цитомедины что это такое

Цитомедины в лечении заболеваний предстательной железы

Витапрост®форте включен в клинические рекомендации РОУ по лечению доброкачественной гиперплазии предстательной железы (ДГПЖ). Информацией о специфике действия препарата, о его эффективности и профиле безопасности поделились эксперты из клиники урологии им. Р. М. Фронштейна первого МГМУ им. И. М. Сеченова МЗ РФ – д.м.н. Владимир Степанович Саенко, д.м.н., профессор Дмитрий Георгиевич Цариченко и Станислав Вадимович Песегов.

По данным аналитического мониторинга GFK, самые распространенные причины обращения к урологу –ДГПЖ и хронический простатит (ХП). Сочетание ХП и ДГПЖ по данным разных авторов достигает 67–97 %.

Один из компонентов комплексного лечения ДГПЖ и ХП – применение цитомединов, т. е. низкомолекулярных пептидов параи аутокринной природы, выполняющих функции внутрии межклеточных мессенджеров. Они переносят информацию, закодированную в аминокислотной последовательности, их действие направлено на сохранение высокой степени с табильности генома, управление гомеостазом и защитными функциями организма.

Пептиды тканеспецифично стимулируют синтез белка в клетках тех органов, из которых были выделены; причем эффект выявлен у молодых и старых животных. Цитомедины контролируют экспрессию генов и синтез белка, препятствуют накоплению количественных структурных и функциональных изменений, определяющих переход биологической системы от нормального состояния к патологическому. Нарушение цитомединовой регуляции снижает резистентность к дестабилизирующим факторам внешней и внутренней среды.

Пример из широкой группы цитомединов – препарат Витапрост®форте. Это комплекс биологически активных пептидов, выделенных из простаты молодых половозрелых бычков. Активное вещество препарата (субстанция Сампрост, простаты экстракт) обладает органотропным действием и за счет стимуляции метаболизма, антиагрегантного и антикоагуляционного действия улучшает кровообращение; обладает противовоспалительным и иммуностимулирующим эффектом, снижает синтез антигистаминных и антисеротониновых антител; уменьшает отек, лейкоцитарную инфильтрацию и болевой синдром – т. е. уменьшаются застойные явления в простате. А стимуляция мышечного тонуса мочевого пузыря приводит к снижению обструктивной и ирритативной симптоматики.

Эффективность препарата Витапрост®форте изучена в наблюдениях, проведенных группами исследователей: Камалов А. А. с соавт., 2006; Ткачук В. Н., Ткачук И. Н., 2008; Миллер А. М. с соавт., 2008; Гомберг В. Г., Надь Ю. Т., 2010; Камалов А. А. с соавт., 2005; Неймарк А. И. с соавт., 2012 и многими другими. Во всех работах возраст пациентов составил 53,8–63,5 года, критерии включения и исключения – стандартные для проведения консервативной терапии ДГПЖ и ХП. Период наблюдения составлял от 60 до 120 суток.

Методы обследования: анкетирование по шкалам IPSS и QoL, ультразвуковое исследование (УЗИ) органов мочевой системы, трансректальное УЗИ, урофлоуметрия с определением остаточной мочи, анализ крови и мочи, определение общего уровня простатспецифического антигена. За период наблюдения нежелательные и побочные явления отмечены всего в 3 % случаев, все легкой степени и купированы консервативно.

Среднее значение суммарного показателя по шкале IPSS в основной группе снизилось с 15,6 до 12,4 балла, достигнутый результат сохранялся в отдаленном периоде и составлял 11 баллов. У пациентов основной группы также выявлено достоверное снижение среднего значения оценки качества жизни от визита 1 к визитам 2 и 4 с 4,06 до 3,2 и 2,4 балла соответственно. Таким образом, Витапрост®форте достоверно демонстрирует снижение выраженности обструктивной, ирритативной симптоматики и улучшение качества жизни (по шкалам IPSS и QоL).

Для оценки терапевтического эффекта применены показатели урофлоуметрии, характеризующие степень изменения мочеиспускания. В основной группе (Витапрост®форте) достигнуто увеличение среднего значения максимальной объемной скорости мочеиспускания с 9,94 мл / с на визите 0 до 12,81 мл / с к визиту 2 и 13,09 мл / с на визите 4. Эти изменения были статистически достоверны. На фоне приема препарата было достигнуто незначительное, но статистически достоверное снижение среднего значения объема предстательной железы с 51,5 до 48,9 см3, а также уменьшение количества остаточной мочи с 27 до 10,5 мл.

