Высокая баллистика что это
Баллистика для чайников
От дула до цели: основные понятия, которые должен знать каждый стрелок.
Один из самых успешных проектов последнего времени в книгоиздательстве – это серия книг с названиями «. для чайников». Каким бы знанием или умением вы ни пожелали овладеть, для вас всегда найдётся соответствующая «чайниковая» книжка, включая такие предметы, как воспитание толковых детей для чайников (честное слово!) и ароматотерапия для них же. Интересно, однако, что эти книги написаны совсем не для дураков и рассматривают предмет не на упрощённом уровне. В самом деле, одна из лучших причитанных мной книг о вине называлась «Вино для чайников».
Так что наверно никто не удивится, если я заявлю, что должна быть и «Баллистика для чайников». Надеюсь, что вы согласитесь принять этот заголовок с тем же чувством юмора, с каким я вам его предлагаю.
Что нужно знать о баллистике, – если о ней вообще что-то нужно знать, – чтобы стать более метким стрелком и добычливым охотником? Баллистика делится на три раздела: внутреннюю, внешнюю и терминальную.
Что до терминальной баллистики, то да, здесь у нас имеется некоторая свобода, но не более чем в выборе пули, снаряженной в самодельном или заводском патроне. Терминальная баллистика начинается в тот момент, когда пуля проникает в цель. Это наука настолько же качественная, насколько и количественная, потому что факторов, определяющих убойность, великое множество, и не все из них можно точно моделировать в лаборатории.
Остаётся внешняя баллистика. Это просто красивый термин, которым обозначают то, что происходит с пулей от дульного среза до цели. Мы будем рассматривать этот предмет на элементарном уровне, тонкостей я и сам не знаю. Я должен вам признаться, что математику в колледже сдал с третьего захода, а физику вообще завалил, так что поверьте, то, о чём я буду рассказывать, несложно.
Чтобы понять, что происходит с пулей от дула до цели, по крайней мере настолько, насколько это нужно нам, охотникам, надо усвоить некоторые определения и базовые понятия, просто чтобы расставить всё по местам.
Линия прицеливания (ЛП) – прямая от глаза стрелка через прицельную марку (или через целик и мушку) до бесконечности.
Линия бросания (ЛБ) – ещё одна прямая, направление оси канала ствола в момент выстрела.
Траектория – линия, по которой движется пуля.
Падение – снижение траектории пули относительно линии бросания.
Все мы слышали, как кто-нибудь рассказывал, что некая винтовка стреляет так настильно, что пуля просто не падает на первых ста ярдах (91,4 м). Чушь. Даже у самых настильных супермагнумов с самого момента вылета пуля начинает падать и отклоняться от линии бросания. Обычно недопонимание происходит от употребления слова «подъём» в баллистических таблицах. Пуля всегда падает, но она и поднимается относительно линии прицеливания. Эта кажущаяся несуразность происходит оттого, что прицел располагается над стволом, и поэтому единственный способ пересечь линию прицеливания с траекторией пули – это наклонить прицел вниз. Другими словами, если бы линия бросания и линия прицеливания были бы параллельны, пуля вылетала бы из дула на полтора дюйма (38мм) ниже линии прицеливания и начинала бы падать всё ниже и ниже.
Для 7 mm Ultra Mag, пристрелянного на 300 ярдов (274 м), первое пересечение произойдёт около 40 ярдов (37 м). Между этой точкой и отметкой в 300 ярдов наша траектория достигнет максимальной высоты в три с половиной дюйма (89 мм) над линией прицеливания. Таким образом, траектория пересекает линию прицеливания в двух точках, вторая из которых и есть дистанция пристрелки.
Траектория на половине пути
Хотя ТПП была полезной информацией и хорошим способом сравнить разные патроны и заряды, современная система приведения для одной и той же дистанции пристрелки высоты или снижения пули в разных точках траектории более содержательна.
Поперечная плотность, баллистический коэффициент
После вылета из ствола траектория полёта пули определяется её скоростью, формой и весом. Это приводит нас к двум звучным терминам: к поперечной плотности и баллистическому коэффициенту. Поперечная плотность – это вес пули в фунтах, делённый на квадрат её диаметра в дюймах. Но забудьте об этом, это просто способ связать вес пули с её калибром. Возьмите, например, 100-грановую (6,5 г) пулю: в семимиллиметровом калибре (.284) это довольно лёгкая пуля, но в шестимиллиметровом (.243) – довольно тяжёлая. А в значениях поперечной плотности это выглядит так: 100-грановая пуля семимиллиметрового калибра имеет поперечную плотность 0,177, а шестимиллиметровая пуля того же веса будет иметь поперечную плотность 0,242.
Пожалуй, лучшее понимание того, что считать лёгким, а что тяжёлым, может быть получено из сравнения пуль одного и того же калибра. В то время как самая лёгкая семимиллиметровая пуля имеет поперечную плотность в 0,177, самая тяжёлая – 175-грановая(11,3 г) – 0,310. А самая лёгкая, 55-грановая (3,6 г), шестимиллиметровая пуля имеет поперечную плотность 0,133.
Поскольку поперечная плотность связана только с весом, а не с формой пули, получается, что самые тупоносые пули имеют ту же поперечную плотность, что и самые обтекаемые того же веса и калибра. Баллистический коэффициент – совсем другое дело, это мера того, насколько пуля обтекаема, то есть насколько эффективно она преодолевает сопротивление в полёте. Вычисление баллистического коэффициента не вполне определено, существует несколько методик, часто дающих несовпадающие результаты. Добавляет неопределённости и то, что БК зависит от скорости и высоты над уровнем моря.
Если вы не математический маньяк, одержимый вычислениями ради вычислений, то я предлагаю просто делать, как все: использовать значение, предоставляемое производителем пули. Все производители пуль для самостоятельного снаряжения патронов публикуют значения поперечной плотности и баллистического коэффициента для каждой пули. А вот для пуль, используемых в заводских патронах, это делают только Remington и Hornady. Между тем, это полезная информация, и я думаю, что всем производителям патронов следовало бы сообщать её как в баллистических таблицах, так и прямо на коробках. Почему? Потому что если у вас на компьютере стоят баллистические программы, то всё, что вам нужно, это ввести дульную скорость, вес пули и её баллистический коэффициент, и вы сможете нарисовать траекторию для любой дистанции пристрелки.
Если БК охотничьей пули близок к 0,500, это означает, что в этой пуле соединились близкая к оптимальной поперечная плотность и обтекаемая форма, как, например, в 7 мм 162-грановой (10,5 г) SST от Hornady с БК 0,550 или 180-грановой (11,7 г) XBT от Barnes в тридцатом калибре с БК 0,552. Такой чрезвычайно высокий БК типичен для пуль с округлой хвостовой частью («лодочной кормой») и поликарбонатным носиком, как у SST. Barnes, однако, достигает такого же результата за счёт очень обтекаемой оживальной части и чрезвычайно малой фронтальной поверхности носика.
Кстати, оживальная часть – это часть пули спереди от ведущей цилиндрической поверхности, попросту то, что образует нос нули. Если посмотреть на пулю сбоку, то оживальная часть образована дугами или кривыми линиями, но Hornady применяет оживальную часть из сходящихся прямых, то есть коническую.
Если положить рядом плосконосую, круглоносую и остроносую пули, то здравый смысл подскажет, что остроносая более обтекаема, чем круглоносая, а круглоносая в свою очередь более обтекаема, чем плосконосая. Отсюда следует, что при прочих равных условиях на заданной дистанции остроносая снизится меньше, чем круглоносая, а круглоносая – меньше, чем плосконосая. Добавьте «лодочную корму», и пуля станет ещё более аэродинамичной.
Возьмём в качестве примера 180-грановую (11,7 г) X-Bullet компании Barnes тридцатого калибра, выпускаемую как с плоским торцом, так и с «лодочной кормой». Профиль носовой части у этих пуль одинаков, так что разница в баллистических коэффициентах обусловлена исключительно формой торца. У пули с плоским торцом БК составит 0,511, в то время как лодочная корма даст БК 0,552. В процентном отношении, можно подумать, что такая разница существенна, но на самом деле на пятистах ярдах (457 м) пуля с «лодочной кормой» снизится всего на 0,9 дюйма (23 мм) меньше, чем пуля с плоским торцом, при прочих равных условиях.
Дистанция прямого выстрела
Другой способ оценки траекторий – это определение дистанции прямого выстрела (ДПВ). Так же, как и траектория на половине пути, дистанция прямого выстрела никак не влияет на действительную траекторию пули, это просто ещё один критерий для пристрелки винтовки, исходя из её траектории. Для дичи размером с оленя дистанция прямого выстрела основывается на требовании, чтобы пуля попала в убойную зону диаметром 10 дюймов (25,4см) при прицеливании в её центр без компенсации падения.
По сути дела, это как если бы мы взяли совершенно прямую воображаемую трубу диаметром 10 дюймов и наложили бы её на заданную траекторию. При дульном срезе в центре трубы на одном её конце дистанция прямого выстрела – это тот максимальный отрезок, на котором пуля будет лететь внутри этой воображаемой трубы. Естественно, на начальном участке траектория должна быть направлена несколько вверх, так чтобы в точке наивысшего подъёма пуля лишь коснулась верхней части трубы. При таком прицеливании ДПВ – это то расстояние, на котором пуля пройдёт через дно трубы.
Большинство баллистических программ рассчитывают дистанцию прямого выстрела, вам следует только ввести вес пули, БК, скорость и размер убойной зоны. Естественно, вы можете ввести четырёхдюймовую (10 см) убойную зону, если охотитесь на сурков, и восемнадцатидюймовую (46 см), если охотитесь на лося. Но лично я никогда не использовал ДПВ, я считаю это стрельбой спустя рукава. Тем более теперь, когда у нас есть лазерные дальномеры, рекомендовать такой подход не имеет никакого смысла.
БАЛЛИСТИКА
На протяжении многих лет использовались разные способы ускорения метательных снарядов. Лук ускорял стрелу за счет энергии, запасенной в согнутом куске дерева; пружинами баллисты служили скручиваемые сухожилия животных. Были опробованы электромагнитная сила, сила пара, сжатого воздуха. Однако ни один из способов не был столь успешен, как сжигание горючих веществ.
ВНУТРЕННЯЯ БАЛЛИСТИКА
Ствольные системы ускорения.
Для удержания орудия с откатом в равновесии во время выстрела требуется прилагать значительную внешнюю силу (рис. 2). Внешняя сила, как правило, обеспечивается противооткатным механизмом, состоящим из механических пружин, гидравлических устройств и газовых амортизаторов, рассчитанных так, чтобы гасился направленный назад импульс ствола и казенной части с затвором орудия. (Импульс, или количество движения, определяется как произведение массы на скорость; по третьему закону Ньютона импульс, сообщаемый орудию, равен импульсу, передаваемому снаряду.)
Газовая пушка.
Реактивные системы.
Реактивные пусковые установки выполняют в основном те же функции, что и артиллерийские орудия. Такая установка играет роль неподвижной опоры и обычно задает начальное направление полета реактивного снаряда. При пуске управляемой ракеты, имеющей, как правило, бортовую систему наведения, точная наводка, необходимая при стрельбе из орудия, не требуется. В случае же неуправляемых ракет направляющие пусковой установки должны вывести ракету на траекторию, ведущую к цели.
ВНЕШНЯЯ БАЛЛИСТИКА
Вакуумные траектории.
Траектории материальной точки.
где r – плотность воздуха, S – площадь поперечного сечения снаряда, v – скорость движения, а CD (M) – безразмерная функция числа Маха (равного отношению скорости снаряда к скорости звука в среде, в которой движется снаряд), называемая коэффициентом лобового сопротивления. Вообще говоря, коэффициент лобового сопротивления снаряда можно определить экспериментально в аэродинамической трубе или на испытательном полигоне, оснащенном точным измерительным оборудованием. Задача облегчается тем, что для снарядов разного диаметра коэффициент лобового сопротивления одинаков, если они имеют одинаковую форму.
Траектории твердого тела.
Все сказанное об устойчивости полета, не охватывая полностью явлений, определяющих полет снаряда, тем не менее иллюстрирует сложность задачи. Отметим лишь, что в уравнениях движения необходимо учитывать много разных явлений; в эти уравнения входит ряд переменных аэродинамических коэффициентов (типа коэффициента лобового сопротивления), которые должны быть известны. Решение этих уравнений – очень трудоемкая задача.
Применение.
Перед стрельбой должны вноситься поправки на изменения начальной скорости, связанные с износом канала ствола, температурой пороха, отклонениями массы снаряда и баллистических коэффициентов, а также поправки на постоянно меняющиеся погодные условия и связанные с ними изменения плотности атмосферы, скорости и направления ветра. Кроме того, должны быть внесены поправки на деривацию снаряда и (при большой дальности) на вращение Земли.
С увеличением сложности и расширением круга задач современной баллистики появились новые технические средства, без которых возможности решения нынешних и будущих баллистических задач были бы сильно ограничены.
Траектории управляемых снарядов.
В случае управляемых снарядов и без того сложная задача описания траектории усложняется тем, что к уравнениям движения твердого тела добавляется система уравнений, называемых уравнениями наведения, связывающая отклонения снаряда от заданной траектории с корректирующими воздействиями. Суть управления полетом снаряда такова. Если тем или иным путем с использованием уравнений движения определяется отклонение от заданной траектории, то на основе уравнений наведения для этого отклонения рассчитывается корректирующее действие, например, поворот воздушного или газового руля, изменение тяги. Это корректирующее действие, изменяющее те или иные члены уравнений движения, приводит к изменению траектории и уменьшению ее отклонения от заданной. Такой процесс повторяется, пока отклонение не уменьшится до приемлемого уровня.
БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ
Взрыв.
Эксперименты в области взрыва проводятся как с химическими взрывчатыми веществами в количествах, измеряемых граммами, так и с ядерными зарядами мощностью до нескольких мегатонн. Взрывы могут производиться в разных средах, таких, как земля и скальные породы, под водой, у поверхности земли в нормальных атмосферных условиях или в разреженном воздухе на больших высотах. Главный результат взрыва – образование ударной волны в окружающей среде. Ударная волна распространяется от места взрыва сначала со скоростью, превышающей скорость звука в среде; затем с уменьшением интенсивности ударной волны ее скорость приближается к скорости звука. Ударные волны (в воздухе, воде, грунте) могут поражать живую силу противника, разрушать подземные укрепления, морские суда, здания, наземные транспортные средства, самолеты, ракеты и спутники.
Для моделирования интенсивных ударных волн, возникающих в атмосфере и у поверхности земли при ядерных взрывах, применяются особые устройства, называемые ударными трубами. Ударная труба, как правило, представляет собой длинную трубу, состоящую из двух секций. На одном ее конце расположена камера сжатия, которая заполняется воздухом или другим газом, сжатым до сравнительно высокого давления. Другой ее конец представляет собой камеру расширения, открытую на атмосферу. При мгновенном разрыве тонкой диафрагмы, разделяющей две секции трубы, в камере расширения возникает ударная волна, бегущая вдоль ее оси. На рис. 4 показаны кривые давления ударной волны в трех поперечных сечениях трубы. В сечении 3 она принимает классическую форму ударной волны, возникающей при детонации. Внутри ударных труб можно размещать миниатюрные модели, которые будут претерпевать ударные нагрузки, аналогичные действию ядерного взрыва. Нередко проводятся испытания, в которых действию взрыва подвергаются более крупные модели, а иногда и полномасштабные объекты.
Для решения специфических задач, характерных для верхних слоев атмосферы, имеются специальные камеры, в которых имитируются высотные условия. Одна из таких задач – оценка уменьшения силы взрыва на больших высотах.
Осколки и пробивная способность.
Если металл находится в прямом контакте с взрывчатым веществом, ему могут передаваться давления ударной волны, измеряемые десятками тысяч МПа. При обычных размерах заряда ВВ порядка 10 см длительность импульса давления составляет доли миллисекунды. Столь огромные давления, действующие кратковременно, вызывают необычные процессы разрушения. Примером таких явлений может служить «скалывание». Детонация тонкого слоя ВВ, помещенного на броневую плиту, создает очень сильный импульс давления малой длительности (удар), пробегающий по толщине плиты. Дойдя до противоположной стороны плиты, ударная волна отражается как волна растягивающих напряжений. Если интенсивность волны напряжений превысит предел прочности на растяжение материала брони, происходит разрывное разрушение вблизи поверхности на глубине, зависящей от первоначальной толщины заряда ВВ и скорости распространения ударной волны в плите. В результате внутреннего разрыва броневой плиты образуется металлический «осколок», с большой скоростью отлетающий от поверхности. Такой летящий осколок может вызвать большие разрушения.
Чтобы выяснить механизм явлений разрушения, проводят дополнительные эксперименты в области металлофизики высокоскоростной деформации. Такие эксперименты проводятся как с поликристаллическими металлическими материалами, так и с монокристаллами различных металлов. Они позволили сделать интересный вывод относительно зарождения трещин и начала разрушения: в тех случаях, когда в металле имеются включения (примеси), трещины всегда начинаются на включениях. Проводятся экспериментальные исследования пробивной способности снарядов, осколков и пуль в разных средах. Ударные скорости лежат в пределах от нескольких сотен метров в секунду для низкоскоростных пуль до космических скоростей порядка 3–30 км/с, что соответствует осколкам и микрометеорам, встречающимся с межпланетными летательными аппаратами.
На основе таких исследований выводятся эмпирические формулы относительно пробивной способности. Так, установлено, что глубина проникновения в плотную среду прямо пропорциональна количеству движения снаряда и обратно пропорциональна площади его поперечного сечения. Явления, наблюдающиеся при ударе с гиперзвуковой скоростью, показаны на рис. 6. Здесь стальная дробинка со скоростью 3000 м/с ударяется о свинцовую пластину. В разное время, измеряемое микросекундами от начала соударения, сделана последовательность снимков в рентгеновских лучах. На поверхности пластины образуется кратер, и, как показывают снимки, из него выбрасывается материал пластины. Результаты исследования соударения при гиперзвуковой скорости делают более понятным образование кратеров на небесных телах, например на Луне, в местах падения метеоритов.
Раневая баллистика.
Броня.
С использованием ускорителей Ван-де-Граафа и других источников проникающего излучения исследуется степень радиационной защиты людей в танках и бронеавтомобилях, обеспечиваемая специальными материалами для брони. В экспериментах определяется коэффициент прохождения нейтронов сквозь плиты из разных слоев материалов, имеющие типичные танковые конфигурации. Энергия нейтронов может лежать в пределах от долей до десятков МэВ.
Горение.
Исследования в области воспламенения и горения проводятся с двоякой целью. Первая – получить данные, необходимые для увеличения способности пуль, осколков и зажигательных снарядов вызывать загорание топливных систем самолетов, ракет, танков и т.д. Вторая – повысить защищенность транспортных средств и стационарных объектов от зажигательного действия вражеских боеприпасов. Проводятся исследования по определению воспламеняемости разных топлив под действием различных средств воспламенения – искр электрического разряда, пирофорных (самовоспламеняющихся) материалов, высокоскоростных осколков и химических воспламенителей.
Шапиро Я.М. Внешняя баллистика. М., 1946
Серебряков М.Е. Внутренняя баллистика. М., 1949
Костров А.В. Движение асимметричного баллистического аппарата. M., 1984
Баллистика внутренняя, внешняя и терминальная. Баллистическая терминология
Введение в баллистику
— Из отчет Элвина К. Йорка (8 октября 1918г.)
Баллистика исследует движение снаряда (пули). ТК 3-22.9 даёт такое определение:
Есть три основных категории баллистики: внутренняя, внешняя и терминальная.
Далее мы обсудим различные термины, связанные с баллистикой.
Баллистическая терминология
— Из наградной записи Медали Почета старшего сержанта Конде Фалькона
Определим основную терминологию баллистики, чтобы глубже погрузиться в тему. Наш источник – Циркуляр «Винтовки и карабины» ТС 3-22.9, приложение В (в редакции от 1 от января 2017 года).
Как мы уже говорили, баллистика подразделяется на внутреннюю, внешнюю и терминальную.
Внутренняя баллистика
В дискурсе внутренней баллистики используется несколько основных терминов для описания физических процессов.
Канал ствола (bore) – внутренняя часть ствола, от дульного среза до патронника.
Патронник (chamber) – часть ствола, принимающая и фиксирующая боеприпас для стрельбы.
Скат патронника, уступ патронника (shoulder) – часть патронника, фиксирующая гильзу со снарядом, за которой начинается пульный вход ствола.
Дульный срез (muzzle) – конец ствола.
Гран, гр (grain, gr) – единица измерения веса пули либо снаряда. В одном фунте 7000 гранов, в одной унции – 437,5 (1 гран — 0,0647989 грамма – прим. переводчика).
На рисунке ниже показаны некоторые из приведённых терминов внутри автомата М4.
Внешняя баллистика
Ось канала ствола, она же линия выстрела, она же линия возвышения (axis of the bore / line of bore / line of elevation) – линия, проходящая через центр канала ствола.
Угол возвышения (angle of elevation) – угол между землей (горизонтом оружия) и осью канала ствола.
Баллистическая траектория (ballistic trajectory) – путь снаряда под влиянием только внешних сил, как то гравитация и атмосферное трение.
Высота траектории (maximum ordinate) – максимальная высота снаряда над линией прицеливания на пути к точке попадания.
Время полёта (time of flight) – время, которое требуется конкретному снаряду для достижения цели после выстрела.
На следующих рисунках показаны эти термины в ракурсе внешней баллистики.
Терминальная баллистика
Терминальная баллистика – это наука о поведении снаряда от момента столкновения с объектом до полной остановки (терминальная остановка). Включает терминальное влияние на цель.
В связи с этим существует два основных термина:
На следующем рисунке это показано на примере пули M855A1. Обратите внимание, насколько пробит баллистический желатин:
Итак, мы рассмотрели несколько терминов, связанных с различными фазами полета снаряда. В следующий раз мы обсудим дальнейшее практическое применение баллистики.