ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΠ΅ΠΌΡ
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π°, ΠΏΠ΅ΡΠΈΠΎΠ΄, ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Π»Π°Ρ. amplitude β Π²Π΅Π»ΠΈΡΠΈΠ½Π°) β ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π»Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
ΠΠ»Ρ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° ΡΡΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ΄Π°Π»ΡΠ΅ΡΡΡ ΡΠ°ΒΡΠΈΠΊ ΠΎΡ ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ (ΡΠΈΡΡΠ½ΠΎΠΊ Π½ΠΈΠΆΠ΅). ΠΠ»Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Ρ ΠΌΠ°Π»ΡΠΌΠΈ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°ΠΌΠΈ Π·Π° ΡΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΠΊΠ°ΠΊ Π΄Π»ΠΈΠ½Ρ Π΄ΡΠ³ΠΈ 01 ΠΈΠ»ΠΈ 02, ΡΠ°ΠΊ ΠΈ Π΄Π»ΠΈΠ½Ρ ΡΡΠΈΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ².
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ β ΠΌΠ΅ΡΡΠ°Ρ , ΡΠ°Π½ΡΠΈΒΠΌΠ΅ΡΡΠ°Ρ ΠΈ Ρ. Π΄. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΌΠ°ΠΊΡΠΈΒΠΌΠ°Π»ΡΠ½Π°Ρ (ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ) ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ, (ΡΠΌ. ΡΠΈΡ. Π½ΠΈΠΆΠ΅).
ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΈΡΡΠ΅ΠΌΠ°, ΡΠΎΠ²Π΅ΡΡΠ°ΒΡΡΠ°Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΡΠ½ΠΎΠ²Π° Π²ΠΎΠ·Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π² ΡΠΎ ΠΆΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ½Π° Π½Π°Ρ ΠΎΠ΄ΠΈΠ»Π°ΡΡ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²ΡΠ±ΡΠ°Π½Π½ΡΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎ.
ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Π’) β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΒΠ»Π΅Π±Π°Π½ΠΈΠ΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½ΠΈΠΆΠ΅ ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³ΡΡΠ·ΠΈΠΊ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°Π΅ΡΡΡ ΠΈΠ· ΠΊΡΠ°ΠΉΠ½Π΅ΠΉ ΠΏΡΠ°Π²ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π Π² ΠΊΡΠ°ΠΉΠ½ΡΡ Π»Π΅Π²ΡΡ ΡΠΎΡΠΊΡ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Π ΡΠ½ΠΎΠ²Π° Π² ΠΊΡΠ°ΠΉΠ½ΡΡ ΠΏΡΠ°Π²ΡΡ.
ΠΠ° ΠΏΠΎΠ»Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ΅Π»ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΡΡΡ, ΡΠ°Π²Π½ΡΠΉ ΡΠ΅ΡΡΒΡΠ΅ΠΌ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°ΠΌ. ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ β ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , ΠΌΠΈΠ½ΡΡΠ°Ρ ΠΈ Ρ. Π΄. ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, (ΡΠΌ. ΡΠΈΡ. Π½ΠΈΠΆΠ΅).
ΠΠΎΠ½ΡΡΠΈΠ΅ Β«ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉΒ», ΡΡΡΠΎΠ³ΠΎ Π³ΠΎΠ²ΠΎΡΡ, ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ, Π»ΠΈΡΡ ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΒΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΎΡΠ½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Ρ. Π΅. Π΄Π»Ρ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΒΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΈ Π΄Π»Ρ ΡΠ»ΡΡΠ°Π΅Π² ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΒΡΠΈΡ ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ Π·Π°ΡΡΡ Π°ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
Π§Π°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
Π§Π°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΠΌΡΡ Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π·Π° 1 Ρ.
ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΡΠ°ΡΡΠΎΡΡ Π² Π‘Π Π½Π°Π·Π²Π°Π½Π° Π³Π΅ΡΡΠ΅ΠΌ (ΠΡ) Π² ΡΠ΅ΡΡΡ Π½Π΅ΠΌΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠ·ΠΈΠΊΠ° Π. ΠΠ΅ΡΡΠ° (1857-1894). ΠΡΠ»ΠΈ ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (v) ΡΠ°Π²Π½Π° 1 ΠΡ, ΡΠΎ ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅. Π§Π°ΡΡΠΎΡΠ° ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌΠΈ:
.
Π ΡΠ΅ΠΎΡΠΈΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅ΠΌ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ, ΠΈΠ»ΠΈ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ Ο. ΠΠ½Π° ΡΠ²ΡΠ·Π°Π½Π° Ρ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ v ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π’ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌΠΈ:
.
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΠΌΡΡ Π·Π° 2Ο ΡΠ΅ΠΊΡΠ½Π΄.
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
ΠΠ΅ΡΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ»ΡΠΆΠΈΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ (ΠΈΠ»ΠΈ ΡΠ³Π»ΠΎΠ²Π°Ρ, ΠΈΠ»ΠΈ ΠΊΡΡΠ³ΠΎΠ²Π°Ρ) ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΡΠΎ ΡΠΊΠ°Π»ΡΡΠ½Π°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°.
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΏΡΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ
ΠΡΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°. ΠΡΠΈ ΡΡΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° ΡΠ΅ΡΠ΅Π· ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅.
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΊΠ°ΠΊ ΡΠ°ΡΡΠ½ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ ΡΠ°Π·Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ ΡΠ΅ΡΠ΅Π· ΠΏΠ΅ΡΠΈΠΎΠ΄ (T) ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ:
ΠΠ΄ΠΈΠ½ΠΈΡΠ΅ΠΉ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ Π² ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ (Π‘Π) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π΄ΠΈΠ°Π½, Π΄Π΅Π»Π΅Π½Π½ΡΠΉ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ:
Π Π°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ:
Π§Π°ΡΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ ΡΠΎΡΠΌΡΠ» Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ
ΠΠ°Π»ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° Π±ΡΠ΄ΡΡ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΠΌΠΈ Ρ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΡΠ°Π²Π½ΠΎΠΉ:
ΠΡΠΈΠΌΠ΅ΡΠΎΠΌ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ. ΠΡΡΠ³ΠΎΠ²Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π΅Π³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π²Π½Π°:
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π·Π°ΡΡΡ Π°ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΊΠ°ΠΊ:
ΠΡΠΈΠΌΠ΅ΡΡ Π·Π°Π΄Π°Ρ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ
Π Π΅ΡΠ΅Π½ΠΈΠ΅: ΠΡΠ½ΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΡΡΠ°Π½Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΎΡΠΊΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΠΉ, ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΎΠ½ΠΈ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΠΏΠΎ ΠΎΡΠΈ X:
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ (Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΠΊΠΎΡΠΎΡΡΠΈ) ΡΠ°Π²Π½Π°:
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ Π²ΡΡΠΈΡΠ»ΠΈΠΌ ΠΊΠ°ΠΊ:
ΠΠ· ΡΠΎΡΠΌΡΠ»Ρ (1.3) Π²ΡΡΠ°Π·ΠΈΠΌ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ, ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π΅Π΅ Π² (1.5), ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ:
ΠΡΡΠΈΡΠ»ΠΈΠΌ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅: ΠΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»Π° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΎΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°:
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ· Π΄Π²ΡΡ ΡΠΎΡΠ΅ΡΠ½ΡΡ ΠΌΠ°ΡΡ. ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ΅Π½ΡΡΠ° ΠΌΠ°ΡΡ (Π΅ΡΠ»ΠΈ ΠΎΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ C), ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ($J_0$) ΡΠ°Π²Π΅Π½:
ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π½Π°ΡΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Π Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ Π¨ΡΠ΅ΠΉΠ½Π΅ΡΠ°:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΠΏΡΠ°Π²ΡΠ΅ ΡΠ°ΡΡΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ (2.2) ΠΈ (2.4) Π² (2.1) Π²ΠΌΠ΅ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½:
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ°
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ (ΡΠ³Π»ΠΎΠ²ΠΎΠΉ, ΡΠ°Π΄ΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ) ΡΠ°ΡΡΠΎΡΠΎΠΉ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΊΠ°Π»ΡΡΠ½ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ»ΡΠΆΠΈΡ ΠΌΠ΅ΡΠΎΠΉ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ, Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΅Π΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ.
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
ΠΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠ³ΡΠ°ΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΡΠ°ΠΌΡΡ ΡΠ°Π·Π½ΡΡ Π²ΠΎΠΏΡΠΎΡΠ°Ρ ΡΠΈΠ·ΠΈΠΊΠΈ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ. ΠΡΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° ΡΠ΅ΡΠ΅Π· ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ.
ΠΡΠ»ΠΈ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΠΎ
ΠΠ΅ΡΠΈΠΎΠ΄ (T) ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ΄ΠΈΠ½ΠΈΡΠ΅ΠΉ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ Π² ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ (Π‘Π) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π΄ΠΈΠ°Π½, Π΄Π΅Π»Π΅Π½Π½ΡΠΉ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ:
Π Π°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ:
ΠΡΠΈΠΌΠ΅ΡΡ Π·Π°Π΄Π°Ρ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΎΡΠΊΠΈ, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΠ½ΠΈ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΠΏΠΎ ΠΎΡΠΈ X:
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ (Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΠΊΠΎΡΠΎΡΡΠΈ) ΡΠ°Π²Π½Π°:
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΠ°ΠΊ:
ΠΡΡΠΈΡΠ»ΠΈΠΌ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅. Π‘Π΄Π΅Π»Π°Π΅ΠΌ ΡΠΈΡΡΠ½ΠΎΠΊ.
ΡΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ (2.2) ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ ΠΊ Π²ΠΈΠ΄Ρ:
ΠΠ±ΡΠ΅Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ (2.4) ΡΡΠΎ:
ΠΠ½Π°ΡΠΈΡ, Π³ΡΡΠ· Π½Π° ΠΏΡΡΠΆΠΈΠ½Π΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½Π°:
17. ΠΠ΅Ρ
Π°Π½ΠΈΠΊΠ°
Π§ΠΈΡΠ°ΡΡ 0 ΠΌΠΈΠ½.
17.547. ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ
ΠΠΎΠ»Π΅Π±Π°Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΠΎΡΠ΅ΡΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΈ ΡΠΌΠ΅ΡΠ°ΡΡΡ ΡΠΎ Π² ΠΎΠ΄Π½Ρ, ΡΠΎ Π² Π΄ΡΡΠ³ΡΡ ΡΡΠΎΡΠΎΠ½Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
ΠΠ΅ΡΠΈΠΎΠ΄ β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΠΈΡΡΠ΅ΠΌΡ, Ρ. Π΅. ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅. ΠΠ΅ΡΠΈΠΎΠ΄ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ .
N β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ];
ΠΠ°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ β ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°. ΠΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ];
Ο0 β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, [ΡΠ°Π΄];
Π‘ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ (x) β ΡΡΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π‘ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΎΠΉ ΡΠ΅Π»Π°, Π΅ΡΠ»ΠΈ ΠΎΡΡΡΠΈΡΡΠ²Π°ΡΡ Π΅Π΅ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (A) β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, Ρ. Π΅. ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ xmax = A.
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Ο0) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ΅ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ .
Π€Π°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Ο) ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ΅ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ . Π€Π°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π²Π½Π° Ο = Οt + Ο0, Π³Π΄Π΅
Ο β ΠΏΠΎΠ»Π½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ [ΡΠ°Π΄];
Ο0 β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, [ΡΠ°Π΄];
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ];
ΠΡΠΈΠΌΠ΅Ρ Π°Π½Π°Π»ΠΈΠ·Π° Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΎΡΠΊΠΈ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ x(t) = Asin(Οt), Π³Π΄Π΅
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ].
ΠΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π‘ΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ: v = xt‘, Π³Π΄Π΅
v β ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ [ΠΌ/Ρ];
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π·Π°ΠΊΠΎΠ½ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ΅Π½ x(t) = Asin(Οt), ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ ΡΠΎΡΠΊΠΈ: v = xt‘ = |Asin(Οt)|’t = Acos(Οt).
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ ΡΠ°Π²Π½ΠΎ v(t) = Acos(Οt), Π³Π΄Π΅
v β ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ [ΠΌ/Ρ];
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ];
Π‘ΡΠ°Π²Π½ΠΈΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ v(t) = AΟcos(Οt) Ρ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π»Π΅Π³ΠΊΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ AΟ β Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, Π° Οt β ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½ΠΎ vmax = AΟ, ΠΈ ΠΎΠ½ΠΎ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΏΡΠΈ | cos(Οt) | = 1, Ρ. Π΅. ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½Π° Ο = Οn, Π³Π΄Π΅ n = 0, 1, 2, β¦ N.
ΠΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ.
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ: a = vt‘, Π³Π΄Π΅
a β ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ [ΠΌ/Ρ2];
v β ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ [ΠΌ/Ρ];
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π·Π°ΠΊΠΎΠ½ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π±ΡΠ» ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ Π²ΡΡΠ΅ v(t) = AΟcos(Οt), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ ΡΠΎΡΠΊΠΈ: a = vt‘ = [AΟcos(Οt)]t‘ = βAΟ2sin(Οt).
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ ΡΠ°Π²Π½ΠΎ a(t) = βAΟ2sin(Οt), Π³Π΄Π΅
a β ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ [ΠΌ/Ρ2];
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ];
ΠΠΎΠ΄ΡΠ»Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»Π΅Π½, ΠΊΠΎΠ³Π΄Π° |sin(Οt)| = 1 β ΡΠΎΠ³Π΄Π° ΠΆΠ΅, ΠΊΠΎΠ³Π΄Π° Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, Ρ. Π΅. Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ ΡΠ°Π²Π½Π° amax = AΟ2.
ΠΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠΎ Π²ΡΠ΅ΠΌΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΎΡΠΌΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π²ΡΠ΅ Π²ΡΠ΅ΠΌΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ. Π ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ: ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ β Π² ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΡΡ, Π° Π·Π°ΡΠ΅ΠΌ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ β Π²Π½ΠΎΠ²Ρ Π² ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ. ΠΠΎΠ»Π½Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΡΡΠΎΡΠ½Π½Π°, ΠΈ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π·Π°ΠΊΠΎΠ½ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ E = EΠ + EK, Π³Π΄Π΅
E β ΠΏΠΎΠ»Π½Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ, E = const, [ΠΠΆ];
EΠ β ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ°ΡΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, [ΠΠΆ];
EK β ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ°ΡΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, [ΠΠΆ].
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΡΡΠΆΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΠΏΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ x(t) = Asin(Οt).
EΠ β ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΆΠΈΠ½Ρ, [ΠΠΆ];
k β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ [Π/ΠΌ];
x β Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ (Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π΅Π΅ ΡΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΡ ΠΈΠ»ΠΈ ΡΠΆΠ°ΡΠΈΡ) [ΠΌ].
EΠ β ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, [ΠΠΆ];
k β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ [Π/ΠΌ];
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ];
EΠmax β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, [ΠΠΆ];
k β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ [Π/ΠΌ];
ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΠΊΠΎΠ³Π΄Π° sin(Οt) = 0 β ΠΊΠΎΠ³Π΄Π° ΠΌΠ°ΡΡΠ½ΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°, ΠΊΠΎΠ³Π΄Π° sin(Οt) = 1 β ΠΊΠΎΠ³Π΄Π° ΠΌΠ°ΡΡΠ½ΠΈΠΊ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΠΊΡΠ°ΠΉΠ½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ , Ρ. Π΅. ΠΊΠΎΠ³Π΄Π° Π΅Π³ΠΎ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅.
ΠΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΡΡΠΆΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°:
EΠΊ β ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ΅Π»Π°, [ΠΠΆ];
v β ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, [ΠΌ/Ρ].
Π£ ΡΠ΅Π»Π°, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΊΠΎΡΠΎΡΡΡ β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°.
EΠΊ β ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, [ΠΠΆ];
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ];
EΠmax β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, [ΠΠΆ];
Ο β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° [ΡΠ°Π΄/Ρ].
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° cos2(Οt) = 1 β ΠΌΠ°ΡΡΠ½ΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΠΈ ΠΎΠ½Π° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΠΊΠΎΠ³Π΄Π° ΠΌΠ°ΡΡΠ½ΠΈΠΊ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΠΊΡΠ°ΠΉΠ½Π΅ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°:
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ β ΡΡΠΎ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ°, ΡΠΎΡΡΠΎΡΡΠ°Ρ ΠΈΠ· ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ, ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½ΠΎΠΉ Π½Π° Π½Π΅ΡΠ°ΡΡΡΠΆΠΈΠΌΠΎΠΉ Π½ΠΈΡΠΈ ΠΈΠ»ΠΈ ΡΡΠ΅ΡΠΆΠ½Π΅.
l β Π΄Π»ΠΈΠ½Π° Π½ΠΈΡΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° [ΠΌ];
g β ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ [ΠΌ/Ρ2].
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΎΡΠΎΠ±ΡΠΉ ΡΠΈΠΏ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. ΠΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ΄ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π²Π½Π΅ΡΠ½ΠΈΠΌ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΈ ΠΈΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΡΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ.
ΠΡΠ»ΠΈ ΡΠ°ΡΡΠΎΡΠ° Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ β Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ°. ΠΡΠΈ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ΅ ΡΠ΅Π·ΠΊΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. Π§Π°ΡΡΠΎΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ°, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π³ΡΠ°ΡΠΈΠΊ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ β ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΏΡΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ ΡΠ°ΡΡΠΎΡΡ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ.
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π§ΡΠΎΠ±Ρ ΠΎΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΈ ΠΎΡΠ»ΠΈΡΠΈΡΡ ΠΎΠ΄Π½ΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΎΡ Π΄ΡΡΠ³ΠΈΡ , ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ 6 Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. ΠΠ½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΠ°ΠΊ (ΡΠΈΡ. 1):
Π’Π°ΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΊΠ°ΠΊ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Ρ, ΡΠ°ΠΊ ΠΆΠ΅, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\large \Delta t\), Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΡΠ»Ρ ΡΠ΄Π²ΠΈΠ³Π°Π΅ΡΡΡ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
Π§Π°ΡΡΠΎΡΡ ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ ΠΈΠ· Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°, ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ. ΠΠ½ΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π½ΠΈΠΆΠ΅ Π² ΡΠ΅ΠΊΡΡΠ΅ ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠΈ.
Π ΡΠ°Π·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ, Π² ΠΊΠΎΡΠΎΡΡΡ Π²Ρ ΠΎΠ΄ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠΈΠΉ Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. Π§ΠΈΡΠ°ΠΉΡΠ΅ Π΄Π°Π»Π΅Π΅.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° β ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΡΠΎ Π΅ΡΡΡ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅Ρ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ , Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½Π° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ°ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°. Π ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°, Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΠΌΠ΅ΡΡΠ°Ρ .
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π°ΡΡΠ΄, Π΅Π΅ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΠΡΠ»ΠΎΠ½Π°Ρ . ΠΡΠ»ΠΈ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΡΠΎΠΊ β ΡΠΎ Π² ΠΠΌΠΏΠ΅ΡΠ°Ρ , Π° Π΅ΡΠ»ΠΈ β Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎ Π² ΠΠΎΠ»ΡΡΠ°Ρ .
Π§Π°ΡΡΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π΅, ΠΏΡΠΈΠΏΠΈΡΡΠ²Π°Ρ ΠΊ Π±ΡΠΊΠ²Π΅, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΠ΅ΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΠ½Π΄Π΅ΠΊΡ Β«0Β» ΡΠ½ΠΈΠ·Ρ.
Π ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΏΡΡΡΡ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° \( \large x \). Π’ΠΎΠ³Π΄Π° ΡΠΈΠΌΠ²ΠΎΠ»ΠΎΠΌ \( \large x_ <0>\) ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ½ΠΎΠ³Π΄Π° Π΄Π»Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π±ΠΎΠ»ΡΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΡΡ Π±ΡΠΊΠ²Ρ A, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ ΠΏΠ΅ΡΠ²Π°Ρ Π±ΡΠΊΠ²Π° Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ»ΠΎΠ²Π° Β«amplitudeΒ».
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΠΊ (ΡΠΈΡ. 2):
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠΎΠ³Π΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠΎΡΠ½ΠΎ, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ°ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΠ΄Π½ΠΈ ΠΈ ΡΠ΅ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΊΡΡΠΎΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π’Π°ΠΊΠΎΠΉ ΠΊΡΡΠΎΡΠ΅ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ.
ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π³ΠΎ ΠΎΠ±ΡΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β«TΒ» ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ .
\( \large T \left( c \right) \) β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΄Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Π° β Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΡΡΠΎΠΌΡ, Ρ ΠΎΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π½ΠΎ Π΄Π»Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π΄ΠΎΠ»ΡΠΌΠΈ ΡΠ΅ΠΊΡΠ½Π΄Ρ.
Π§ΡΠΎΠ±Ρ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ (ΡΠΈΡ. 3), Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΠΎΡΠ»Π΅, ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΎΡ ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠ½ΠΊΡΠΈΡΡ. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΡΠ½ΠΊΡΠΈΡΠ°ΠΌΠΈ β ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠΈΠΎΠ΄ β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ.
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π°ΠΉΡΠΈ ΡΠ΄ΠΎΠ±Π½Π΅Π΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ°ΠΊΠΈΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² (ΡΠΈΡ. 4):
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΡΠΎΡΠ°
ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²Ρ Β«Π½ΡΒ» \( \large \nu \).
Π§Π°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π° ΠΎΠ΄Π½Ρ ΡΠ΅ΠΊΡΠ½Π΄Ρ?Β» ΠΠ»ΠΈ ΠΆΠ΅: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅?Β».
ΠΠΎΡΡΠΎΠΌΡ, ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΎΡΡ β ΡΡΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ:
\( \large \nu \left( \frac<1>
ΠΠ½ΠΎΠ³Π΄Π° Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ°Ρ
Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ ΡΠ°ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΡ \( \large \displaystyle \nu \left( c^ <-1>\right) \), ΠΏΠΎΡΠΎΠΌΡ, ΡΡΠΎ ΠΏΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ \( \large \displaystyle \frac<1>
ΠΠ°ΡΠΈΠ½Π°Ρ Ρ 1933 Π³ΠΎΠ΄Π° ΡΠ°ΡΡΠΎΡΡ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π² ΠΠ΅ΡΡΠ°Ρ Π² ΡΠ΅ΡΡΡ ΠΠ΅Π½ΡΠΈΡ Π° Π ΡΠ΄ΠΎΠ»ΡΡΠ° ΠΠ΅ΡΡΠ°. ΠΠ½ ΡΠΎΠ²Π΅ΡΡΠΈΠ» Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΠΎΡΠΊΡΡΡΠΈΡ Π² ΡΠΈΠ·ΠΈΠΊΠ΅, ΠΈΠ·ΡΡΠ°Π» ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π²ΠΎΠ»Π½Ρ.
ΠΠ΄Π½ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°ΡΡΠΎΡΠ΅ Π² 1 ΠΠ΅ΡΡ.
Π§ΡΠΎΠ±Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ, Π½ΡΠΆΠ½ΠΎ Π½Π° ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄. Π Π·Π°ΡΠ΅ΠΌ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΡΠΏΠΎΡΠΎΠ± ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΡΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΠΈ ΡΠΎΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΡ ΡΡ Π² ΡΡΠΎΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» (ΡΠΈΡ. 5).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ°
ΠΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ β ΡΡΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΠ΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ΄Π½ΠΎΠΌΡ ΠΏΠΎΠ»Π½ΠΎΠΌΡ ΠΎΠ±ΠΎΡΠΎΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ³ΠΎΠ» \(\large 2\pi\) ΡΠ°Π΄ΠΈΠ°Π½. ΠΠΎΡΡΠΎΠΌΡ, ΠΊΡΠΎΠΌΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 1 ΡΠ΅ΠΊΡΠ½Π΄Π°, ΡΠΈΠ·ΠΈΠΊΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄.
Π§ΠΈΡΠ»ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π΄Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β«ΠΎΠΌΠ΅Π³Π°Β»:
\( \large \displaystyle \omega \left( \frac<\text<ΡΠ°Π΄>>
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΠ΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \) ΡΠ°ΠΊ ΠΆΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ, Π° Π΅ΡΠ΅ β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ (ΡΡΡΠ»ΠΊΠ°).
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π° \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄?Β» ΠΠ»ΠΈ ΠΆΠ΅: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄?Β».
ΠΠ±ΡΡΠ½Π°Ρ \( \large \nu \) ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ \( \large \omega \) ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π‘Π»Π΅Π²Π° Π² ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ, Π° ΡΠΏΡΠ°Π²Π° β Π² ΠΠ΅ΡΡΠ°Ρ .
Π§ΡΠΎΠ±Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \), Π½ΡΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ T.
ΠΠ°ΡΠ΅ΠΌ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ \( \large \displaystyle \nu = \frac<1>
Π ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ \( \large \omega = 2\pi \cdot \nu \) ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ \( \large \omega \) ΡΠ°ΡΡΠΎΡΡ.
ΠΠ»Ρ Π³ΡΡΠ±ΠΎΠΉ ΡΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ ΠΎΠ±ΡΡΠ½ΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ Π² 6 ΡΠ°Π· ΡΠΈΡΠ»Π΅Π½Π½ΠΎ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \) ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ. ΠΠ° ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π», ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\), Π° Π·Π°ΡΠ΅ΠΌ, ΡΠΎΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΡΡΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (ΡΠΈΡ. 6).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΈ ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΅Π΅ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
ΠΡΠΊΠ»ΠΎΠ½ΠΈΠΌ ΠΊΠ°ΡΠ΅Π»ΠΈ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΈ Π±ΡΠ΄Π΅ΠΌ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΠΈΡ Π² ΡΠ°ΠΊΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ. ΠΠΎΠ³Π΄Π° ΠΌΡ ΠΎΡΠΏΡΡΡΠΈΠΌ ΠΈΡ , ΠΊΠ°ΡΠ΅Π»ΠΈ Π½Π°ΡΠ½ΡΡ ΡΠ°ΡΠΊΠ°ΡΠΈΠ²Π°ΡΡΡΡ. Π ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ ΠΈΠ· ΡΠ³Π»Π°, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΠΈ.
Π’Π°ΠΊΠΎΠΉ, Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ, Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΡΠΎΡ ΡΠ³ΠΎΠ» (ΡΠΈΡ. 7) ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡΠ΄Ρ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, \(\large \varphi_ <0>\).
\(\large \varphi_ <0>\left(\text <ΡΠ°Π΄>\right) \) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°, ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ (ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ ).
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ ΡΠ³ΠΎΠ», Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΠΈ ΠΊΠ°ΡΠ΅Π»ΠΈ, ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΈΡ ΠΎΡΠΏΡΡΡΠΈΡΡ. ΠΠ· ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π½Π°ΡΠ½Π΅ΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΠΏΠ΅ΡΡ, ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° \(\large \varphi_ <0>\) Π²Π»ΠΈΡΠ΅Ρ Π½Π° Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (ΡΠΈΡ. 8). ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π±ΡΠ΄Π΅ΠΌ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΈΠ½ΡΡΠ°.
ΠΡΠΈΠ²Π°Ρ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π½Π°Ρ ΡΠ΅ΡΠ½ΡΠΌ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠΎΡΠΊΠΈ t = 0. ΠΡΠ° ΠΊΡΠΈΠ²Π°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Β«ΡΠΈΡΡΡΠΌΒ», Π½Π΅ ΡΠ΄Π²ΠΈΠ½ΡΡΡΠΌ ΡΠΈΠ½ΡΡΠΎΠΌ. ΠΠ»Ρ Π½Π΅Π΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ \(\large \varphi_ <0>\) ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌ ΡΠ°Π²Π½ΠΎΠΉ Π½ΡΠ»Ρ.
ΠΡΠΎΡΠ°Ρ ΠΊΡΠΈΠ²Π°Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π° ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ. ΠΠ°ΡΠ°Π»ΠΎ Π΅Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ΄Π²ΠΈΠ½ΡΡΠΎ Π²ΠΏΡΠ°Π²ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t = 0. ΠΠΎΡΡΠΎΠΌΡ, Π΄Π»Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ, Π½Π°ΡΠ°Π²ΡΠ΅ΠΉ Π½ΠΎΠ²ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΏΡΡΡΡ Π²ΡΠ΅ΠΌΡ \(\large \Delta t\), Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\) Π±ΡΠ΄Π΅Ρ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\) Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ±ΡΠ°ΡΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ (ΡΠΈΡ. 8) Π½Π° ΡΠΎ, ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π»Π΅ΠΆΠ°ΡΠ΅Π΅ Π½Π° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π° \(\large \varphi_ <0>\) β Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ . ΠΠ½Π°ΡΠΈΡ, Π½ΡΠΆΠ½ΠΎ ΡΠ²ΡΠ·Π°ΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΊΡΡΠΎΡΠ΅ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\large \Delta t\) ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Π΅ΠΌΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\).
ΠΠ°ΠΊ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΏΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ»Π³ΠΎΡΠΈΡΠΌ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π½Π΅ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΠ°Π³ΠΎΠ².
\[\large T = 5 β 1 = 4 \left( \text <ΡΠ΅ΠΊ>\right)\]
ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ T = 4 ΡΠ΅ΠΊ.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΊΡΠ°ΡΠ½Π°Ρ ΠΊΡΠΈΠ²Π°Ρ ΡΠ΄Π²ΠΈΠ½ΡΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t = 0 ΠΈ ΡΠ΅ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΠ΅ΡΠ²Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ:
\(\large \displaystyle \frac<1> <4>\cdot 2\pi = \frac<\pi > <2>=\varphi_ <0>\)
ΠΠ½Π°ΡΠΈΡ, ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ \(\large \Delta t\) ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ³ΠΎΠ» \(\large \displaystyle \frac<\pi > <2>\) β ΡΡΠΎ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π΄Π»Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅.
Π§ΡΠΎΠ±Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π½ΠΈΠ΅, Π±ΡΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π·Π½Π°ΠΊ Β«ΠΌΠΈΠ½ΡΡΒ» Π΄Π»Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π°:
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΡΠ»ΠΈ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π»Π΅ΠΆΠΈΡ Π»Π΅Π²Π΅Π΅ ΡΠΎΡΠΊΠΈ t = 0, ΡΠΎ Π² ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΠ³ΠΎΠ» \(\large \displaystyle \frac<\pi > <2>\) ΠΈΠΌΠ΅Π΅Ρ Π·Π½Π°ΠΊ Β«ΠΏΠ»ΡΡΒ».
ΠΠ»Ρ Π½Π΅ ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π²Π»Π΅Π²ΠΎ, Π»ΠΈΠ±ΠΎ Π²ΠΏΡΠ°Π²ΠΎ, ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π½ΡΠ»Π΅Π²Π°Ρ \(\large \varphi_ <0>= 0 \).
ΠΠ»Ρ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π²Π»Π΅Π²ΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΈ ΠΎΠΏΠ΅ΡΠ΅ΠΆΠ°ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π±Π΅ΡΠ΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«+Β».
Π Π΅ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ΄Π²ΠΈΠ½ΡΡΠ° Π²ΠΏΡΠ°Π²ΠΎ ΠΈ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π΅Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \(\large \varphi_ <0>\) Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«-Β».
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΡ:
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠ°ΠΊΠΈΠΌ Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡΠΌ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° Π·Π°Π΄Π°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ, Π½Π°ΡΠΈΠ½Π°Ρ ΠΈΠ· ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π½ΡΠ»Ρ ΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π² ΠΏΡΠ°Π²ΠΎΠΉ ΠΏΠΎΠ»ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅ΡΠ΅ ΡΠ°Π· ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄Π΅ΡΡΠΊΠΈΠ΅ ΠΊΠ°ΡΠ΅Π»ΠΈ (ΡΠΈΡ. 9) ΠΈ ΡΠ³ΠΎΠ» ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠΎΡ ΡΠ³ΠΎΠ» ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, ΡΠΎ Π΅ΡΡΡ, ΠΎΠ½ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ³ΠΎΠ» ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. ΠΡΠΎΡ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ \(\varphi\).
Π Π°Π·Π»ΠΈΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·ΠΎΠΉ ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ
Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ Π΄Π²Π° ΡΠ³Π»Π° ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ β Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ, ΠΎΠ½ Π·Π°Π΄Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ, ΡΠ³ΠΎΠ», ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠ²ΡΠΉ ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ \( \varphi_<0>\) ΡΠ°Π·ΠΎΠΉ (ΡΠΈΡ. 10Π°), ΠΎΠ½Π° ΡΡΠΈΡΠ°Π΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ. Π Π²ΡΠΎΡΠΎΠΉ ΡΠ³ΠΎΠ» β ΠΏΡΠΎΡΡΠΎ \( \varphi\) ΡΠ°Π·ΠΎΠΉ (ΡΠΈΡ. 10Π±) β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ.
ΠΠ°ΠΊ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΡΠ°Π·Ρ
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π·Π° \(\large \varphi\) Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΡΠΎΡΠΊΠ° Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠ° ΡΠΎΡΠΊΠ° ΡΠ΄Π²ΠΈΠ³Π°Π΅ΡΡΡ (Π±Π΅ΠΆΠΈΡ) ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ (ΡΠΈΡ. 11). Π’ΠΎ Π΅ΡΡΡ, Π² ΡΠ°Π·Π½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΠΊΡΠΈΠ²ΠΎΠΉ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ Π΄Π²Π΅ ΠΊΡΡΠΏΠ½ΡΠ΅ ΠΊΡΠ°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΠΎΠ½ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠ°Π·Π°ΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t1 ΠΈ t2.
Π Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΠΌΠ΅ΡΡΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠ°, Π»Π΅ΠΆΠ°ΡΠ°Ρ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t=0. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄Π½Π° ΠΌΠ΅Π»ΠΊΠ°Ρ ΠΊΡΠ°ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°, ΠΎΠ½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°Π·Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ
ΠΡΡΡΡ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \(\large \omega\) β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΈ \(\large \varphi_<0>\) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°. ΠΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ, ΡΠ²Π»ΡΡΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°ΠΌΠΈ.
ΠΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ t Π±ΡΠ΄Π΅Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π€Π°Π·Ρ \(\large \varphi\), ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ Π»ΡΠ±ΠΎΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠ΅ΠΌΡ Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½ΡΡ t Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΠ· ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΠ΅Π²Π°Ρ ΠΈ ΠΏΡΠ°Π²Π°Ρ ΡΠ°ΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ³Π»Π° (Ρ. Π΅. ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ , ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ ). Π ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π²ΠΌΠ΅ΡΡΠΎ ΡΠΈΠΌΠ²ΠΎΠ»Π° t Π² ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠΈΠ΅ Π½Π°Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Ρ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠ°Π·
ΠΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΠ°Π· ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½ΠΈΠ²Π°ΡΡ Π΄Π²Π° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²Π° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° (ΡΠΈΡ. 12). ΠΠ°ΠΆΠ΄ΡΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΠ²ΠΎΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Ρ.
\( \large \varphi_<01>\) β Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈ,
\( \large \varphi_<02>\) β Π΄Π»Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠ°Π· ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ΅ΡΠ²ΡΠΌ ΠΈ Π²ΡΠΎΡΡΠΌ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ:
ΠΠ΅Π»ΠΈΡΠΈΠ½Π° \(\large \Delta \varphi \) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, Π½Π° ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΡΠ°Π·Ρ Π΄Π²ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΎΠ½Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡΡ ΡΠ°Π·.
ΠΠ°ΠΊ ΡΠ²ΡΠ·Π°Π½Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΠΎΡΠΌΡΠ»Ρ
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΡ ΠΎΠΆΠ΅ΡΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΈ Π²ΠΈΠ΄Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ.
ΠΠΎΡΡΠΎΠΌΡ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡΠ΅ Π΄Π»Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΏΠΎΠ΄ΠΎΠΉΠ΄ΡΡ ΡΠ°ΠΊ ΠΆΠ΅, Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
\( \large T \left( c \right) \) β Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ (ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ);
\( \large N \left( \text <ΡΡ>\right) \) β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
\( \large t \left( c \right) \) β ΠΎΠ±ΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π΄Π»Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
\(\large \nu \left( \text <ΠΡ>\right) \) β ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
\(\large \displaystyle \omega \left( \frac<\text<ΡΠ°Π΄>>
\(\large \varphi_ <0>\left( \text <ΡΠ°Π΄>\right) \) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°;
\(\large \varphi \left( \text <ΡΠ°Π΄>\right) \) β ΡΠ°Π·Π° (ΡΠ³ΠΎΠ») Π² Π²ΡΠ±ΡΠ°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t;
\(\large \Delta t \left( c \right) \) β ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t=0 ΡΠ΄Π²ΠΈΠ½ΡΡΠΎ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.