Витапрост® форте достоверно демонстрирует увеличение средней линейной скорости кровотока в сосудах простаты на 40 %, приводит к увеличению плотности сосудистого рисунка и объемного кровотока в простате в 3 раза. Препарат также достоверно улучшает суммарный показатель оценки симптомов ХП с 19,1 до 12,5 балла и показатель боли с 9,0 до 4,3 балла соответственно.

Применение Витапроста® Форте у больных с ДГПЖ и абактериальным ХП достоверно улучшает кровоток в простате, увеличивает линейную скорость кровотока в сосудах простаты, плотность сосудистого рисунка и объемный кровоток, повышает максимальную скорость потока мочи за счет выраженного противоотечного действия и уменьшения объема простаты, улучшает функциональную активность простаты, эффективно и быстро устраняет симптоматику ХП и симптомов нижних мочевых путей. Препарат безопасен, практически не вызывает побочных эффектов, а включение Витапроста® форте в комплексное лечение позволяет достигать длительной ремиссии у 86 % пациентов. В настоящее время терапия ДГПЖ и ХП цитомединами возможна в таблетированной форме и в форме ректальных суппозиториев.

Источник

Клиническая фармакология Тимогена®. Глава 1

Долгов Г.В., Куликов С.В., Легеза В.И., Малинин В.В., Морозов В.Г., Смирнов В.С., Сосюкин А.Е.

Под редакцией проф. В.С. Смирнова.

Авторский коллектив:

Опубликовано в СПб, 2003. — 103 с.

Скачать PDF

Введение

Глава 1. Механизмы пептидной регуляции гомеостаза (В.В. Малинин, В.Г. Морозов)

Глава 2. Регуляторные пептиды тимуса (В.С. Смирнов)

Глава 3. Тимоген®: структура, химический синтез, свойства (С.В. Куликов, В.С. Смирнов)

Глава 4. Тимоген® в профилактике и комплексной терапии инфекционных заболеваний (В.С. Смирнов)

Глава 5. Тимоген® в терапии бронхолегочных заболеваний (В.С. Смирнов)

Глава 6. Применение тимогена в комплексной терапии внутренних болезней (В.С. Смирнов, А.Е. Сосюкин)

Глава 7. Тимоген® в дерматологии (В.С. Смирнов)

Глава 8. Применение Тимогена® для профилактики и лечения радиационных поражений (В.И.Легеза, В.С. Смирнов)

Глава 9. Применение Тимоген® в комплексном лечении механических и термических травм (В.С. Смирнов)

Глава 10. Тимоген® в акушерско-гинекологической практике (Г.В. Долгов, В.С. Смирнов)

Глава 11. Особенности применения Тимогена® в педиатрии (В.С. Смирнов)

Заключение

Глава 1. МЕХАНИЗМЫ ПЕПТИДНОЙ РЕГУЛЯЦИИ ГОМЕОСТАЗА

В.В. Малинин, В.Г. Морозов

Механизмы, регулирующие постоянство внутренней среды (гомеостаз), представляют собой сложный комплекс нейрогуморальных процессов, позволяющих организму сохранять жизнеспособность и устойчивость в окружающей среде. При этом стабильность внутренней среды тесно связана с уровнем биологической защиты организма.

По современным представлениям регуляция гомеостаза многоклеточных систем осуществляется с помощью нейроэндокринных, иммунологических, клеточных и молекулярных механизмов. Наиболее изучена роль нервных и гормональных воздействий на процессы, позволяющие организму контролировать постоянство внутренней среды (Горизонтов, 1981). Функция иммунной системы рассматривается как висцеральная, обеспечивающая сохранение генетического постоянства клеточного состава, т.е. она является одним из гомеостатических механизмов целостного организма (Корнева, 1993).

Известно, что нервная и эндокринная системы модулируют функции иммунной системы с помощью нейротрансмиттеров, нейропептидов и гормонов, а иммунная система взаимодействует с нейроэндокринной системой с помощью цитокинов, иммунопептидов и других иммунотрансмиттеров. В настоящее время установлена роль эндогенных пептидов в формировании компенсаторно-приспособительных реакций организма в ответ на стресс и нарушения гомеостаза. Система пептидов рассматривается в качестве универсальной при нейроиммуноэндокринных взаимодействиях (Коpнева, Шхинек, 1988; Fabry et al., 1994).

При изучении механизма действия цитомединов было установлено, что эти факторы принимают непосредственное участие в процессах тканеспецифической регуляции экспрессии генов и биосинтеза. В результате этого в клетках понижается скорость накопления патологических изменений (повреждения ДНК, мутации, злокачественная трансформация и т.п.) и повышается активность репаративных процессов, направленных на восстановление клеточного гомеостаза.

Нарушение цитомединовой регуляции снижает резистентность клеток и тканей организма к дестабилизирующим факторам как внешней, так и внутренней среды. Это может служить одной из причин развития заболеваний, инволюции органов и тканей, а также ускоренного старения. Последующие работы подтвердили, что система пептидергической регуляции включает широкий спектр тканеспецифических пептидов, поддерживающих гомеостаз (Ivanov et al., 1997; Karelin et al., 1998).

В настоящее время цитомедины выделены практически из всех клеток, тканей и биологических жидкостей организма. По данным физико-химических исследований эти комплексы пептидов различаются между собой по составу, молекулярной массе и электрохимическим свойствам компонентов. На основе цитомединов разработан целый ряд новых лекарственных препаратов. Применение этих препаратов в условиях нарушенного клеточного гомеостаза позволяет восстанавливать функциональную активность различных физиологических систем организма (Морозов, Хавинсон, 1996).

Интенсивное исследование регуляторных пептидов за последние 2-3 десятилетия привело к кардинальному пересмотру представлений о механизмах регуляции физиологических функций, принципов координации процессов гомеостаза и адаптации функциональных систем организма к окружающей среде.

Оказалось, что для воздействия на физиологические процессы необязательно наличие целой молекулы. Более того, в некоторых случаях фрагменты, состоящие всего из 3-4 аминокислотных остатков, были эффективнее, чем нативные соединения. Эти данные послужили предпосылкой к формированию представлений о том, что регуляция и координирование функций организма могут осуществляться за счет процессинга полипептидов, когда в зависимости от потребностей организма от достаточно длинных полипептидных цепей отщепляются фрагменты, обладающие той или иной степенью активности, специфичности и направленности действия на определенные физиологические системы. Процессинговая регуляция обладает значительно большей степенью гибкости, позволяя в короткие сроки путем активации соответствующих пептидаз образовывать в нужном месте требуемые регуляторы из уже готового предшественника. Кроме того, в механизм процессинга заложена определенная программа последовательности включения регуляторов. Процессинговый тип регуляции в наибольшей степени присущ именно пептидным соединениям с линейной структурой, открывающей широкие возможности для изменения конформации молекулы при отщеплении хотя бы одного аминокислотного остатка с любого конца. Кроме того, при таком отщеплении могут значительно меняться другие свойства молекулы, например, степень ее гидрофобности, определяющая способность прохождения через клеточные мембраны и гистогематические барьеры и т.д. (Ерошенко и др., 1991).

Как известно, подавляющее большинство регуляторных пептидов обладает поли- функциональностью. Другими словами, одно соединение обеспечивает регуляцию различных, часто физиологически несхожих функций. В связи с этим, многие физиологические функции оказываются под контролем целого ряда регуляторных пептидов.

Все больше и больше данных свидетельствует о том, что регуляторные олигопептиды являются участниками процессов роста, развития и регенерации. Многие из них представляют собой хорошо изученные структуры, регулирующие различные физиологические функции организма (Замятнин, 1988). Предполагают, что на уровне олигопептидов существует единая система регуляции как эмбрионального развития, роста и регенерации, так и функционирования сформированного организма. По-видимому, в процессе морфогенеза большинство (если не все) функционально активные олигопептиды принимают участие в появлении новых форм и структур в ходе индивидуального развития. При этом становится очевидной условность подразделения олигопептидов на нейро-, эндокрино- или иммуноактивные и одновременно на морфогенетически активные факторы (Замятнин, 1992).

Известно, что взаимодействие лиганда с рецептором реализуется на основе их структурного соответствия (Говырин, Жоров, 1994). Для олигопептида это означает наличие определенной совокупности свойств молекулы, которую на основе применения принципов системного анализа и элементов теории информации было предложено называть сигнатурой (Чипенс, 1980). Очевидно, что это понятие включает сведения и об аминокислотной последовательности. Как отмечает Г.И. Чипенс, каждая пептидная молекула имеет бесконечное число свойств, которые проявляются и определяются только в процессе взаимодействия с другими молекулами как результат внутри- и межмолекулярных взаимодействий в условиях данной среды.

В основу анализа первичных структур белков и пептидов были положены три принципа теории информации — сигнатур, двузначности и эквивокации (Чипенс, 1980; Quastler, 1965). Согласно принципу сигнатур, взаимодействие и комплексообразование молекул определяется наборами свойств (сигнатурами) активных участков их электронных структур (носителей сигнатур). Поскольку молекула может иметь множество сигнатур, то это приводит к неопределенности биологических эффектов, которые она может индуцировать (принцип двузначности теории информации). В определенных ситуациях различные по своей химической структуре молекулы могут иметь одинаковые сигнатуры и выполнять одинаковые функции (принцип эквивокации, или неопределенности причины эффекта). На основе принципов сигнатур и эквивокации развиты представления об эквифункциональных, т.е. однонаправленно действующих, аминокислотных остатках. В зависимости от сигнатуры однонаправленно действующими могут быть самые разные по химической структуре аминокислотные остатки (Чипенс и др., 1990).

Таким образом, основываясь на представлениях о сигнатурах, а также принципах эквивокации (несколько структур ® одна сигнатура ® одна функция) и двузначности (одна структура ® несколько сигнатур ® несколько функций), можно попытаться дать общую характеристику функциональных особенностей эндогенных регуляторных олиго- пептидов, помогающую уяснить, почему структурно разные молекулы способны вызвать близкие, практически одинаковые реакции или почему одна молекулярная структура участвует в различных физиологических процессах? Очевидно, что на основании принципа двузначности несостоятельность существующих понятий и терминов может быть объяснена наличием нескольких сигнатур у одной молекулы олигопептида, что позволяет ей взаимодействовать с рецепторами нескольких типов.

Выявление двух типов функционально значимых групп – положительно заряженных и циклических (R+ и cyc), позволяет рассматривать одно из свойств сигнатуры как взаимное расположение этих групп в первичной структуре олигопептида. Исходя из этого, можно представить значительное число структур, содержащих одинаковое расположение радикалов R+ и сyc, в то время как сами эти радикалы в разных молекулах будут принадлежать аминокислотным остаткам разного типа. Хорошо известными примерами такого рода среди радикалов R+ являются взаимные замены остатков Arg и Lys у членов одного олигопептидного семейства. Более того, многочисленные возможные замены других аминокислотных остатков при сохранении расположения R+ и cyc также могут приводить к одинаковой сигнатуре при разной первичной структуре. Примерами могут служить данные по сравнению первичных структур разных олигопептидов или по семействам, полученные в результате классификации, в том числе замены близких по радикалам аминокислотных остатков в квазиконсервативной области. По-видимому, в этом и проявляется принцип эквивокации (Zamyatnin, 1991).

Основу принципа двузначности составляет высокая конформационная подвижность олигопептидов, в результате которой одна молекула принимает различные конформации (имеет несколько сигнатур), и этим обеспечивается пространственное соответствие с рецепторами различного типа.

На основании исследований физико-химических особенностей эндогенных олигопептидов сделано предположение о том, что спектр функциональной активности этих веществ в основном определяется двумя типами радикалов, формирующих сигнатуру, а состав радикалов определяет полифункциональность олигопептидов. В то же время их уникальное распределение вдоль цепи молекулы (последовательность) определяет специфичность действия. Эти два типа радикалов в принципе могут составлять основу молекулярного физиологического кода. Данные выводы могут быть использованы при прогнозировании функциональных свойств олигопептидов, основанном на рассмотрении структуры. Кроме того, обнаружение ограниченного числа функционально значимых групп, по-видимому, позволит сузить поиск новых высокоактивных соединений пептидной природы (Замятнин, 1990).

Характерным признаком регуляторных олигопептидов оказалось небольшое содержание в них аминокислотных остатков с отрицательно заряженными боковыми радикалами (Аsp и Glu). В то же время содержание остатков с положительным зарядом достоверно больше только для Arg. Достаточно часто встречаются аминокислотные остатки Pro, Phe, Tyr, Trp и Cys. Большинство этих молекул содержат циклическую химическую группу (а Cys, как правило, участвует в образовании молекулярных макроциклов). Из сказанного следует, что регуляторные олигопептиды с заданным спектром функциональной активности содержат преимущественно положительно заряженные и циклические радикалы.

Сравнение аминокислотных последовательностей пептидных препаратов, выделенных из различных органов и тканей млекопитающих, не позволяет выявить в них гомологические участки. Если же сравнивать суммарный аминокислотный состав, то можно отметить высокое содержание аминокислот с боковыми амино- и карбоксильными группами, т. е. высокую диполярность этих макромолекул. Можно предположить, что именно высокоосновные боковые группы, как, например, у тафцина, обеспечивают селективное взаимодействие этих пептидов с поверхностными рецепторами клеток, которые содержат, как правило, карбоксильные группы глутаминовой, аспарагиновой и сиаловой кислот. Иначе говоря, в основе селективного аффинного взаимодействия пептидов-регуляторов с клеточной мембраной лежат ион-ионные и ион-дипольные взаимодействия пептида с карбоксильными группами мембраны (Демин и др., 1994).

Внутриклеточной мишенью для эндогенных биологически активных пептидов, вероятно, является биохимический комплекс, осуществляющий в клетке синтез белка. Получены первые экспериментальные данные, доказывающие целесообразность введения понятия об эссенциальных аминокислотах в качестве метаболической особенности каждого органа (ткани). Это дает основание предполагать, что изменение внутриклеточной концентрации данных аминокислот (их особого сочетания в виде ди- и трипептидов) играет важную роль в регуляции рибосомального синтеза белка. Говоря об уникальных особенностях метаболизма некоторых органов, имеется в виду тот факт, что некоторые клетки, например, кардиомиоциты, синтезируют новые белковые соединения в основном из аминокислот, высвобождающихся только при катаболизме собственных белков. Из притекающей крови кардиомиоциты утилизируют лишь две аминокислоты – Asp и Glu. Данное положение подсказывает решение вопроса об эссенциальных аминокислотах в составе пептидов, высокотропных для миокарда (Кожемяки, 1992).

Проблема биогенеза регуляторных олигопептидов из белковых предшественников вблизи клеточных рецепторов является кардинальной для изучения механизма действия ростовых трансформирующих факторов, нейроактивных пептидов и белков, белковых гормонов и др.

Как и для большинства физиологически активных веществ, эффект регуляторных пептидов определяется взаимодействием со специфическими рецепторами. Расчеты показывают, что в ряде случаев эффекты, связанные с пептидами, не удается объяснить с позиций лиганд-рецепторных взаимодействий. Отсюда возникло предположение об их модулирующем влиянии, которое сводится к изменению характеристик возбудимых мембран клетки (рецептора), облегчающих реализацию эффекта основного медиатора (Гомазков, 1992).

Регуляторные пептиды и сопряженные с их функцией ферменты следует рассматривать как сложную адаптивную систему организма, организующую реализацию приспособительных реакций на всех уровнях его интеграции. Возможно, разнообразные эффекты одного пептида объясняются не его непосредственным действием, а модуляцией эффектов нервной и гуморальной регуляции.

Особый интерес вызывает исследование процессов эндоцитоза (и не только лиганд- рецепторных комплексов). Отдельные участки поверхностных мембран клеток непрерывно втягиваются внутрь и отрываются, образуя внутриклеточные пузырьки, содержащие вещества, которые находились во внешней среде или были адсорбированы на поверхности клетки. Поэтому можно допустить возможность попадания пептидов и белков внутрь клеток и без наличия специфических для них рецепторов на клеточной поверхности.

В последнее время наблюдается возрастающий интерес исследователей к парадоксальным эффектам действия сверхмалых доз (10-18-10-14 М) биологически активных веществ. Данные эффекты наблюдаются для самых разных групп веществ – гормонов и регуляторных пептидов, а также некоторых веществ непептидной природы.

Результаты экспериментов с концентрациями веществ 10-19 М и ниже довольно противоречивы, а объяснение эффектов при концентрациях ниже 10-19 М требует привлечения таких понятий, как “активированная” вода, “память молекул” (Замятнин, 1992).

Одной из особенностей действия сверхмалых доз пептидов является наличие отчетливого эффекта, несмотря на то, что во многих случаях в объекте эксперимента присутствует значительно бoльшая эндогенная концентрация того же вещества. Предполагают, что эффекты сверхмалых доз связаны с адаптационными явлениями, поскольку клетка может реагировать не на величину действующей концентрации, а на изменения концентрации вещества в малых и сверхмалых дозах (Сазанов, Зайцев, 1992). Усиление сигнала возможно не только путем изменения концентраций вторичных мессенджеров, но также и за счет активации синтеза белков, участвующих в передаче сигнала (Reibman et al., 1991). Предполагают, что для достижения эффекта достаточно того, чтобы до клеток достигли самые “быстрые” молекулы действующего вещества из общего распределения, а не все молекулы (Бурлакова и др., 1990).

Выделяют несколько основных систем, необходимых для реализации эффектов сверхмалых концентраций (доз) эндогенных и экзогенных веществ: а) системы каскадные, амплифицирующие сигнал; б) собирательные, “отлавливающие” системы; в) накопители и транспортеры сигнальных молекул; г) супераффинные рецепторы (Ашмарин и др., 1996).

Физико-химическую основу феномена высокой чувствительности организма к так называемым факторам малой интенсивности, в том числе, и сверхмалым дозам биологически активных веществ, составляют процессы колебания биомолекул, перехода одного типа энергии в другой, резонансные эффекты взаимодействия и некоторые иные механизмы. При этом с кибернетических позиций возможен перевод сложной системы на иной уровень реагирования (например, выход из патологического состояния) путем информационных воздействий на нее, которые в своей основе имеют характер слабых по силе сигналов (Подколзин и др., 1994).

Как было отмечено, пептидная регуляция осуществляет связь между нервной, эндокринной, иммунной и, по-видимому, другими системами, участвующими в поддержании гомеостаза. Полифункциональность пептидов и каскадный механизм реализации биологических эффектов определяют те процессы, которые происходят в организме как после экзогенного введения пептида, так и после его эндогенного образования.

Таким образом, пептидная биорегуляция – новое научное направление, связанное с изучением молекулярных и клеточных механизмов, управляющих гомеостазом, разработкой способов и средств восстановления физиологических функций организма с целью предупреждения и лечения заболеваний. Дальнейшее развитие этого направления позволит по-новому подойти к изучению функций организма в норме и патологии, а также объяснить механизмы регуляции гомеостаза на уровне клеток и макромолекул.

Источник

Применение цитомединов в офтальмологии

*Пятилетний импакт фактор РИНЦ за 2020 г.

Читайте в новом номере

Cytomedine’s usage in ophthalmology (literature review)

Yu.V. Nalobnova, E.A. Egorov, T.V. Stavitskaya, G.K. Asrorova
Department of Eye Diseases
Russian State Medical University.

Literature review gives the description of peculiarities of clinical usage of cytomedines.

Французским физиологом Броун–Секаром в конце XVIII века впервые была предпринята попытка использовать эндогенные физиологически активные вещества для лечения различных заболеваний. Он использовал экстракты из семенных желез различных животных в качестве омолаживающего средства.
В дальнейшем для лечения различных заболеваний начали применять вещества полипептидной природы, полученные из различных органов и тканей (головного мозга, гипоталамуса, костного мозга, селезенки, лимфатических узлов, кровеносных сосудов, легких, печени, вилочковой железы, сетчатки и других).
Эти вещества получили название пептидных биорегуляторов или цитомединов.
Термин «цитомедины» предложен В.Г. Морозовым и В.Х. Хавинсоном. Он образован от греческого слова «citos» и латинского «mediator».
Эти вещества являются щелочными полипептидами, имеющими молекулярную массу от 1 тыс. до 10 тыс. Да. Их получают из различных тканей с помощью метода кислотной экстракции с последующей очисткой от балластных веществ. Данный метод получения исключает возможность переноса вирусов и протоонкогенов, что обеспечивает безопасность применения данных веществ в клинической практике.
Цитомедины обладают способностью индуцировать процессы специфической дифференцировки в популяции клеток, являющихся исходным материалом для их получения.
Используя иммунофлюоресценцию, установили, что регуляторные полипептиды расположены на поверхности клетки и отсутствуют в ядерной, митохондриальной и лизосомальной фракциях.
Вероятно, они входят в состав клеточных мембран и появляются в межклеточных пространствах в результате их физиологической деструкции.
Независимо от того, из каких органов и тканей они были получены, цитомедины влияют на клеточный и гуморальный иммунитет, состояние системы гомеостаза, перекисное окисление липидов и другие защитные реакции организма. Это действие выражено в разной степени и зависит от применяемой дозы.
Следует отметить, что при хроматографическом анализе наблюдается разделение различных цитомединов на фракции – низкомолекулярные и высокомолекулярные. Разные фракции цитомединов оказывают разнонаправленное действие на течение физиологических процессов. Более выраженную активность проявляют низкомолекулярные фракции. Учитывая разнонаправленный характер действия, при использовании цитомединов в клинической практике применяются смешанные фракции.
Механизм действия цитомединов в настоящее время не до конца ясен. По всей видимости, их эффекты осуществляются через специфические рецепторы, расположенные на поверхности клетки. После экзогенного введения полипептидов происходит выброс эндогенных регуляторных пептидов, для которых введенный пептид является индуктором. Эффект пептидного каркаса приводит к пролонгированию эффекта цитомединов, который сохраняется даже после полного разрушения первоначального индуктора.
Цитомедины, получаемые из тканей головного мозга и сетчатки, обладают функцией нейропептидов и участвуют в регуляции деятельности нервной ткани.
Изучение возможности применения нейропептидов в офтальмологии началось в 1987 году. В настоящее время используются такие нейропептиды, как ретиналамин и кортексин.
Кортексин – комплекс пептидов, выделенных из коры головного мозга крупного рогатого скота и свиней.
Кортексин обладает тропным действием в отношении коры головного мозга и регулирует процессы метаболизма нейромедиаторов и перекисного окисления в коре головного мозга, зрительном нерве и нейронах сетчатки.
Применяется в комплексном лечении больных хориоретинальными дистрофиями и атрофиями зрительного нерва.
Выпускается в виде лиофилизированного порошка во флаконах. В каждом флаконе содержится 10 мг активного вещества. Перед применением порошок разводится в 1 мл физиологического раствора. Препарат вводится однократно в субтеноново пространство 1 раз в 3–6 месяцев.
Ретиналамин представляет собой комплекс пептидов, выделенных из сетчатки крупного рогатого скота. Выпускает в виде лиофилизированного порошка во флаконах. В каждом флаконе содержится 5 мг активного вещества и 17 мг глицина. Перед применением порошок разводиться в 1 мл физиологического раствора.
Ретиналамин уменьшает деструктивные изменения в пигментном эпителии сетчатки при различных формах дегенерации, модулирует активность клеточных элементов сетчатки, улучшает эффективность функционального взаимодействия пигментного эпителия и наружных сегментов фоторецепторов при развитии патологических процессов. Кроме того, ретиналамин стимулирует фибринолитическую активность крови и оказывает иммуномодулирующее действие (под его воздействием увеличивается экспрессия рецепторов на Т– и В–лимфоцитах, повышается фагоцитарная активность нейтрофилов).
В настоящее время проведены исследования эффективности ретиналамина у больных с диабетической ретинопатией, пигментной абиотрофией сетчатки, инволюционными центральными дистрофиями сетчатки, травмами глазного яблока, глаукомой.
А.И. Днепропетровская и С.В. Харинцева (1988) изучали влияния ретиналамина на течение экспериментальной ретинопатии. У подопытных животных при применении ретиналамина уменьшались явления отека сетчатки при создании модели токсической ретинопатии.
В.Х. Хавинсон с соавторами (1998) исследовали влияние ретиналамина на процессы регенерации нейроэпителия. Исследование проведено на крысах линии Кампбелл, для которых характерно развитие генетически обусловленной пигментной дистрофии сетчатки с 20–го дня после рождения. Полученные данные свидетельствуют о способности ретиналамина тормозить развитие генетически детерминированной дистрофии сетчатки, оказывать положительное влияние на процессы регенерации нейроэпителия.
При клиническом изучении эффективности ретиналамина у больных с пигментной дистрофией сетчатки (Л.А. Васильева, 1992) было выявлено повышение остроты зрения в 98% случает, в то время как в контрольной группе – в 36,2% случаев, расширение суммарных границ поля зрения (СГПЗ) в 96,4% в опытной группе и в 56,8% случаев в контрольной группе. Кроме того, в опытной группе отмечалось увеличение амплитуды «в»–волны общей ЭРГ. Наиболее выраженный положительный эффект был получен у лиц с I–II стадиями пигментной абиотрофии.
Для лечения пигментной дистрофии сетчатки ретиналамин вводится парабульбарно. На курс 10 инъекций. Курс лечения проводят 1–2 раза в год.
При оценке эффективности ретиналамина у больных с инволюционной центральной хориоретинальной дистрофией (В.Х. Хавинсон, С.В. Трофимова, 1999) наблюдалось увеличение остроты зрения в течение первой недели, эффект сохранялся в течение 6–12 месяцев. Увеличение остроты зрения в опытной группе наблюдалось в 90% случаев, в контрольной группе в 35% случаев. В 71,8% случаев наблюдалось частичное, а в 23,5% полное рассасывание геморрагий. В контрольной группе существенных изменений не наблюдалось. В 93,8% случаев было выявлено сужение зон фокальной ишемии по результатам ФАГ. Снизилось количество центральных скотом почти в 3 раза.
На фоне применения ретиналамина у больных с диабетической ретинопатией (В.Х. Хавинсон, С.В. Трофимова, 1999) было выявлено улучшение остроты зрения в основной группе в 76,8% случаев, в контрольной группе в 20,5%. Улучшение офтальмоскопической картины отмечено в 68,5% случаев в основной группе и в 22,1% случаев в контроле. В 83,5% случаев наблюдалась положительная динамика по данным ФАГ (уменьшение числа микроаневризм, сужение зон ишемий).
Для лечения ДРП сетчатки ретиналамин вводится парабульбарно. На курс 10 инъекций. Курс лечения проводят 1–2 раза в год.
В.Х. Хавинсоном также получены положительные результаты при использовании ретиналамина в лечении тромбозов ЦВС и ее ветвей.
И.Б. Максимовым и В.Ф. Даниличевым (1994,1996) была разработана система комплексной пептидной коррекции при травматических повреждениях органа зрения. Применение ретиналамина и кортексина позволяет повысить остроту зрения и функциональное состояние сетчатки, а также уменьшить реабилитационный период после тяжелых витреоретинальных травм.
В нашей клинике было проведено исследование эффективности препарата ретиналамин у больных с компенсированной глаукомой. Исследование было проведено в соответствии с международными требованиями с использованием слепого плацебо–контролируемого метода. При анализе полученных результатов положительная динамика зрительных функций была отмечена только в группе больных, которым парабульбарно вводился ретиналамин. В группе контроля клинически значимых изменений отмечено не было.
Острота зрения без коррекции до лечения составила 0,42±0,23, после курса лечения она увеличилась на 0,27 и составила 0,69±0,28, через 1 месяц после курса лечения острота зрения была выше исходной на 0,19 и составила 0,609±0,29. Изменения остроты зрения были статистически достоверны (р цитомедины что это такое. . цитомедины что это такое фото. цитомедины что это такое-. картинка цитомедины что это такое. картинка . Витапрост®форте включен в клинические рекомендации РОУ по лечению доброкачественной гиперплазии предстательной железы (ДГПЖ). Информацией о специфике действия препарата, о его эффективности и профиле безопасности поделились эксперты из клиники урологии им. Р. М. Фронштейна первого МГМУ им. И. М. Сеченова МЗ РФ – д.м.н. Владимир Степанович Саенко, д.м.н., профессор Дмитрий Георгиевич Цариченко и Станислав Вадимович Песегов.
Контент доступен под лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *