых низких настройках графики видеокарта с GDDR5 демонстрирует в среднем 34 кадра в секунду (в Новиграде), видеокарта с DDR4 — в среднем 17 кадров в секунду. И если в первом случае кое-как с микрофризами играть еще можно, то во втором придется понижать разрешение картинки.

частота памяти видеокарты на что влияет в играх. e1b44ac9fec427f87e42cf0d7f05308d. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-e1b44ac9fec427f87e42cf0d7f05308d. картинка частота памяти видеокарты на что влияет в играх. картинка e1b44ac9fec427f87e42cf0d7f05308d. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

В PUBG на низких настройках средний FPS в первом случае составил 55 кадров в секунду, во втором — 33 кадра в секунду. При этом просадки были куда более заметными и некомфортными.

частота памяти видеокарты на что влияет в играх. 84943685b6b11707f97966db16eb60e5. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-84943685b6b11707f97966db16eb60e5. картинка частота памяти видеокарты на что влияет в играх. картинка 84943685b6b11707f97966db16eb60e5. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Игра Rocket League на средних настройках оказалась не по зубам видеокарте с памятью DDR4 — средний FPS составил 23 кадра в секунду, тогда как GT 1030 с GDDR5 продемонстрировала 51 кадр в секунду.

частота памяти видеокарты на что влияет в играх. 797c89ab2dd8a781a48b11057fbad31e. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-797c89ab2dd8a781a48b11057fbad31e. картинка частота памяти видеокарты на что влияет в играх. картинка 797c89ab2dd8a781a48b11057fbad31e. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Проект Dark Souls 3 на минимальных настройках оказался неиграбельным на видеокарте GT 1030 DDR4 — всего 17 кадров в секунду. Пациент же с памятью GDDR5 продемонстрировал 37 кадров в секунду.

частота памяти видеокарты на что влияет в играх. 3bdc349612c1cf3e87d295193e2a0227. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-3bdc349612c1cf3e87d295193e2a0227. картинка частота памяти видеокарты на что влияет в играх. картинка 3bdc349612c1cf3e87d295193e2a0227. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Лучший инди-платформер прошлого года Hollow Knight в случае с памятью GDDR5 шел со средним FPS, равным 136, тогда как на более новой видеокарте можно рассчитывать на 67 кадров в секунду.

частота памяти видеокарты на что влияет в играх. cbb0fbc94ff33867ab1ee5396d8a3493. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-cbb0fbc94ff33867ab1ee5396d8a3493. картинка частота памяти видеокарты на что влияет в играх. картинка cbb0fbc94ff33867ab1ee5396d8a3493. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Игра Overwatch прекрасно оптимизирована и на «затычке» с GDDR5-памятью демонстрирует 87 кадров в секунду при низких настройках. А вот «затычка» с DDR4-памятью из прошлого смогла показать лишь 36 кадров в секунду.

частота памяти видеокарты на что влияет в играх. eb26a2f69d6c47e302f3b29e250af9f7. частота памяти видеокарты на что влияет в играх фото. частота памяти видеокарты на что влияет в играх-eb26a2f69d6c47e302f3b29e250af9f7. картинка частота памяти видеокарты на что влияет в играх. картинка eb26a2f69d6c47e302f3b29e250af9f7. Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Немного о пропускной способности памяти

Видеокарты находятся в экстремальной зависимости от скорости памяти. Не припоминается случая, чтобы на рынке видеокарту, сперва выходившую с актуальной памятью GDDR5, со временем подменили на «обрубок» с памятью DDR4. Хотя за всю историю индустрии бывали случаи, когда производители устанавливали на видеокарты память большего объема, но более старого типа, с низкой пропускной способностью. И тем самым вводили в заблуждение потребителей. Так уж устроены геймеры, что почему-то в первую очередь смотрят именно на объем памяти, а не на ее частоту или ширину шины. Хотя это — одни из самых важных параметров, которые влияют на производительность.

На заре компьютерной индустрии производители видеокарт особо не выбирали, какую память им использовать для своих устройств: скорость традиционной оперативной памяти их вполне устраивала. Но со временем росли разрешения мониторов, усложнялась графика и улучшались текстуры. Скоростей ОЗУ для подпитки видеокарт данными для обработки уже было недостаточно. От DDR2-памяти со временем отпочковалась GDDR3 (Graphics Double Data Rate). Впервые в коммерческом продукте ее использовали в видеокарте от NVIDIA в 2004 году. Технологической базой для данного типа памяти стала оперативная память DDR2, но с уменьшенными требованиями по питанию, рассеиванию тепла и соответствующая требованиям работы с графикой. Этот тип памяти применялся в видеокартах как для компьютеров, так и для консолей актуального поколения (PS3, Xbox 360, Wii).

Частоты видеопамяти росли, появилась GDDR4 (не получила широкого распространения), а затем в 2008 году — и GDDR5. С тех пор особых прорывов не было. Например, нынешняя GTX 1070 с этим типом памяти при шине в 256 бит демонстрирует пропускную способность в 256 ГБ/с. Лишь в 2016 году для топовых решений NVIDIA (GeForce GTX 1080) были задействованы чипы памяти GDDR5X, которые вдвое превзошли предшественника по пропускной способности. Таким образом, флагманы GeForce GTX 1080 Ti и GTX 1080 демонстрируют скорость памяти на уровне 484 ГБ/с (шина — 352 бита) и 320 ГБ/с (шина — 256 бит) соответственно.

Ширина шины памяти в данном случае — это ширина канала, который соединяет память и графический процессор. Битностью характеризуется возможность этого мостика подавать процессору как можно больше данных за единицу времени. Чем больше шина, тем производительнее и дороже будет видеокарта.

DDR4, в свою очередь, отлично чувствует себя как оперативная память, но ее пропускная способность в качестве графической памяти оставляет желать лучшего. Это практически технологии давно ушедших дней, сравнимые по производительности с памятью DDR3 в бюджетных видеокартах GeForce 600-й или 700-й серии.

Благодарим за предоставленные комплектующие интернет-магазин Socket.by

Читайте также:

Наш канал в Telegram. Присоединяйтесь!

Быстрая связь с редакцией: читайте паблик-чат Onliner и пишите нам в Viber!

Источник

Руководство покупателя игровой видеокарты


Последнее обновление от 28.09.2012


Основные характеристики видеокарт

Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим лишь самые важные из них.

Тактовая частота видеочипа

Рабочая частота GPU обычно измеряется в мегагерцах, т. е. миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа — чем она выше, тем больший объем работы GPU может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видеочипа, установленного на плате Radeon HD 6670 равна 840 МГц, а точно такой же чип в модели Radeon HD 6570 работает на частоте в 650 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа определяет производительность, на его скорость сильно влияет и сама графическая архитектура: устройство и количество исполнительных блоков, их характеристики и т. п.

В некоторых случаях тактовая частота отдельных блоков GPU отличается от частоты работы остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет. Такими GPU комплектуется большинство видеокарт GeForce от NVIDIA. Из свежих примеров приведём видеочип в модели GTX 580, большая часть которого работает на частоте 772 МГц, а универсальные вычислительные блоки чипа имеют повышенную вдвое частоту — 1544 МГц.

Скорость заполнения (филлрейт)

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная — это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

Например, пиковый пиксельный филлрейт у GeForce GTX 560 Ti равен 822 (частота чипа) × 32 (количество блоков ROP) = 26304 мегапикселей в секунду, а текстурный — 822 × 64 (кол-во блоков текстурирования) = 52608 мегатекселей/с. Упрощённо дело обстоит так — чем больше первое число — тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе — тем быстрее производится выборка текстурных данных.

Хотя важность «чистого» филлрейта в последнее время заметно снизилась, уступив скорости вычислений, эти параметры всё ещё остаются весьма важными, особенно для игр с несложной геометрией и сравнительно простыми пиксельными и вершинными вычислениями. Так что оба параметра остаются важными и для современных игр, но они должны быть сбалансированы. Поэтому количество блоков ROP в современных видеочипах обычно меньше количества текстурных блоков.

Количество вычислительных (шейдерных) блоков или процессоров

Пожалуй, сейчас эти блоки — главные части видеочипа. Они выполняют специальные программы, известные как шейдеры. Причём, если раньше пиксельные шейдеры выполняли блоки пиксельных шейдеров, а вершинные — вершинные блоки, то с некоторого времени графические архитектуры были унифицированы, и эти универсальные вычислительные блоки стали заниматься различными расчётами: вершинными, пиксельными, геометрическими и даже универсальными вычислениями.

Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI (впоследствии купленной AMD). А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились ещё в плате NVIDIA GeForce 8800. И с тех пор все новые видеочипы основаны на унифицированной архитектуре, которая имеет универсальный код для разных шейдерных программ (вершинных, пиксельных, геометрических и пр.), и соответствующие унифицированные процессоры могут выполнить любые программы.

По числу вычислительных блоков и их частоте можно сравнивать математическую производительность разных видеокарт. Большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров, поэтому количество этих блоков весьма важно. К примеру, если одна модель видеокарты основана на GPU с 384 вычислительными процессорами в его составе, а другая из той же линейки имеет GPU с 192 вычислительными блоками, то при равной частоте вторая будет вдвое медленнее обрабатывать любой тип шейдеров, и в целом будет настолько же производительнее.

Хотя, исключительно на основании одного лишь количества вычислительных блоков делать однозначные выводы о производительности нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Только по этим цифрам можно сравнивать чипы только в пределах одной линейки одного производителя: AMD или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх или приложениях.

Блоки текстурирования (TMU)

Эти блоки GPU работают совместно с вычислительными процессорами, ими осуществляется выборка и фильтрация текстурных и прочих данных, необходимых для построения сцены и универсальных вычислений. Число текстурных блоков в видеочипе определяет текстурную производительность — то есть скорость выборки текселей из текстур.

Хотя в последнее время больший упор делается на математические расчеты, а часть текстур заменяется процедурными, нагрузка на блоки TMU и сейчас довольно велика, так как кроме основных текстур, выборки необходимо делать и из карт нормалей и смещений, а также внеэкранных буферов рендеринга render target.

С учётом упора многих игр в том числе и в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность также являются одними из важнейших параметров для видеочипов. Особенное влияние этот параметр оказывает на скорость рендеринга картинки при использовании анизотропной фильтрации, требующие дополнительных текстурных выборок, а также при сложных алгоритмах мягких теней и новомодных алгоритмах вроде Screen Space Ambient Occlusion.

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это — одна из основных характеристик видеокарт всех времён. И хотя в последнее время её значение также несколько снизилось, всё ещё попадаются случаи, когда производительность приложений зависит от скорости и количества блоков ROP. Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

Ещё раз отметим, что современные видеочипы нельзя оценивать только числом разнообразных блоков и их частотой. Каждая серия GPU использует новую архитектуру, в которой исполнительные блоки сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Так, блоки ROP компании AMD в некоторых решениях могут выполнять за такт больше работы, чем блоки в решениях NVIDIA, и наоборот. То же самое касается и способностей текстурных блоков TMU — они разные в разных поколениях GPU разных производителей, и это нужно учитывать при сравнении.

Вплоть до последнего времени, количество блоков обработки геометрии было не особенно важным. Одного блока на GPU хватало для большинства задач, так как геометрия в играх была довольно простой и основным упором производительности были математические вычисления. Важность параллельной обработки геометрии и количества соответствующих блоков резко выросли при появлении в DirectX 11 поддержки тесселяции геометрии. Компания NVIDIA первой распараллелила обработку геометрических данных, когда в её чипах семейства GF1xx появилось по несколько соответстующих блоков. Затем, похожее решение выпустила и AMD (только в топовых решениях линейки Radeon HD 6700 на базе чипов Cayman).

В рамках этого материала мы не будем вдаваться в подробности, их можно прочитать в базовых материалах нашего сайта, посвященных DirectX 11-совместимым графическим процессорам. В данном случае для нас важно то, что количество блоков обработки геометрии очень сильно влияет на общую производительность в самых новых играх, использующих тесселяцию, вроде Metro 2033, HAWX 2 и Crysis 2 (с последними патчами). И при выборе современной игровой видеокарты очень важно обращать внимание и на геометрическую производительность.

Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, данных буферов и т. п. Казалось бы, что чем её больше — тем всегда лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти — это наиболее распространенная ошибка! Значение объёма видеопамяти неопытные пользователи переоценивают чаще всего, до сих пор используя именно его для сравнения разных моделей видеокарт. Оно и понятно — этот параметр указывается в списках характеристик готовых систем одним из первых, да и на коробках видеокарт его пишут крупным шрифтом. Поэтому неискушённому покупателю кажется, что раз памяти в два раза больше, то и скорость у такого решения должна быть в два раза выше. Реальность же от этого мифа отличается тем, что память бывает разных типов и характеристик, а рост производительности растёт лишь до определенного объёма, а после его достижения попросту останавливается.

Так, в каждой игре и при определённых настройках и игровых сценах есть некий объём видеопамяти, которого хватит для всех данных. И хоть ты 4 ГБ видеопамяти туда поставь — у неё не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки, о которых речь шла выше, а памяти просто будет достаточно. Именно поэтому во многих случаях видеокарта с 1,5 ГБ видеопамяти работает с той же скоростью, что и карта с 3 ГБ (при прочих равных условиях).

Ситуации, когда больший объём памяти приводит к видимому увеличению производительности, существуют — это очень требовательные игры, особенно в сверхвысоких разрешениях и при максимальных настройках качества. Но такие случаи встречаются не всегда и объём памяти учитывать нужно, не забывая о том, что выше определённого объема производительность просто уже не вырастет. Есть у чипов памяти и более важные параметры, такие как ширина шины памяти и её рабочая частота. Эта тема настолько обширна, что подробнее о выборе объёма видеопамяти мы ещё остановимся в шестой части нашего материала.

Ширина шины памяти

Ширина шины памяти является важнейшей характеристикой, влияющей на пропускную способность памяти (ПСП). Большая ширина позволяет передавать большее количество информации из видеопамяти в GPU и обратно в единицу времени, что положительно влияет на производительность в большинстве случаев. Теоретически, по 256-битной шине можно передать в два раза больше данных за такт, чем по 128-битной. На практике разница в скорости рендеринга хоть и не достигает двух раз, но весьма близка к этому во многих случаях с упором в пропускную способность видеопамяти.

Современные игровые видеокарты используют разную ширину шины: от 64 до 384 бит (ранее были чипы и с 512-битной шиной), в зависимости от ценового диапазона и времени выпуска конкретной модели GPU. Для самых дешёвых видеокарт уровня low-end чаще всего используется 64 и реже 128 бит, для среднего уровня от 128 до 256 бит, ну а видеокарты из верхнего ценового диапазона используют шины от 256 до 384 бит шириной. Ширина шины уже не может расти чисто из-за физических ограничений — размер кристалла GPU недостаточен для разводки более чем 512-битной шины, и это обходится слишком дорого. Поэтому наращивание ПСП сейчас осуществляется при помощи использования новых типов памяти (см. далее).

Ещё одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А повышение ПСП часто напрямую влияет на производительность видеокарты в 3D-приложениях. Частота шины памяти на современных видеокартах бывает от 533(1066, с учётом удвоения) МГц до 1375(5500, с учётом учетверения) МГц, то есть, может отличаться более чем в пять раз! И так как ПСП зависит и от частоты памяти, и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 800(3200) МГц, будет иметь бо́льшую пропускную способность по сравнению с памятью, работающей на 1000(4000) МГц со 128-битной шиной.

Особенное внимание на параметры ширины шины памяти, её типа и частоты работы следует уделять при покупке сравнительно недорогих видеокарт, на многие из которых ставят лишь 128-битные или даже 64-битные интерфейсы, что крайне негативно сказывается на их производительности. Вообще, покупка видеокарты с использованием 64-битной шины видеопамяти для игрового ПК нами не рекомендуется вовсе. Желательно отдать предпочтение хотя бы среднему уровню минимум со 128- или 192-битной шиной.

На современные видеокарты устанавливается сразу несколько различных типов памяти. Старую SDR-память с одинарной скоростью передачи уже нигде не встретишь, но и современные типы памяти DDR и GDDR имеют значительно отличающиеся характеристики. Различные типы DDR и GDDR позволяют передавать в два или четыре раза большее количество данных на той же тактовой частоте за единицу времени, и поэтому цифру рабочей частоты зачастую указывают удвоенной или учетверённой, умножая на 2 или 4. Так, если для DDR-памяти указана частота 1400 МГц, то эта память работает на физической частоте в 700 МГц, но указывают так называемую «эффективную» частоту, то есть ту, на которой должна работать SDR-память, чтобы обеспечить такую же пропускную способность. То же самое с GDDR5, но частоту тут даже учетверяют.

Основное преимущество новых типов памяти заключается в возможности работы на больших тактовых частотах, а соответственно — в увеличении пропускной способности по сравнению с предыдущими технологиями. Это достигается за счет увеличенных задержек, которые, впрочем, не так важны для видеокарт. Первой платой, использующей память DDR2, стала NVIDIA GeForce FX 5800 Ultra. С тех пор технологии графической памяти значительно продвинулись, был разработан стандарт GDDR3, который близок к спецификациям DDR2, с некоторыми изменениями специально для видеокарт.

GDDR3 — это специально предназначенная для видеокарт память, с теми же технологиями, что и DDR2, но с улучшенными характеристиками потребления и тепловыделения, что позволило создать микросхемы, работающие на более высоких тактовых частотах. Несмотря на то, что стандарт был разработан в компании ATI, первой видеокартой, её использующей, стала вторая модификация NVIDIA GeForce FX 5700 Ultra, а следующей стала GeForce 6800 Ultra.

GDDR4 — это дальнейшее развитие «графической» памяти, работающее почти в два раза быстрее, чем GDDR3. Основными отличиями GDDR4 от GDDR3, существенными для пользователей, являются в очередной раз повышенные рабочие частоты и сниженное энергопотребление. Технически, память GDDR4 не сильно отличается от GDDR3, это дальнейшее развитие тех же идей. Первыми видеокартами с чипами GDDR4 на борту стали ATI Radeon X1950 XTX, а у компании NVIDIA продукты на базе этого типа памяти не выходили вовсе. Преимущества новых микросхем памяти перед GDDR3 в том, что энергопотребление модулей может быть примерно на треть ниже. Это достигается за счет более низкого номинального напряжения для GDDR4.

Впрочем, GDDR4 не получила широкого распространения даже в решениях AMD. Начиная с GPU семейства RV7x0, контроллерами памяти видеокарт поддерживается новый тип памяти GDDR5, работающий на эффективной учетверённой частоте до 5,5 ГГц и выше (теоретически возможны частоты до 7 ГГц), что даёт пропускную способность до 176 ГБ/с с применением 256-битного интерфейса. Если для повышения ПСП у памяти GDDR3/GDDR4 приходилось использовать 512-битную шину, то переход на использование GDDR5 позволил увеличить производительность вдвое при меньших размерах кристаллов и меньшем потреблении энергии.

Видеопамять самых современных типов — это GDDR3 и GDDR5, она отличается от DDR некоторыми деталями и также работает с удвоенной/учетверённой передачей данных. В этих типах памяти применяются некоторые специальные технологии, позволяющие поднять частоту работы. Так, память GDDR2 обычно работает на более высоких частотах по сравнению с DDR, GDDR3 — на еще более высоких, а GDDR5 обеспечивает максимальную частоту и пропускную способность на данный момент. Но на недорогие модели до сих пор ставят «неграфическую» память DDR3 со значительно меньшей частотой, поэтому нужно выбирать видеокарту внимательнее.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *