ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΊΠ°ΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π°, ΠΏΠ΅ΡΠΈΠΎΠ΄, ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Π»Π°Ρ. amplitude β Π²Π΅Π»ΠΈΡΠΈΠ½Π°) β ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π»Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
ΠΠ»Ρ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° ΡΡΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ΄Π°Π»ΡΠ΅ΡΡΡ ΡΠ°ΒΡΠΈΠΊ ΠΎΡ ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ (ΡΠΈΡΡΠ½ΠΎΠΊ Π½ΠΈΠΆΠ΅). ΠΠ»Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Ρ ΠΌΠ°Π»ΡΠΌΠΈ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°ΠΌΠΈ Π·Π° ΡΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΠΊΠ°ΠΊ Π΄Π»ΠΈΠ½Ρ Π΄ΡΠ³ΠΈ 01 ΠΈΠ»ΠΈ 02, ΡΠ°ΠΊ ΠΈ Π΄Π»ΠΈΠ½Ρ ΡΡΠΈΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ².
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ β ΠΌΠ΅ΡΡΠ°Ρ , ΡΠ°Π½ΡΠΈΒΠΌΠ΅ΡΡΠ°Ρ ΠΈ Ρ. Π΄. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΌΠ°ΠΊΡΠΈΒΠΌΠ°Π»ΡΠ½Π°Ρ (ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ) ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ, (ΡΠΌ. ΡΠΈΡ. Π½ΠΈΠΆΠ΅).
ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΈΡΡΠ΅ΠΌΠ°, ΡΠΎΠ²Π΅ΡΡΠ°ΒΡΡΠ°Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΡΠ½ΠΎΠ²Π° Π²ΠΎΠ·Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π² ΡΠΎ ΠΆΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ½Π° Π½Π°Ρ ΠΎΠ΄ΠΈΠ»Π°ΡΡ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²ΡΠ±ΡΠ°Π½Π½ΡΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎ.
ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Π’) β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΒΠ»Π΅Π±Π°Π½ΠΈΠ΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½ΠΈΠΆΠ΅ ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³ΡΡΠ·ΠΈΠΊ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°Π΅ΡΡΡ ΠΈΠ· ΠΊΡΠ°ΠΉΠ½Π΅ΠΉ ΠΏΡΠ°Π²ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π Π² ΠΊΡΠ°ΠΉΠ½ΡΡ Π»Π΅Π²ΡΡ ΡΠΎΡΠΊΡ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Π ΡΠ½ΠΎΠ²Π° Π² ΠΊΡΠ°ΠΉΠ½ΡΡ ΠΏΡΠ°Π²ΡΡ.
ΠΠ° ΠΏΠΎΠ»Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ΅Π»ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΡΡΡ, ΡΠ°Π²Π½ΡΠΉ ΡΠ΅ΡΡΒΡΠ΅ΠΌ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°ΠΌ. ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ β ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , ΠΌΠΈΠ½ΡΡΠ°Ρ ΠΈ Ρ. Π΄. ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, (ΡΠΌ. ΡΠΈΡ. Π½ΠΈΠΆΠ΅).
ΠΠΎΠ½ΡΡΠΈΠ΅ Β«ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉΒ», ΡΡΡΠΎΠ³ΠΎ Π³ΠΎΠ²ΠΎΡΡ, ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ, Π»ΠΈΡΡ ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΒΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΎΡΠ½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Ρ. Π΅. Π΄Π»Ρ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΒΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΈ Π΄Π»Ρ ΡΠ»ΡΡΠ°Π΅Π² ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΒΡΠΈΡ ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ Π·Π°ΡΡΡ Π°ΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
Π§Π°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
Π§Π°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΠΌΡΡ Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π·Π° 1 Ρ.
ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΡΠ°ΡΡΠΎΡΡ Π² Π‘Π Π½Π°Π·Π²Π°Π½Π° Π³Π΅ΡΡΠ΅ΠΌ (ΠΡ) Π² ΡΠ΅ΡΡΡ Π½Π΅ΠΌΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠ·ΠΈΠΊΠ° Π. ΠΠ΅ΡΡΠ° (1857-1894). ΠΡΠ»ΠΈ ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (v) ΡΠ°Π²Π½Π° 1 ΠΡ, ΡΠΎ ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅. Π§Π°ΡΡΠΎΡΠ° ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌΠΈ:
.
Π ΡΠ΅ΠΎΡΠΈΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅ΠΌ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ, ΠΈΠ»ΠΈ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ Ο. ΠΠ½Π° ΡΠ²ΡΠ·Π°Π½Π° Ρ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ v ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π’ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌΠΈ:
.
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΠΌΡΡ Π·Π° 2Ο ΡΠ΅ΠΊΡΠ½Π΄.
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π§ΡΠΎΠ±Ρ ΠΎΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΈ ΠΎΡΠ»ΠΈΡΠΈΡΡ ΠΎΠ΄Π½ΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΎΡ Π΄ΡΡΠ³ΠΈΡ , ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ 6 Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. ΠΠ½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΠ°ΠΊ (ΡΠΈΡ. 1):
Π’Π°ΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΊΠ°ΠΊ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Ρ, ΡΠ°ΠΊ ΠΆΠ΅, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\large \Delta t\), Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΡΠ»Ρ ΡΠ΄Π²ΠΈΠ³Π°Π΅ΡΡΡ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
Π§Π°ΡΡΠΎΡΡ ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ ΠΈΠ· Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°, ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ. ΠΠ½ΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π½ΠΈΠΆΠ΅ Π² ΡΠ΅ΠΊΡΡΠ΅ ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠΈ.
Π ΡΠ°Π·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ, Π² ΠΊΠΎΡΠΎΡΡΡ Π²Ρ ΠΎΠ΄ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠΈΠΉ Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. Π§ΠΈΡΠ°ΠΉΡΠ΅ Π΄Π°Π»Π΅Π΅.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° β ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΡΠΎ Π΅ΡΡΡ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅Ρ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ , Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½Π° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ°ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°. Π ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°, Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΠΌΠ΅ΡΡΠ°Ρ .
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π°ΡΡΠ΄, Π΅Π΅ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΠΡΠ»ΠΎΠ½Π°Ρ . ΠΡΠ»ΠΈ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΡΠΎΠΊ β ΡΠΎ Π² ΠΠΌΠΏΠ΅ΡΠ°Ρ , Π° Π΅ΡΠ»ΠΈ β Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎ Π² ΠΠΎΠ»ΡΡΠ°Ρ .
Π§Π°ΡΡΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π΅, ΠΏΡΠΈΠΏΠΈΡΡΠ²Π°Ρ ΠΊ Π±ΡΠΊΠ²Π΅, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΠ΅ΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΠ½Π΄Π΅ΠΊΡ Β«0Β» ΡΠ½ΠΈΠ·Ρ.
Π ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΏΡΡΡΡ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° \( \large x \). Π’ΠΎΠ³Π΄Π° ΡΠΈΠΌΠ²ΠΎΠ»ΠΎΠΌ \( \large x_ <0>\) ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ½ΠΎΠ³Π΄Π° Π΄Π»Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π±ΠΎΠ»ΡΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΡΡ Π±ΡΠΊΠ²Ρ A, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ ΠΏΠ΅ΡΠ²Π°Ρ Π±ΡΠΊΠ²Π° Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ»ΠΎΠ²Π° Β«amplitudeΒ».
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΠΊ (ΡΠΈΡ. 2):
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠΎΠ³Π΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠΎΡΠ½ΠΎ, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ°ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΠ΄Π½ΠΈ ΠΈ ΡΠ΅ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΊΡΡΠΎΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π’Π°ΠΊΠΎΠΉ ΠΊΡΡΠΎΡΠ΅ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ.
ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π³ΠΎ ΠΎΠ±ΡΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β«TΒ» ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ .
\( \large T \left( c \right) \) β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΄Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Π° β Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΡΡΠΎΠΌΡ, Ρ ΠΎΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π½ΠΎ Π΄Π»Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π΄ΠΎΠ»ΡΠΌΠΈ ΡΠ΅ΠΊΡΠ½Π΄Ρ.
Π§ΡΠΎΠ±Ρ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ (ΡΠΈΡ. 3), Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΠΎΡΠ»Π΅, ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΎΡ ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠ½ΠΊΡΠΈΡΡ. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΡΠ½ΠΊΡΠΈΡΠ°ΠΌΠΈ β ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠΈΠΎΠ΄ β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ.
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π°ΠΉΡΠΈ ΡΠ΄ΠΎΠ±Π½Π΅Π΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ°ΠΊΠΈΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² (ΡΠΈΡ. 4):
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΡΠΎΡΠ°
ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²Ρ Β«Π½ΡΒ» \( \large \nu \).
Π§Π°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π° ΠΎΠ΄Π½Ρ ΡΠ΅ΠΊΡΠ½Π΄Ρ?Β» ΠΠ»ΠΈ ΠΆΠ΅: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅?Β».
ΠΠΎΡΡΠΎΠΌΡ, ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΎΡΡ β ΡΡΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ:
\( \large \nu \left( \frac<1>
ΠΠ½ΠΎΠ³Π΄Π° Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ°Ρ
Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ ΡΠ°ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΡ \( \large \displaystyle \nu \left( c^ <-1>\right) \), ΠΏΠΎΡΠΎΠΌΡ, ΡΡΠΎ ΠΏΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ \( \large \displaystyle \frac<1>
ΠΠ°ΡΠΈΠ½Π°Ρ Ρ 1933 Π³ΠΎΠ΄Π° ΡΠ°ΡΡΠΎΡΡ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π² ΠΠ΅ΡΡΠ°Ρ Π² ΡΠ΅ΡΡΡ ΠΠ΅Π½ΡΠΈΡ Π° Π ΡΠ΄ΠΎΠ»ΡΡΠ° ΠΠ΅ΡΡΠ°. ΠΠ½ ΡΠΎΠ²Π΅ΡΡΠΈΠ» Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΠΎΡΠΊΡΡΡΠΈΡ Π² ΡΠΈΠ·ΠΈΠΊΠ΅, ΠΈΠ·ΡΡΠ°Π» ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π²ΠΎΠ»Π½Ρ.
ΠΠ΄Π½ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°ΡΡΠΎΡΠ΅ Π² 1 ΠΠ΅ΡΡ.
Π§ΡΠΎΠ±Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ, Π½ΡΠΆΠ½ΠΎ Π½Π° ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄. Π Π·Π°ΡΠ΅ΠΌ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΡΠΏΠΎΡΠΎΠ± ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΡΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΠΈ ΡΠΎΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΡ ΡΡ Π² ΡΡΠΎΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» (ΡΠΈΡ. 5).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ°
ΠΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ β ΡΡΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΠ΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ΄Π½ΠΎΠΌΡ ΠΏΠΎΠ»Π½ΠΎΠΌΡ ΠΎΠ±ΠΎΡΠΎΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ³ΠΎΠ» \(\large 2\pi\) ΡΠ°Π΄ΠΈΠ°Π½. ΠΠΎΡΡΠΎΠΌΡ, ΠΊΡΠΎΠΌΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 1 ΡΠ΅ΠΊΡΠ½Π΄Π°, ΡΠΈΠ·ΠΈΠΊΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄.
Π§ΠΈΡΠ»ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π΄Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β«ΠΎΠΌΠ΅Π³Π°Β»:
\( \large \displaystyle \omega \left( \frac<\text<ΡΠ°Π΄>>
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΠ΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \) ΡΠ°ΠΊ ΠΆΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ, Π° Π΅ΡΠ΅ β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ (ΡΡΡΠ»ΠΊΠ°).
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π° \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄?Β» ΠΠ»ΠΈ ΠΆΠ΅: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄?Β».
ΠΠ±ΡΡΠ½Π°Ρ \( \large \nu \) ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ \( \large \omega \) ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π‘Π»Π΅Π²Π° Π² ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ, Π° ΡΠΏΡΠ°Π²Π° β Π² ΠΠ΅ΡΡΠ°Ρ .
Π§ΡΠΎΠ±Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \), Π½ΡΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ T.
ΠΠ°ΡΠ΅ΠΌ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ \( \large \displaystyle \nu = \frac<1>
Π ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ \( \large \omega = 2\pi \cdot \nu \) ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ \( \large \omega \) ΡΠ°ΡΡΠΎΡΡ.
ΠΠ»Ρ Π³ΡΡΠ±ΠΎΠΉ ΡΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ ΠΎΠ±ΡΡΠ½ΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ Π² 6 ΡΠ°Π· ΡΠΈΡΠ»Π΅Π½Π½ΠΎ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \) ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ. ΠΠ° ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π», ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\), Π° Π·Π°ΡΠ΅ΠΌ, ΡΠΎΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΡΡΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (ΡΠΈΡ. 6).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΈ ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΅Π΅ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
ΠΡΠΊΠ»ΠΎΠ½ΠΈΠΌ ΠΊΠ°ΡΠ΅Π»ΠΈ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΈ Π±ΡΠ΄Π΅ΠΌ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΠΈΡ Π² ΡΠ°ΠΊΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ. ΠΠΎΠ³Π΄Π° ΠΌΡ ΠΎΡΠΏΡΡΡΠΈΠΌ ΠΈΡ , ΠΊΠ°ΡΠ΅Π»ΠΈ Π½Π°ΡΠ½ΡΡ ΡΠ°ΡΠΊΠ°ΡΠΈΠ²Π°ΡΡΡΡ. Π ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ ΠΈΠ· ΡΠ³Π»Π°, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΠΈ.
Π’Π°ΠΊΠΎΠΉ, Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ, Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΡΠΎΡ ΡΠ³ΠΎΠ» (ΡΠΈΡ. 7) ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡΠ΄Ρ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, \(\large \varphi_ <0>\).
\(\large \varphi_ <0>\left(\text <ΡΠ°Π΄>\right) \) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°, ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ (ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ ).
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ ΡΠ³ΠΎΠ», Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΠΈ ΠΊΠ°ΡΠ΅Π»ΠΈ, ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΈΡ ΠΎΡΠΏΡΡΡΠΈΡΡ. ΠΠ· ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π½Π°ΡΠ½Π΅ΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΠΏΠ΅ΡΡ, ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° \(\large \varphi_ <0>\) Π²Π»ΠΈΡΠ΅Ρ Π½Π° Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (ΡΠΈΡ. 8). ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π±ΡΠ΄Π΅ΠΌ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΈΠ½ΡΡΠ°.
ΠΡΠΈΠ²Π°Ρ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π½Π°Ρ ΡΠ΅ΡΠ½ΡΠΌ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠΎΡΠΊΠΈ t = 0. ΠΡΠ° ΠΊΡΠΈΠ²Π°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Β«ΡΠΈΡΡΡΠΌΒ», Π½Π΅ ΡΠ΄Π²ΠΈΠ½ΡΡΡΠΌ ΡΠΈΠ½ΡΡΠΎΠΌ. ΠΠ»Ρ Π½Π΅Π΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ \(\large \varphi_ <0>\) ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌ ΡΠ°Π²Π½ΠΎΠΉ Π½ΡΠ»Ρ.
ΠΡΠΎΡΠ°Ρ ΠΊΡΠΈΠ²Π°Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π° ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ. ΠΠ°ΡΠ°Π»ΠΎ Π΅Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ΄Π²ΠΈΠ½ΡΡΠΎ Π²ΠΏΡΠ°Π²ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t = 0. ΠΠΎΡΡΠΎΠΌΡ, Π΄Π»Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ, Π½Π°ΡΠ°Π²ΡΠ΅ΠΉ Π½ΠΎΠ²ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΏΡΡΡΡ Π²ΡΠ΅ΠΌΡ \(\large \Delta t\), Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\) Π±ΡΠ΄Π΅Ρ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\) Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ±ΡΠ°ΡΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ (ΡΠΈΡ. 8) Π½Π° ΡΠΎ, ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π»Π΅ΠΆΠ°ΡΠ΅Π΅ Π½Π° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π° \(\large \varphi_ <0>\) β Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ . ΠΠ½Π°ΡΠΈΡ, Π½ΡΠΆΠ½ΠΎ ΡΠ²ΡΠ·Π°ΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΊΡΡΠΎΡΠ΅ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\large \Delta t\) ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Π΅ΠΌΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\).
ΠΠ°ΠΊ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΏΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ»Π³ΠΎΡΠΈΡΠΌ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π½Π΅ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΠ°Π³ΠΎΠ².
\[\large T = 5 β 1 = 4 \left( \text <ΡΠ΅ΠΊ>\right)\]
ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ T = 4 ΡΠ΅ΠΊ.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΊΡΠ°ΡΠ½Π°Ρ ΠΊΡΠΈΠ²Π°Ρ ΡΠ΄Π²ΠΈΠ½ΡΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t = 0 ΠΈ ΡΠ΅ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΠ΅ΡΠ²Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ:
\(\large \displaystyle \frac<1> <4>\cdot 2\pi = \frac<\pi > <2>=\varphi_ <0>\)
ΠΠ½Π°ΡΠΈΡ, ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ \(\large \Delta t\) ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ³ΠΎΠ» \(\large \displaystyle \frac<\pi > <2>\) β ΡΡΠΎ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π΄Π»Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅.
Π§ΡΠΎΠ±Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π½ΠΈΠ΅, Π±ΡΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π·Π½Π°ΠΊ Β«ΠΌΠΈΠ½ΡΡΒ» Π΄Π»Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π°:
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΡΠ»ΠΈ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π»Π΅ΠΆΠΈΡ Π»Π΅Π²Π΅Π΅ ΡΠΎΡΠΊΠΈ t = 0, ΡΠΎ Π² ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΠ³ΠΎΠ» \(\large \displaystyle \frac<\pi > <2>\) ΠΈΠΌΠ΅Π΅Ρ Π·Π½Π°ΠΊ Β«ΠΏΠ»ΡΡΒ».
ΠΠ»Ρ Π½Π΅ ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π²Π»Π΅Π²ΠΎ, Π»ΠΈΠ±ΠΎ Π²ΠΏΡΠ°Π²ΠΎ, ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π½ΡΠ»Π΅Π²Π°Ρ \(\large \varphi_ <0>= 0 \).
ΠΠ»Ρ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π²Π»Π΅Π²ΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΈ ΠΎΠΏΠ΅ΡΠ΅ΠΆΠ°ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π±Π΅ΡΠ΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«+Β».
Π Π΅ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ΄Π²ΠΈΠ½ΡΡΠ° Π²ΠΏΡΠ°Π²ΠΎ ΠΈ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π΅Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \(\large \varphi_ <0>\) Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«-Β».
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΡ:
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠ°ΠΊΠΈΠΌ Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡΠΌ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° Π·Π°Π΄Π°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ, Π½Π°ΡΠΈΠ½Π°Ρ ΠΈΠ· ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π½ΡΠ»Ρ ΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π² ΠΏΡΠ°Π²ΠΎΠΉ ΠΏΠΎΠ»ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅ΡΠ΅ ΡΠ°Π· ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄Π΅ΡΡΠΊΠΈΠ΅ ΠΊΠ°ΡΠ΅Π»ΠΈ (ΡΠΈΡ. 9) ΠΈ ΡΠ³ΠΎΠ» ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠΎΡ ΡΠ³ΠΎΠ» ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, ΡΠΎ Π΅ΡΡΡ, ΠΎΠ½ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ³ΠΎΠ» ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. ΠΡΠΎΡ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ \(\varphi\).
Π Π°Π·Π»ΠΈΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·ΠΎΠΉ ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ
Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ Π΄Π²Π° ΡΠ³Π»Π° ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ β Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ, ΠΎΠ½ Π·Π°Π΄Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ, ΡΠ³ΠΎΠ», ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠ²ΡΠΉ ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ \( \varphi_<0>\) ΡΠ°Π·ΠΎΠΉ (ΡΠΈΡ. 10Π°), ΠΎΠ½Π° ΡΡΠΈΡΠ°Π΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ. Π Π²ΡΠΎΡΠΎΠΉ ΡΠ³ΠΎΠ» β ΠΏΡΠΎΡΡΠΎ \( \varphi\) ΡΠ°Π·ΠΎΠΉ (ΡΠΈΡ. 10Π±) β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ.
ΠΠ°ΠΊ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΡΠ°Π·Ρ
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π·Π° \(\large \varphi\) Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΡΠΎΡΠΊΠ° Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠ° ΡΠΎΡΠΊΠ° ΡΠ΄Π²ΠΈΠ³Π°Π΅ΡΡΡ (Π±Π΅ΠΆΠΈΡ) ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ (ΡΠΈΡ. 11). Π’ΠΎ Π΅ΡΡΡ, Π² ΡΠ°Π·Π½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΠΊΡΠΈΠ²ΠΎΠΉ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ Π΄Π²Π΅ ΠΊΡΡΠΏΠ½ΡΠ΅ ΠΊΡΠ°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΠΎΠ½ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠ°Π·Π°ΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t1 ΠΈ t2.
Π Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΠΌΠ΅ΡΡΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠ°, Π»Π΅ΠΆΠ°ΡΠ°Ρ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t=0. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄Π½Π° ΠΌΠ΅Π»ΠΊΠ°Ρ ΠΊΡΠ°ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°, ΠΎΠ½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°Π·Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ
ΠΡΡΡΡ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \(\large \omega\) β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΈ \(\large \varphi_<0>\) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°. ΠΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ, ΡΠ²Π»ΡΡΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°ΠΌΠΈ.
ΠΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ t Π±ΡΠ΄Π΅Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π€Π°Π·Ρ \(\large \varphi\), ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ Π»ΡΠ±ΠΎΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠ΅ΠΌΡ Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½ΡΡ t Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΠ· ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΠ΅Π²Π°Ρ ΠΈ ΠΏΡΠ°Π²Π°Ρ ΡΠ°ΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ³Π»Π° (Ρ. Π΅. ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ , ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ ). Π ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π²ΠΌΠ΅ΡΡΠΎ ΡΠΈΠΌΠ²ΠΎΠ»Π° t Π² ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠΈΠ΅ Π½Π°Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Ρ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠ°Π·
ΠΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΠ°Π· ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½ΠΈΠ²Π°ΡΡ Π΄Π²Π° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²Π° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° (ΡΠΈΡ. 12). ΠΠ°ΠΆΠ΄ΡΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΠ²ΠΎΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Ρ.
\( \large \varphi_<01>\) β Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈ,
\( \large \varphi_<02>\) β Π΄Π»Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠ°Π· ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ΅ΡΠ²ΡΠΌ ΠΈ Π²ΡΠΎΡΡΠΌ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ:
ΠΠ΅Π»ΠΈΡΠΈΠ½Π° \(\large \Delta \varphi \) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, Π½Π° ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΡΠ°Π·Ρ Π΄Π²ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΎΠ½Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡΡ ΡΠ°Π·.
ΠΠ°ΠΊ ΡΠ²ΡΠ·Π°Π½Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΠΎΡΠΌΡΠ»Ρ
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΡ ΠΎΠΆΠ΅ΡΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΈ Π²ΠΈΠ΄Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ.
ΠΠΎΡΡΠΎΠΌΡ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡΠ΅ Π΄Π»Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΏΠΎΠ΄ΠΎΠΉΠ΄ΡΡ ΡΠ°ΠΊ ΠΆΠ΅, Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
\( \large T \left( c \right) \) β Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ (ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ);
\( \large N \left( \text <ΡΡ>\right) \) β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
\( \large t \left( c \right) \) β ΠΎΠ±ΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π΄Π»Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
\(\large \nu \left( \text <ΠΡ>\right) \) β ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
\(\large \displaystyle \omega \left( \frac<\text<ΡΠ°Π΄>>
\(\large \varphi_ <0>\left( \text <ΡΠ°Π΄>\right) \) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°;
\(\large \varphi \left( \text <ΡΠ°Π΄>\right) \) β ΡΠ°Π·Π° (ΡΠ³ΠΎΠ») Π² Π²ΡΠ±ΡΠ°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t;
\(\large \Delta t \left( c \right) \) β ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t=0 ΡΠ΄Π²ΠΈΠ½ΡΡΠΎ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ
ΡΠ΅ΠΎΡΠΈΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ 🧲 ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΈ Π²ΠΎΠ»Π½Ρ
ΠΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ΅Π½Ρ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΎ. ΠΠ°ΡΡΠ°Π²ΠΈΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎ, Π΅ΡΠ»ΠΈ ΠΏΡΠΈΠ»ΠΎΠΆΠΈΡΡ ΠΊ Π½Π΅ΠΌΡ ΡΠΈΠ»Ρ β ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎ. Π ΠΏΡΠΈΠΌΠ΅ΡΡ, Π΅ΡΠ»ΠΈ ΠΏΠΎΠ΄ΡΠΎΠ»ΠΊΠ½ΡΡΡ ΠΊΠ°ΡΠ΅Π»ΠΈ, ΠΎΠ½ΠΈ Π½Π°ΡΠ½ΡΡ ΠΊΠ°ΡΠ°ΡΡΡΡ Π²ΠΏΠ΅ΡΠ΅Π΄-Π½Π°Π·Π°Π΄, ΠΈ ΡΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° ΠΊΠ°ΡΠ΅Π»ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π½Π΅ ΠΎΡΡΠ°Π½ΠΎΠ²ΡΡΡΡ.
ΠΡΡΠ³ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΠ΅Π»ΠΎ, ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½ΠΎΠ΅ ΠΊ ΠΏΡΡΠΆΠΈΠ½Π΅. ΠΡΠ»ΠΈ Π΅Π³ΠΎ ΠΏΠΎΡΡΠ½ΡΡΡ Π²Π½ΠΈΠ· ΠΈ ΠΎΡΠΏΡΡΡΠΈΡΡ, ΡΠΎ Π·Π° ΡΡΠ΅Ρ ΡΠΈΠ» ΡΠΏΡΡΠ³ΠΎΡΡΠΈ ΠΎΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΠΎΠ΄Π½ΠΈΠΌΠ΅ΡΡΡ Π²Π²Π΅ΡΡ , Π° Π·Π°ΡΠ΅ΠΌ ΡΠ½ΠΎΠ²Π° ΠΎΠΏΡΡΡΠΈΡΡΡ Π²Π½ΠΈΠ·, Π·Π°ΡΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²Π²Π΅ΡΡ -Π²Π½ΠΈΠ· Π±ΡΠ΄ΡΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ. Π‘ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΠΎΠ½ΠΈ ΠΏΡΠ΅ΠΊΡΠ°ΡΡΡΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²ΠΎΠ·Π΄ΡΡ Π°.
ΠΠΎΠ»Π΅Π±Π°Π½ΠΈΡΠΌΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°ΡΡ Π΄Π°ΠΆΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π³ΠΈΡΠΈ, ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅ΡΡΡ ΡΡΠΆΠ΅Π»ΠΎΠ°ΡΠ»Π΅Ρ Π²Π²Π΅ΡΡ , Π° Π·Π°ΡΠ΅ΠΌ ΠΎΠΏΡΡΠΊΠ°Π΅Ρ Π² Π½ΠΈΠ·. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΈΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡ ΠΊ Π³ΠΈΡΠ΅ ΡΠΈΠ»Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎ. ΠΠΈΡΡ Π±ΡΠ΄Π΅Ρ ΠΊΠΎΠ»Π΅Π±Π°ΡΡΡΡ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° ΠΊ Π½Π΅ΠΌΡ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΈΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ ΡΡΠ° ΡΠΈΠ»Π°.
ΠΠΎΠ»Π΅Π±Π°Π½ΠΈΡ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΡΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ β ΡΡΠΎ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΠΌΡΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ΅Π»ΠΎΠΌ Π² ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅.
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° β ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠ΅ΠΊ (ΡΠ΅Π»), Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π°Π½Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ.
ΠΠ°ΠΊΠΈΠΌΠΈ Π±ΡΠ²Π°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ?
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π² ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ Π²ΡΠ΄Π΅Π»ΡΡΡ Π΄Π²Π° Π²ΠΈΠ΄Π° ΡΠΈΠ»:
Π‘Π²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ
Π‘Π²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ β ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ ΡΠΈΠ» ΠΏΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΡΡΠ° ΡΠΈΡΡΠ΅ΠΌΠ° Π²ΡΠ²Π΅Π΄Π΅Π½Π° ΠΈΠ· ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
ΠΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° β ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
Π‘Π²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π² ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΌΠΎΠ³ΡΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ Π΄Π²ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ:
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ:
ΠΡΠΈΠΌΠ΅ΡΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ»ΡΠΆΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ β ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°, ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½Π°Ρ Π½Π° Π½Π΅Π²Π΅ΡΠΎΠΌΠΎΠΉ Π½Π΅ΡΠ°ΡΡΡΠΆΠΈΠΌΠΎΠΉ Π½ΠΈΡΠΈ. Π Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. ΠΡΠΎ ΠΈΠ΄Π΅Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, ΠΏΡΠΈΠΌΠ΅ΡΠΎΠΌ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ»ΡΠΆΠΈΡ ΡΡΠΆΠ΅Π»ΡΠΉ ΡΠ°ΡΠΈΠΊ, ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½ΡΠΉ Π½Π° Π΄Π»ΠΈΠ½Π½ΠΎΠΉ Π½ΠΈΡΠΈ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ ΡΠ°ΡΠΈΠΊΠ° ΠΈ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½ΠΈΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅ΡΡ.
Π ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° Π²Ρ ΠΎΠ΄ΡΡ:
Π ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ (ΡΠΎΡΠΊΠ° Π) ΡΠ°ΡΠΈΠΊ Π²ΠΈΡΠΈΡ Π½Π° Π½ΠΈΡΠΈ ΠΈ ΠΏΠΎΠΊΠΎΠΈΡΡΡ. ΠΡΠ»ΠΈ Π΅Π³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΡΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π΄ΠΎ ΡΠΎΡΠΊΠΈ Π ΠΈ ΠΎΡΠΏΡΡΡΠΈΡΡ, ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ ΡΠ°ΡΠΈΠΊ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΡΡ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊ ΡΡΠΎΠΌΡ ΠΌΠΎΠΌΠ΅Π½ΡΡ ΡΠ°ΡΠΈΠΊ ΠΎΠ±ΡΠ΅ΡΠ΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ, ΠΎΠ½ Π½Π΅ ΡΠΌΠΎΠΆΠ΅Ρ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡΡ ΠΈ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΡΡ ΠΊ ΡΠΎΡΠΊΠ΅ Π. ΠΠ°ΡΠ΅ΠΌ ΠΎΠ½ ΡΠ½ΠΎΠ²Π° Π²Π΅ΡΠ½Π΅ΡΡΡ Π² ΡΠΎΡΠΊΡ Π ΡΠ΅ΡΠ΅Π· ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π² ΡΠΎΡΠΊΠ΅ Π. Π¨Π°ΡΠΈΠΊ Π±ΡΠ΄Π΅Ρ ΠΊΠΎΠ»Π΅Π±Π°ΡΡΡΡ, ΠΏΠΎΠΊΠ° Π½Π΅ Π·Π°ΡΡΡ Π½ΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²ΠΎΠ·Π΄ΡΡ Π°.
ΠΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ
ΠΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ β ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠ΅Π» ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½ΠΈΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΡ ΡΡ ΡΠΈΠ».
ΠΡΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ»ΡΠΆΠ°Ρ:
ΠΠ°ΡΡΡ Π°ΡΡΠΈΠ΅ ΠΈ Π½Π΅Π·Π°ΡΡΡ Π°ΡΡΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ
ΠΠ°ΡΡΡ Π°ΡΡΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ β ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ Π·Π°ΡΡΡ Π°ΡΡ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
ΠΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π·Π°ΡΡΡ Π°ΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ», ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΡΡΡΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π’Π°ΠΊ, ΡΠ°ΡΠΈΠΊ Π² ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΠ΅ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π΅Ρ ΠΊΠΎΠ»Π΅Π±Π°ΡΡΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΡΠ΅Π½ΠΈΡ. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ ΠΈ ΠΊΠ°ΡΠ΅Π»ΠΈ ΠΏΠ΅ΡΠ΅ΡΡΠ°ΡΡ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π·Π° ΡΡΠ΅Ρ ΡΠΈΠ»Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²ΠΎΠ·Π΄ΡΡ Π°.
ΠΡΠ΅ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ Π·Π°ΡΡΡ Π°ΡΡΠΈΠΌΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²ΡΠ΅Π³Π΄Π° ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Ρ.
ΠΠ΅Π·Π°ΡΡΡ Π°ΡΡΠΈΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΠΌΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ (Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ). Π’Π°ΠΊ, Π²Π΅ΡΠΊΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°ΡΠΊΠ°ΡΠΈΠ²Π°ΡΡΡΡ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° Π΄ΡΠ΅Ρ Π²Π΅ΡΠ΅Ρ. ΠΠΎΠ³Π΄Π° ΠΎΠ½ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½Π΅Ρ Π΄ΡΡΡ, ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π²Π΅ΡΠΊΠΈ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ Π·Π°ΡΡΡ Π½ΡΡ. ΠΠ³ΠΎΠ»ΠΊΠ° ΡΠ²Π΅ΠΉΠ½ΠΎΠΉ ΠΌΠ°ΡΠΈΠ½ΠΊΠΈ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° ΡΠ²Π΅Ρ Π²ΡΠ°ΡΠ°Π΅Ρ ΡΡΡΠΊΡ ΠΏΡΠΈΠ²ΠΎΠ΄Π°. ΠΠΎΠ³Π΄Π° ΠΎΠ½Π° ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½Π΅Ρ ΡΡΠΎ Π΄Π΅Π»Π°ΡΡ, ΠΈΠ³ΠΎΠ»ΠΊΠ° ΡΡΠ°Π·Ρ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ.
ΠΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΠΎΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠ΅Π»Π° ΠΏΠΎΠ» Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ ΠΈΠ»ΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠ°ΡΠΈΠΊΠ°, ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° Π½ΠΈΡΠΈ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ ΠΡΡΡΠΎΠ½Π°.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π³ΠΎΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ» ΡΠΏΡΡΠ³ΠΎΡΡΠΈ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠΈΠΊΠ°, Π²ΡΠ·Π²Π°Π½Π½ΠΎΠ΅ ΡΠΈΠ»ΠΎΠΉ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ, Π²ΠΎΠ·Π½ΠΈΠΊΡΠ΅ΠΉ ΠΏΡΠΈ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠΈ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΡΠΆΠΈΠ½Ρ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΡ .
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ II Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°ΡΡΡ ΡΠ΅Π»Π° Π½Π° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ ΡΠ°Π²Π½ΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Π²ΡΠ΅Ρ ΡΠΈΠ» ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΡΡ ΠΊ ΡΠ΅Π»Ρ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΈΠ»Π° ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅ΠΆΠΈΠΌΠΎ ΠΌΠ°Π»Π°, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ Π² ΡΡΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠΈΠ»Π° β ΡΠΈΠ»Π° ΡΠΏΡΡΠ³ΠΎΡΡΠΈ. Π£ΡΡΠ΅ΠΌ, ΡΡΠΎ ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ, ΠΈ Π²ΡΠ±Π΅ΡΠ΅ΠΌ ΠΎΠ΄Π½ΠΎΠΌΠ΅ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΡ . Π’ΠΎΠ³Π΄Π°:
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΠΊΠ°, ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΈΠ»Π° ΡΠΏΡΡΠ³ΠΎΡΡΠΈ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° ΠΈΠ· ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ (ΡΠΎΡΠΊΠΈ Π). Π‘ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅ x ΡΠ°ΡΠΈΠΊΠ°, ΠΏΡΠΈΡΠ΅ΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΈΠ»Ρ ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·Π½ΡΠ΅ Π·Π½Π°ΠΊΠΈ. ΠΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠ΅ΠΌ, ΡΡΠΎ ΡΠΈΠ»Π° ΡΠΏΡΡΠ³ΠΎΡΡΠΈ Π²ΡΠ΅Π³Π΄Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΠΊ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π² ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ. ΠΡΡΡΠ΄Π° Π΄Π΅Π»Π°Π΅ΠΌ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΡΠΈΠ»Π° ΡΠΏΡΡΠ³ΠΎΡΡΠΈ ΡΠ°Π²Π½Π°:
Π³Π΄Π΅ k β ΠΆΠ΅ΡΡΠΊΠΎΡΡΡ ΠΏΡΡΠΆΠΈΠ½Ρ.
Π’ΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΊΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ
ΠΡΠΈΠΌΠ΅Ρ β1. ΠΡΡΠ· ΠΌΠ°ΡΡΠΎΠΉ 0,1 ΠΊΠ³ ΠΏΡΠΈΠΊΡΠ΅ΠΏΠΈΠ»ΠΈ ΠΊ ΠΏΡΡΠΆΠΈΠ½Π΅ ΡΠΊΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ½Π°ΠΌΠΎΠΌΠ΅ΡΡΠ° ΠΆΠ΅ΡΡΠΊΠΎΡΡΡΡ 40 Π/ΠΌ. Π Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΡΠΆΠΈΠ½Π° Π½Π΅ Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π°. ΠΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ Π³ΡΡΠ· ΠΎΡΠΏΡΡΠΊΠ°ΡΡ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. Π§Π΅ΠΌΡ ΡΠ°Π²Π½Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π³ΡΡΠ·Π°?
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π³ΡΡΠ· Π΄ΠΎΡΡΠΈΠ³Π½Π΅Ρ ΠΏΡΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌ Π΅Π³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΈ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ β Π² Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ. Π£ΡΡΠ΅ΠΌ, ΡΡΠΎ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π²Π½ΠΈΠ· ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ. ΠΠΎ Π² ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π½Π° Π½Π΅Π³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ»Π° ΡΠΏΡΡΠ³ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π² ΠΏΡΡΠΆΠΈΠ½Π΅ ΠΈ Π½Π°ΡΠ°ΡΡΠ°Π΅Ρ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° Π½Π΅ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΡΠ°Π²Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΈΠ»Π΅ ΡΡΠΆΠ΅ΡΡΠΈ. ΠΡΠΈΠΌΠ΅Π½ΠΈΠ² III Π·Π°ΠΊΠΎΠ½ ΠΡΡΡΠΎΠ½Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ:
β£ β£ β£ β F Ρ Ρ ΠΆ β£ β£ β£ = β£ β£ β£ β F Ρ ΠΏ Ρ β£ β£ β£
Π³Π΄Π΅ y m a x β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π³ΡΡΠ·Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π±ΡΠ΄Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ. ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΠ· ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠΈ:
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. ΠΡΡΡΠ΄Π°:
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½Π°:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°
ΠΠΈΠΆΠ΅ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ. ΠΡΠ»ΠΈ ΠΌΡ Π²ΡΠ²Π΅Π΄Π΅ΠΌ ΠΈΠ· ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΡΠ°ΡΠΈΠΊ ΠΈ ΠΎΡΠΏΡΡΡΠΈΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ½Π΅Ρ Π΄Π²Π΅ ΡΠΈΠ»Ρ:
ΠΡΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ ΡΠ°ΡΠΈΠΊΠ° ΡΠ°ΠΊΠΆΠ΅ Π±ΡΠ΄Π΅Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΡΠΈΠ»Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²ΠΎΠ·Π΄ΡΡ Π°. ΠΠΎ ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° ΠΎΡΠ΅Π½Ρ ΠΌΠ°Π»Π°, ΠΌΡ Π±ΡΠ΄Π΅ΠΌ Π΅Ρ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅Π³Π°ΡΡ.
Π§ΡΠΎΠ±Ρ ΠΎΠΏΠΈΡΠ°ΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, ΡΠ΄ΠΎΠ±Π½ΠΎ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° Π΄Π²Π΅ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΠ΅:
ΠΡΠΈΡΠ΅ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° β F Ο Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π½ΠΈΡΠΈ, Π° β F n β Π²Π΄ΠΎΠ»Ρ Π½Π΅Π΅.
ΠΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° β F Ο ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° Π½ΠΈΡΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ (ΡΠΎΡΠΊΠΈ Π) Π½Π° ΡΠ³ΠΎΠ» Ξ±. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΎΠ½Π° ΡΠ°Π²Π½Π°:
ΠΠ½Π°ΠΊ Β«βΒ» ΠΌΡ Π·Π΄Π΅ΡΡ ΠΏΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ ΠΏΠΎ ΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅, ΡΡΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ β F Ο ΠΈ Ξ± ΠΈΠΌΠ΅ΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ Π·Π½Π°ΠΊΠΈ. ΠΠ΅Π΄Ρ Π΅ΡΠ»ΠΈ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΡΡ ΡΠ°ΡΠΈΠΊ Π½Π° ΡΠ³ΠΎΠ» Ξ±>0, ΡΠΎ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ°Ρ β F Ο Π±ΡΠ΄Π΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ ΠΏΡΡΠ°ΡΡΡΡ Π²Π΅ΡΠ½ΡΡΡ ΡΠ°ΡΠΈΠΊ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π Π΅Π΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π±ΡΠ΄Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ. ΠΡΠ»ΠΈ ΠΆΠ΅ ΡΠ°ΡΠΈΠΊ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΡΡ Π½Π° ΡΠ³ΠΎΠ» Ξ± β F Ο Π±ΡΠ΄Π΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° Π² ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΅Π΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ.
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΌΠ°ΡΡΡ ΡΠ°ΡΠΈΠΊΠ° m ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅! Π§ΡΠΎΠ±Ρ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π³ΡΠ°Π΄ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ, Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π³ΡΠ°Π΄ΡΡΡ Π½Π° ΡΠΈΡΠ»ΠΎ Ο ΠΈ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π½Π° 180. Π ΠΏΡΠΈΠΌΠ΅ΡΡ 2 ΠΎ = 2β3,14/180 ΡΠ°Π΄., ΠΈΠ»ΠΈ 2 ΠΎ = 0,035 ΡΠ°Π΄.
ΠΡΠΈ ΠΌΠ°Π»ΠΎΠΌ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΈ ΡΠ°ΠΊΠΆΠ΅ Π΄ΡΠ³Ρ ΠΠ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠΈΠ½ΡΡΡ Π·Π° Π΄Π»ΠΈΠ½Ρ ΠΎΡΡΠ΅Π·ΠΊΠ° OA, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΏΡΠΈΠΌΠ΅ΠΌ Π·Π° s. Π’ΠΎΠ³Π΄Π° ΡΠ³ΠΎΠ» Ξ± Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° (ΠΎΡΡΠ΅Π·ΠΊΠ° s) ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ (Π΄Π»ΠΈΠ½Π΅ Π½ΠΈΡΠΈ l):
ΠΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ ΠΎΠΆΠ΅ Π½Π° ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ. Π ΠΎΠ½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅.
ΠΡΠΈ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡΡ Π½Π° ΠΌΠ°Π»ΡΠΉ ΡΠ³ΠΎΠ» ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π΄Π»ΠΈΠ½Ρ Π½ΠΈΡΠΈ, Π½ΡΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ ΡΠ³ΠΎΠ» Ξ± Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ :
Π’ΠΎΠ³Π΄Π° Π΄Π»ΠΈΠ½Π° Π½ΠΈΡΠΈ ΡΠ°Π²Π½Π°:
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. ΠΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ A, ΠΈΠ½ΠΎΠ³Π΄Π° β xmax. ΠΠ΄ΠΈΠ½ΠΈΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ β ΠΌΠ΅ΡΡ (ΠΌ).
ΠΠ΅ΡΠΈΠΎΠ΄ β Π²ΡΠ΅ΠΌΡ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. ΠΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ T. ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ β ΡΠ΅ΠΊΡΠ½Π΄Π° (Ρ).
ΠΠ΅ΡΠΈΠΎΠ΄ ΠΈ ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²ΡΠ·Π°Π½Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ, Π·Π½Π°Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ N Π·Π° Π²ΡΠ΅ΠΌΡ t:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ°ΡΡΠΎΡΠ° β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ Π² Π²ΠΈΠ΄Π΅:
ΠΡΠΈΠΌΠ΅Ρ β3. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π³ΡΡΠ·Π°, Π΅ΡΠ»ΠΈ ΡΡΠΌΠΌΠ°ΡΠ½ΡΠΉ ΠΏΡΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΠ½ ΠΏΡΠΎΡΠ΅Π» Π·Π° 2 ΡΠ΅ΠΊΡΠ½Π΄Ρ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ, ΡΠΎΡΡΠ°Π²ΠΈΠ» 1 ΠΌ. ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π²Π½Π° 10 ΡΠΌ.
ΠΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π³ΡΡΠ· ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, ΡΠ°Π²Π½ΠΎΠ΅ 4 Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°ΠΌ. ΠΠΎΡΠΌΠΎΡΡΠΈΡΠ΅ Π½Π° ΡΠΈΡΡΠ½ΠΎΠΊ. ΠΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ 2. Π§ΡΠΎΠ±Ρ ΡΠΎΠ²Π΅ΡΡΠΈΡΡ ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅, ΡΠ½Π°ΡΠ°Π»Π° Π³ΡΡΠ· ΠΎΡΠ²ΠΎΠ΄ΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ 1. ΠΠΎΠ³Π΄Π° Π΅Π³ΠΎ ΠΎΡΠΏΡΡΠΊΠ°ΡΡ, ΠΎΠ½ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΡΡΡ 1β2 ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. ΠΡΠΎΡ ΠΏΡΡΡ ΡΠ°Π²Π΅Π½ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠΠ°ΡΠ΅ΠΌ ΠΎΠ½ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΄ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ 3. Π Π² ΡΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠ½ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ 2β3, ΡΠ°Π²Π½ΠΎΠ΅ Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. Π§ΡΠΎΠ±Ρ Π²Π΅ΡΠ½ΡΡΡΡΡ Π² ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ (ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ 1), Π½ΡΠΆΠ½ΠΎ ΡΠ½ΠΎΠ²Π° ΠΏΡΠΎΠ΄Π΅Π»Π°ΡΡ ΠΏΡΡΡ Π² ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ: ΡΠ½Π°ΡΠ°Π»Π° 3β2, Π·Π°ΡΠ΅ΠΌ 2β1.
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π²Π½ΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ ΠΊ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅, ΠΏΠΎΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° 4:
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΌΡ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ ΡΡΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΎΠ²Π΅ΡΡΠ°Π»ΠΈΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 2 ΡΠ΅ΠΊΡΠ½Π΄, Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΎΡΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π ΡΠ°Π±Π»ΠΈΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠ°ΡΠΈΠΊΠ°, ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π³ΠΎΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΡ , Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ°ΠΊΠΎΠ² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°ΡΠΈΠΊΠ°?
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ· ΡΠ°Π±Π»ΠΈΡΡ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π²Π½Π° 15 ΠΌΠΌ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ β15 ΠΌΠΌ. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡΠΌΠΈ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΡΠ°ΡΠΈΠΊΠ° ΡΠ°Π²Π½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠΡΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠ°Π±Π»ΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π²ΡΠ΅ΠΌΡ 1 ΠΈ 3 ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ°Π·Π½ΠΈΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ β ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄Π°. Π’ΠΎΠ³Π΄Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΉ ΡΠ°Π·Π½ΠΈΡΠ΅ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
T = 2 ( t 2 β t 1 ) = 2 ( 3 β 1 ) = 4 ( Ρ )
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
ΠΠ°ΡΡΠΈΠ²Π½ΡΠΉ Π³ΡΡΠ·, ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½ΡΠΉ ΠΊ ΠΏΠΎΡΠΎΠ»ΠΊΡ Π½Π° ΠΏΡΡΠΆΠΈΠ½Π΅, ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. ΠΡΡΠΆΠΈΠ½Π° Π²ΡΡ Π²ΡΠ΅ΠΌΡ ΠΎΡΡΠ°Π΅ΡΡΡ ΡΠ°ΡΡΡΠ½ΡΡΠΎΠΉ. ΠΠ°ΠΊ Π²Π΅Π΄ΡΡ ΡΠ΅Π±Ρ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ, ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π³ΡΡΠ·Π°, Π΅Π³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π² ΠΏΠΎΠ»Π΅ ΡΡΠΆΠ΅ΡΡΠΈ, ΠΊΠΎΠ³Π΄Π° Π³ΡΡΠ· Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π²Π²Π΅ΡΡ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ?
ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ:
1) | ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ |
2) | ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ |
3) | Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ |
ΠΠ°ΠΏΠΈΡΠΈΡΠ΅ Π² ΡΠ°Π±Π»ΠΈΡΡ Π²ΡΠ±ΡΠ°Π½Π½ΡΠ΅ ΡΠΈΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. Π¦ΠΈΡΡΡ Π² ΠΎΡΠ²Π΅ΡΠ΅ ΠΌΠΎΠ³ΡΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π³Π΄Π΅ k β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΆΠ΅ΡΡΠΊΠΎΡΡΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ, Π° x β Π΅Π΅ ΡΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° x Π±ΡΠ»Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π² Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ. ΠΠΎΠ³Π΄Π° ΠΏΡΡΠΆΠΈΠ½Π° Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΡΠΆΠΈΠΌΠ°ΡΡΡΡ, ΠΎΠ½Π° ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° x ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ, ΡΠΎ ΠΏΡΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΡΡΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ ΡΠΎΠΆΠ΅ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
ΠΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ΅Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°ΡΠΈΠΊΠ° Π±ΡΠ»Π° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. ΠΠΎ ΠΊ ΡΡΠΎΠΌΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ Π΄ΠΎΡΡΠΈΠ³Π»Π° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°. ΠΠ½Π° Π½Π°ΡΠΈΠ½Π°Π΅Ρ Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°ΡΡ ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ , ΡΠΆΠΈΠΌΠ°ΡΡΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°ΡΡΠ΅Ρ. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ, ΡΠΎ ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΡΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° ΡΠΎΠΆΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ.
ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ΅Π» Π² ΠΏΠΎΠ»Π΅ ΡΡΠΆΠ΅ΡΡΠΈ Π·Π΅ΠΌΠ»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ°ΡΡΠ° ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° β ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ Π΄ΠΎ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Π·Π΅ΠΌΠ»ΠΈ. ΠΠΎΠ³Π΄Π° ΠΏΡΡΠΆΠΈΠ½Π° ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅Ρ ΡΠ°ΡΠΈΠΊ, ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌ ΠΈ Π·Π΅ΠΌΠ»Π΅ΠΉ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ, ΡΠΎ ΠΏΡΠΈ Π΅Π³ΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° ΡΠΎΠΆΠ΅ ΡΠ°ΡΡΠ΅Ρ.
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
Π ΡΠ°Π±Π»ΠΈΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠ°ΡΠΈΠΊΠ°, ΠΏΡΠΈΠΊΡΠ΅ΠΏΠ»ΡΠ½Π½ΠΎΠ³ΠΎ ΠΊ ΠΏΡΡΠΆΠΈΠ½Π΅ ΠΈ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π³ΠΎΡΡ Π²Π΄ΠΎΠ»Ρ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ ΠΡ , Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ· ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠ³ΠΎ Π½ΠΈΠΆΠ΅ ΡΠΏΠΈΡΠΊΠ° Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π΄Π²Π° ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΈ ΡΠΊΠ°ΠΆΠΈΡΠ΅ ΠΈΡ Π½ΠΎΠΌΠ΅ΡΠ°.
Π) ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 1,0 Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°.
Π) ΠΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°ΡΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ 4,0 Ρ.
Π) ΠΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 2,0 Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½Π°.
Π) ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°ΡΠΈΠΊΠ° ΡΠ°Π²Π½Π° 30 ΠΌΠΌ.
Π) ΠΠΎΠ»Π½Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, ΡΠΎΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΠ· ΡΠ°ΡΠΈΠΊΠ° ΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ, Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 3,0 Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½Π°.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Β«ΠΒ», ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 1,0 Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°. ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½Π° ΠΎΡΠΊΠ»ΠΎΠ½ΡΠ΅ΡΡΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π½Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΠ· ΡΠ°Π±Π»ΠΈΡΡ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ 15 ΠΌΠΌ, ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΌΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ). Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Β«ΠΒ» β Π²Π΅ΡΠ½ΠΎ.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Β«ΠΒ», ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°ΡΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ 4,0 Ρ. ΠΠ΄ΠΈΠ½ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π² ΡΠ΅Π±Ρ 4 ΡΠ°Π·Ρ. Π ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠ°Π·Ρ ΡΠ°ΡΠΈΠΊ Π½Π° ΠΏΡΡΠΆΠΈΠ½Π΅ ΠΏΡΠΎΠ΄Π΅Π»ΡΠ²Π°Π΅Ρ ΠΏΡΡΡ, ΡΠ°Π²Π½ΡΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΌΠ½ΠΎΠΆΠΈΠ² Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°Π·Ρ Π½Π° 4. Π ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t = 0 Ρ, ΡΠ°ΡΠΈΠΊ Π½Π°Ρ ΠΎΠ΄ΠΈΠ»ΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. ΠΠ΅ΡΠ²ΡΠΉ ΡΠ°Π· ΠΎΠ½ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΡΡ Π½Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ (15 ΠΌΠΌ) Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t = 1,0 Ρ. ΠΠ½Π°ΡΠΈΡ, ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π²Π΅Π½ 1β4 = 4 Ρ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Β«ΠΒ» β Π²Π΅ΡΠ½ΠΎ.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Β«ΠΒ», ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 2,0 Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½Π°. Π ΡΡΠΎΡ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠ°Π±Π»ΠΈΡΡ, ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π ΡΡΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°ΡΠΈΠΊΠ° Π²ΡΠ΅Π³Π΄Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°. ΠΠΎΡΡΠΎΠΌΡ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ, ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π±ΡΡΡ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Β«ΠΒ» β Π½Π΅Π²Π΅ΡΠ½ΠΎ.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Β«ΠΒ», Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°ΡΠΈΠΊΠ° ΡΠ°Π²Π½Π° 30 ΠΌΠΌ. ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β Π΅ΡΡΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π΄ΠΎ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΊΠ°. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ΠΎ ΡΠ°Π²Π½ΠΎ 15 ΠΌΠΌ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Β«ΠΒ» β Π½Π΅Π²Π΅ΡΠ½ΠΎ.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Β«ΠΒ», ΠΏΠΎΠ»Π½Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, ΡΠΎΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΠ· ΡΠ°ΡΠΈΠΊΠ° ΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ, Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 3,0 Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½Π°. ΠΠΎΠ»Π½Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ β ΡΡΠΎ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΉ. Π ΠΏΡΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ ΡΠΈΠ» ΡΡΠ΅Π½ΠΈΡ ΠΎΠ½Π° ΠΎΡΡΠ°Π΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ. ΠΠ½Π° Π»ΠΈΡΡ ΠΏΡΠ΅Π²ΡΠ°ΡΠ°Π΅ΡΡΡ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² Π΄ΡΡΠ³ΡΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Β«ΠΒ» β Π½Π΅Π²Π΅ΡΠ½ΠΎ.
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