Водородная энергетика что это простыми словами

Новая энергия: почему водород перспективнее солнечных батарей и ветряков

Водородная энергетика что это простыми словами. 756354209368811. Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-756354209368811. картинка Водородная энергетика что это простыми словами. картинка 756354209368811. В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.

В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.

Почему именно водородная стратегия может создать задел для сохранения позиций России в мировой энергетике в будущем?

Дело в том, что процесс декарбонизации, к которому подключились множество стран, столкнулся с рядом проблем. Предполагалось, что отказаться от сжигаемых видов топлива ради уменьшения углеродного следа и предотвращения изменений климата помогут солнечные панели и ветряки. Но выяснилось, что, во-первых, в такой энергосистеме необходимы значительные мощности хранения энергии на длительный срок, в частности, для прохождения осенне-зимних периодов, а это задача, на порядки превосходящая возможности аккумуляторных батарей. Во-вторых, для тяжелого транспорта, покрывающего большие расстояния, — самолетов, кораблей, грузовых автомобилей — возможностей аккумуляторов тоже недостаточно. И, наконец, в-третьих, есть промышленные процессы, где электричество малоприменимо — например, при выплавке стали.

Водород же можно хранить в баллонах и подземных соляных кавернах, есть ряд способов транспортировки водорода в танкерах и трубопроводами. При сжигании он не образует углекислого газа и дает высокие температуры. Водород может использоваться как восстанавливающий агент вместо угля в металлургии. С помощью водородных топливных ячеек можно получать электричество без сжигания.

Таким образом, использование водорода на сегодня выглядит чуть ли не единственным универсальным способом преодолеть проблемы, которые не удается решить с помощью возобновляемых источников энергии (ВИЭ).

Многие страны и Евросоюз начали разрабатывать и публиковать водородные стратегии как стратегии энергетического перехода. А технический прогресс работает таким образом, что если какое-то решение набирает популярность, то оно становится частью производственных цепочек и оказывается доминирующим. В новом энергетическом укладе, который сейчас начинает создаваться, по всей видимости, водород станет одним из таких элементов. Поэтому России, крупному игроку на мировой энергетической арене, надо участвовать в движении. Тем более что у страны есть все предпосылки для этого — большие запасы природного газа, геологические структуры, подходящие для закачки CO2 (например, отработанные газовые месторождения), развитые компетенции в атомной энергетике. На этой базе вполне можно построить крупный экспортный бизнес. Кроме того, водород может оказаться необходимым для обеспечения конкурентоспособности традиционных российских экспортных отраслей — металлургии, производства азотных удобрений, которые без этого окажутся под риском все увеличивающегося трансграничного углеродного налога.

России предстоит непростой разговор с Евросоюзом, который декларирует, что он будет рад импортировать большие объемы водорода, но только «зеленого», полученного с помощью ВИЭ. А «голубой» из метана или «желтый» из атомного электричества приемлемы только в ограниченной временной перспективе, в качестве стартовых объемов для создания предложения для потенциальных европейских потребителей. Эта позиция выглядит не слишком справедливой ни по отношению к поставщикам, которым предлагается потратиться на создание производственных мощностей и компетенций с ограниченным сроком годности, ни к европейским потребителям (себестоимость «зеленого» водорода превышает себестоимость «голубого» в несколько раз). Да и рациональных объяснений такой позиции, кроме, конечно, традиционной нелюбви «зеленых» активистов и «зеленых» партий к нефтегазовым компаниям, найти трудно. Но можно надеяться, что возобладают фундаментальные принципы международной торговли, «цветовая слепота» и технологическая нейтральность, когда принимаются во внимание свойства товара и его воздействие на окружающую среду, а не способ производства.

Источник

Водородная энергетика: начало большого пути

Водородная энергетика что это простыми словами. 7w3khqt3r0hqkj 5ms t3potqwi. Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-7w3khqt3r0hqkj 5ms t3potqwi. картинка Водородная энергетика что это простыми словами. картинка 7w3khqt3r0hqkj 5ms t3potqwi. В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.

Ранее мы рассказывали про то, каким экологичным видом транспорта являются электробусы. Однако не упомянули один важный момент: c ростом числа электротранспорта городам потребуется больше электричества, которое зачастую получают экологически небезопасными способами. К счастью, сегодня мир научился получать энергию при помощи ветра, солнца и даже водорода. Новый материал мы решили посвятить последнему из источников и рассказать об особенностях водородной энергетики.

На первый взгляд, водород — идеальное топливо. Во-первых, он является самым распространенным элементом во Вселенной, во-вторых, при его сгорании высвобождается большое количество энергии и образуется вода без выделения каких-либо вредных газов. Преимущества водородной энергетики человечество осознало уже давно, однако применять ее в больших промышленных масштабах пока не спешит.

Водородные топливные элементы

Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах XIX века. Гроув пытался осадить медь из водного раствора сульфата меди на железную поверхность и заметил, что под действием электрического тока вода распадается на водород и кислород. После этого открытия Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

Позже, в 1959 году, Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовалось правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.

Водородная энергетика что это простыми словами. 4lybvkkkx2lzrn9mxpaxsqf lm4. Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-4lybvkkkx2lzrn9mxpaxsqf lm4. картинка Водородная энергетика что это простыми словами. картинка 4lybvkkkx2lzrn9mxpaxsqf lm4. В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.
Водородный топливный элемент из сервисного модуля «Аполлонов», вырабатывающий электричество, тепло и воду для астронавтов. Источник: James Humphreys / Wikimedia Commons

Сейчас топливный элемент на водороде напоминает традиционный гальванический элемент с одной лишь разницей: вещество для реакции не хранится в элементе, а постоянно поставляется извне. Просачиваясь через пористый анод, водород теряет электроны, которые уходят в электрическую цепь, а сквозь мембрану проходят катионы водорода. Далее на катоде кислород ловит протон и внешний электрон, в результате чего образуется вода.

Водородная энергетика что это простыми словами. image loader. Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-image loader. картинка Водородная энергетика что это простыми словами. картинка image loader. В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.
Принцип работы водородного топливного элемента. Источник: Geek.com

С одной топливной ячейки снимается напряжение порядка 0,7 В, поэтому ячейки объединяют в массивные топливные элементы с приемлемым выходным напряжением и током. Теоретическое напряжение с водородного элемента может достигать 1,23 В, но часть энергии уходит в тепло.

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД — 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них — процесс добычи водорода.

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Водородная энергетика что это простыми словами. . Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-. картинка Водородная энергетика что это простыми словами. картинка . В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.
Трубчатая печь для паровой конверсии метана — не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Более удобный и простой метод — электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа — большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество — водород— электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba H2One.

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии — к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.

Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров — при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.

Источник

Перспективы и недостатки водородной энергетики

Для хранения и выработки энергии от водорода используются топливные элементы. Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах 19 века. Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

В 1959 году Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовались правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.

В отличие от кислорода водород практически не встречается на земле в чистом виде и поэтому извлекается из других соединений с помощью различных химических методов.

По этим способам его разделяют на цветовые градации.

Зеленый — производится из возобновляемых источников энергии методом электролиза воды. Все, что необходимо для этого: вода, электролизер и большое снабжение электроэнергией.

Голубой — производится из природного газа, а вредные отходы улавливаются для вторичного использования. Тем не менее идеально чистым этот метод не назовешь.

Розовый или красный — произведенный при помощи атомной энергии.

Серый — водород получают путем конверсии метана. При его производстве вредные отходы выбрасываются в атмосферу.

Коричневый — водород получают в результате газификации угля. Этот метод также после себя оставляет парниковые газы.

Еще существуют технологии получения биоводорода из мусора и этанола, но их доля чрезвычайно мала.

Себестоимость производства по видам водорода, доллар за килограмм

Водородная энергетика

На переработку угля приходится 18% производства водорода, 4% обеспечивается за счет зеленого водорода и 78% — переработкой природного газа и нефти. Методы производства, основанные на ископаемом топливе, приводят к образованию 830 млн тонн выбросов CO2 каждый год, что равно выбросам Великобритании и Индонезии, вместе взятым. И тем не менее водород — это более чистая альтернатива традиционному топливу.

В мире три основных источника выбросов, способствующих потеплению климата: транспорт, производство электроэнергии и промышленность. Водород может использоваться во всех трех областях. При использовании в топливных элементах водородная энергия оставляет минимальные потери, а после использования в качестве побочного продукта остается только вода, из которой снова можно добывать водород.

Перспективы отрасли

Согласно докладу МЭА, к 2050 году мировой спрос на водород должен достичь 528 млн тонн — против 87 млн в 2020, — а его доля в мировом потреблении составит 18%, из них 10% будет приходиться на зеленый водород.

В июне 2020 года Германия объявила о реализации национальной водородной стратегии с инвестициями в 7 млрд евро, чтобы стать лидером в этой области.

Япония, Франция, Южная Корея, Австралия, Нидерланды и Норвегия начали свой курс на водород раньше Германии, а Япония сделала это раньше всех — в декабре 2017 года.

В июле 2020 года Минэнерго подготовило план развития в РФ водородной энергетики на период 2020—2024 годов. Производить водород собираются «Росатом», «Газпром» и «Новатэк». В дорожной карте предусмотрены следующие меры:

В 2021 году HydrogenOne Capital — первый в мире инвестиционный фонд, ориентированный на зеленый водород, заявил о листинге на Лондонской бирже. Фонд инвестирует в проекты мощностью 20—100 МВт с возможностью их расширения до 500 МВт.

Как сделать ремонт и не сойти с ума

Преимущества водородной энергетики

Высокая применимость. Электрификация транспорта поможет снизить выбросы в атмосферу, но авиацию, морские и грузовые перевозки на дальние расстояния трудно перевести на использование электроэнергии, потому что для этих секторов требуется топливо с высокой плотностью энергии. Зеленый водород может удовлетворить эти потребности. Например, Airbus представил концепции самолетов с водородным двигателем и надеется ввести его в эксплуатацию к 2035 году.

Nikola строит полуприцепы, работающие как на аккумуляторных батареях, так и на водороде. Компания заявляет, что ее топливные элементы могут работать при более низких температурах, чем батареи. И они легче, что делает их более практичными для грузовиков и другой тяжелой техники. Nikola также утверждает, что дальность хода такого грузовика составит 900 миль на баке с водородом. Для сравнения: у Tesla Semi с батарейным питанием, который может быть запущен в производство в конце этого года или в 2022 году, заявленная дальность — 200—300 миль.

Также свои аналогичные модели транспорта представили компании Toyota, Honda и BMW.

Время заправки электромобиля на топливных элементах в среднем составляет менее четырех минут. При этом в отличие от батарей они не нуждаются в перезарядке. Поскольку они могут работать независимо от сети, то могут использоваться как запасные генераторы электричества или тепла.

Важный элемент перехода на водород — его применение в ЖКХ. Кроме пилотных проектов в Великобритании Лидс станет первым городом, энергоснабжение которого будет полностью водородным. Согласно плану, все газовые сети и транспортное оборудование переведут на него.

Запасы водорода практически безграничны. Так как он встречается почти всюду, его можно использовать там, где он производится. В отличие от батарей, которые не могут хранить большое количество электроэнергии в течение продолжительного времени, водород можно производить из избыточной возобновляемой энергии и хранить в больших количествах.

Энергоэффективность. Водород содержит почти в три раза больше энергии, чем ископаемое топливо, поэтому для выполнения какой-либо работы его требуется гораздо меньше. Например, по сравнению с электростанцией, работающей на сжигании топлива с КПД от 33 до 35%, водородные топливные элементы выполнят ту же функцию с КПД до 65%. Для примера, у солнечных элементов КПД — 20%, а у ветряных — 40%.

Весной 2020 года в городе Фукусима была запущена самая крупная в мире электростанция, работающая на водороде. Для питания электролизных установок на ней размещены солнечные батареи общей мощностью 20 МВт. Всего станция вырабатывает 1,2 тысячи кубических метров водорода в час.

В автомобилях топливные элементы используют 40—60% энергии топлива, а также обеспечивают сокращение его расхода на 50%.

Зеленый водород — отличная среда для хранения энергии. Например, у Германии существует проблема с энергосистемой. В ясные и ветреные дни солнечные экраны и ветряные турбины на севере производят больше электроэнергии, чем может потребить эта часть страны. Из-за этого Германия вынуждена продавать излишки электроэнергии соседним странам себе в убыток. Избыток электроэнергии из ВИЭ можно хранить в виде водорода, а затем сжигать для выработки электроэнергии, когда это необходимо.

Недостатки водородной энергетики

Стоимость зеленого водорода. Как уже говорилось выше, именно стоимость добычи самого чистого вида водорода ставит наиболее сильные препятствия в его развитии. По словам и прогнозам Минэнерго РФ, перспективы водородной энергетики связаны с удешевлением стоимости водорода, производимого электролизом воды. В качестве основных факторов обеспечения конкурентоспособности зеленого водорода рассматривается перспективное снижение капитальных затрат на электролизеры, а также стоимости электроэнергии из ВИЭ.

Источник

Водородная энергетика: начало большого пути

Водородная энергетика что это простыми словами. 7w3khqt3r0hqkj 5ms t3potqwi. Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-7w3khqt3r0hqkj 5ms t3potqwi. картинка Водородная энергетика что это простыми словами. картинка 7w3khqt3r0hqkj 5ms t3potqwi. В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.

Ранее мы рассказывали про то, каким экологичным видом транспорта являются электробусы. Однако не упомянули один важный момент: c ростом числа электротранспорта городам потребуется больше электричества, которое зачастую получают экологически небезопасными способами. К счастью, сегодня мир научился получать энергию при помощи ветра, солнца и даже водорода. Новый материал мы решили посвятить последнему из источников и рассказать об особенностях водородной энергетики.

На первый взгляд, водород — идеальное топливо. Во-первых, он является самым распространенным элементом во Вселенной, во-вторых, при его сгорании высвобождается большое количество энергии и образуется вода без выделения каких-либо вредных газов. Преимущества водородной энергетики человечество осознало уже давно, однако применять ее в больших промышленных масштабах пока не спешит.

Водородные топливные элементы

Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах XIX века. Гроув пытался осадить медь из водного раствора сульфата меди на железную поверхность и заметил, что под действием электрического тока вода распадается на водород и кислород. После этого открытия Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

Позже, в 1959 году, Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовалось правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.

Водородная энергетика что это простыми словами. 4lybvkkkx2lzrn9mxpaxsqf lm4. Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-4lybvkkkx2lzrn9mxpaxsqf lm4. картинка Водородная энергетика что это простыми словами. картинка 4lybvkkkx2lzrn9mxpaxsqf lm4. В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.
Водородный топливный элемент из сервисного модуля «Аполлонов», вырабатывающий электричество, тепло и воду для астронавтов. Источник: James Humphreys / Wikimedia Commons

Сейчас топливный элемент на водороде напоминает традиционный гальванический элемент с одной лишь разницей: вещество для реакции не хранится в элементе, а постоянно поставляется извне. Просачиваясь через пористый анод, водород теряет электроны, которые уходят в электрическую цепь, а сквозь мембрану проходят катионы водорода. Далее на катоде кислород ловит протон и внешний электрон, в результате чего образуется вода.

Водородная энергетика что это простыми словами. image loader. Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-image loader. картинка Водородная энергетика что это простыми словами. картинка image loader. В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.
Принцип работы водородного топливного элемента. Источник: Geek.com

С одной топливной ячейки снимается напряжение порядка 0,7 В, поэтому ячейки объединяют в массивные топливные элементы с приемлемым выходным напряжением и током. Теоретическое напряжение с водородного элемента может достигать 1,23 В, но часть энергии уходит в тепло.

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД — 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них — процесс добычи водорода.

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Водородная энергетика что это простыми словами. . Водородная энергетика что это простыми словами фото. Водородная энергетика что это простыми словами-. картинка Водородная энергетика что это простыми словами. картинка . В последний год водородные технологии стали одной из самых обсуждаемых тем в энергетике. Энтузиасты о наступающей эре водорода говорили довольно давно, но сейчас водородная энергетика стала одной из 42 стратегических инициатив по социально-экономическому развитию страны, представленных правительством. О том, что Россия будет активно участвовать в разработке водородных технологий, заявил премьер-министр Михаил Мишустин. Минэнерго разрабатывает соответствующую стратегию. В консорциум по содействию этой работе вошли более 30 компаний из разных отраслей.
Трубчатая печь для паровой конверсии метана — не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Более удобный и простой метод — электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа — большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество — водород— электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba H2One.

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии — к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.

Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров — при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *