катаболизм какой уровень организации
Метаболизм клетки. Энергетический обмен и фотосинтез. Реакции матричного синтеза.
Понятие метаболизма
Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.
Выделяют две составные части метаболизма — катаболизм и анаболизм.
Составные части метаболизма
Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.
Роль ФТФ в метаболизме
Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.
АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.
В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H2O → АДФ + H3PO4 + Q1
АДФ + H2O → АМФ + H3PO4 + Q2
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.
Энергетический обмен
Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.
Классификация организмов по отношению к свободному кислороду
Группа | Характеристика | Организмы |
Аэробы (облигатные аэробы) | Организмы, способные жить только в кислородной среде | Животные, растения, некоторые бактерии и грибы |
Анаэробы (облигатные анаэробы) | Организмы, неспособные жить в кислородной среде | Некоторые бактерии |
Факультативные формы (факультативные анаэробы) | Организмы, способные жить как в присутствии кислорода, так и без него | Некоторые бактерии и грибы |
У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.
Этапы катаболизма
Пластический обмен
Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).
Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Фотосинтез
Фотосинтез — синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:
Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:
Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:
Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием.
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
2Н + + 4е – + НАДФ + → НАДФ·Н2.
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО2 связывается с водородом из НАДФ·Н2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.
Сравнительная характеристика фотосинтеза и дыхания эукариот
Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген — участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом. Совокупность генов клеточного ядра представляет собой генотип, совокупность генов гаплоидного набора хромосом — гено́м, совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) — плазмон.
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.
Транскрипция (от лат. transcriptio — переписывание) — синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.
Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон) начинается промотором — участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором — участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон — это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.
В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.
Гены эукариот состоят из чередующихся кодирующих (экзонов) и некодирующих (интронов) участков.
После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.
Процессинг — процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг — удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз. Трансляция (от лат. translatio — перевод) — синтез полипептидной цепи с использованием мРНК в роли матрицы.
В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.
Этапы трансляции
Реакции матричного синтеза. К реакциям матричного синтеза относятся
Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов. Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах — гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.
Катаболизм какой уровень организации
Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни; отличаются друг от друга сложностью организации системы (клетка устроена проще по сравнению с многоклеточным организмом или популяцией).
Уровень жизни – это форма и способ ее существования (вирус существует в виде молекулы ДНК или РНК, заключенной в белковую оболочку – форма существования вируса. Однако свойства живой системы вирус проявляет, только попав в клетку другого организма, где он размножается – способ его существования).
Биологи-ческая система
Компоненты, образующие систему
Основные процессы
Отдельные биополимеры (ДНК, РНК, белки, липиды, углеводы и др.);
На этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.
Комплексы молекул химических соединений и органоиды клетки
Синтез специфических органических веществ; регуляция химических реакций; деление клеток; вовлечение химических элементов Земли и энергии Солнца в биосистемы
Клетки и межклеточное вещество
Обмен веществ; раздражимость
Ткани разных типов
Пищеварение; газообмен; транспорт веществ; движение и др.
Обмен веществ; раздражимость; размножение; онтогенез. Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение гармоничного соответствия организма его среде обитания
Группы родственных особей, объединенных определенным генофондом и специфическим взаимо-действием с окружающей средой
Генетическое своеобразие; взаимодействие между особями и популяциями; накопление элементарных эволюционных преобразований; выработка адаптации к меняющимся условиям среды
Популяции разных видов; факторы среды; пространство с комплексом условий среды обитания
Биологический круговорот веществ и поток энергии, поддерживающие жизнь; подвижное равновесие между живым населением и абиотической средой; обеспечение живого населения условиями обитания и ресурсами
Биогеоценозы и антропогенное воздействие
Активное взаимодействие живого и неживого (косного) вещества планеты; биологический глобальный круговорот; активное биогеохимическое участие человека во всех процессах биосферы
Уровни организации живой материи (размерная схема)
Уровни организации структуры тела на современном этапе эволюции
ТЕМАТИЧЕСКИЕ ЗАДАНИЯ
Часть А
А1. Уровень, на котором изучаются процессы биогенной миграции атомов, называется:
1) биогеоценотический
2) биосферный
3) популяционно-видовой
4) молекулярно-генетический
А2. На популяционно-видовом уровне изучают:
1) мутации генов
2) взаимосвязи организмов одного вида
3) системы органов
4) процессы обмена веществ в организме
А3. Поддержание относительного постоянства химического состава организма называется
1) метаболизм
2) ассимиляция
3) гомеостаз
4) адаптация
А4. Возникновение мутаций связано с таким свойством организма, как
1) наследственность
2) изменчивость
3) раздражимость
4) самовоспроизведение
А5. Какая из перечисленных биологических систем образует наиболее высокий уровень жизни?
1) клетка амебы
2) вирус оспы
3) стадо оленей
4) природный заповедник
А6. Отдергивание руки от горячего предмета – это пример
1) раздражимости
2) способности к адаптациям
3) наследования признаков от родителей
4) саморегуляции
А7. Фотосинтез, биосинтез белков – это примеры
1) пластического обмена веществ
2) энергетического обмена веществ
3) питания и дыхания
4) гомеостаза
А8. Какой из терминов является синонимом понятия «обмен веществ»?
1) анаболизм
2) катаболизм
3) ассимиляция
4) метаболизм
Часть В
В1. Выберите процессы, изучаемые на молекулярно-генетическом уровне жизни:
1) репликация ДНК
2) наследование болезни Дауна
3) ферментативные реакции
4) строение митохондрий
5) структура клеточной мембраны
6) кровообращение
В2. Соотнесите характер адаптации организмов с условиями, к которым они вырабатывались
Часть С
С1. Какие приспособления растений обеспечивают им размножение и расселение?
С2. Что общего и в чем заключаются различия между разными уровнями организации жизни?
Уровни организации живой материи: таблица
Уровни организации живой материи
Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерархии живого.
Выделяют следующие уровни организации живой материи:
1.Молекулярный (молекулярно-генетический). На этом уровне живая материя организуется в сложные высокомолекулярные органические соединения, такие, как белки, нуклеиновые кислоты и др.
2.Субклеточный (надмолекулярный). На этом уровне живая материя организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные структуры.
3.Клеточный. На этом уровне живая материя представлена клетками.
Клетка является элементарной структурной и функциональной единицей живого.
4.Органно-тканевой. На этом уровне живая материя организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организма, выполняющая определенную функцию или функции.
5.Организменный (онтогенетический). На этом уровне живая материя представлена организмами.
Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.
6.Популяционно-видовой. На этом уровне живая материя организуется в популяции. Популяция – совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида.
Вид – совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).
7.Биоценотический.
На этом уровне живая материя образует биоценозы. Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.
8.Биогеоценотический. На этом уровне живая материя формирует биогеоценозы. Биогеоценоз – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).
9.Биосферный. На этом уровне живая материя формирует биосферу.
Биосфера – оболочка Земли, преобразованная деятельностью живых организмов.
Предсказать свойства каждого следующего уровня на основе свойств предыдущих уровней невозможно так же, как нельзя предсказать свойства воды, исходя из свойств кислорода и водорода. Такое явление носит название эмерджментность, то есть наличие у системы особых, качественно новых свойств, не присущих сумме свойств ее отдельных элементов. С другой стороны, знание особенностей отдельных составляющих системы значительно облегчает ее изучение.
Свойства живых систем
М. В. Волькенштейном предложено следующее определение жизни: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот».
Однако до сих пор общепризнанного определения понятия «жизнь» не существует.
Но можно выделитьпризнаки (свойства) живой материи, отличающие ее от неживой.
1.Определенный химический состав. Живые организмы состоят из тех же химических элементов, что и объекты неживой природы, однако соотношение этих элементов различно. Макроэлементами живых существ являются углерод С, кислород О, азот N и водород Н (в сумме около 98% состава живых организмов), а также кальций Са, калий К, магний Мg, фосфор Р, сера S, натрий Nа, хлор Сl, железо Fе (в сумме около 1–2%).
Химические элементы, которые входят в состав живых организмов и при этом выполняют биологические функции, называютсябиогенными. Даже те из них, которые содержатся в клетках в ничтожно малых количествах (марганец Mn, кобальт Со, цинк Zn, медь Сu, бор В, иод I, фтор F и др.; их суммарное содержание в живом веществе составляет порядка 0,1 %), ничем не могут быть заменены и совершенно необходимы для жизни.
Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке – вода (75–85 % от сырой массы живых организмов) и минеральные соли (1–1,5 %), важнейшие органические вещества – углеводы (0,2–2,0 %), липиды (1–5 %), белки (10–15 %) и нуклеиновые кислоты (1–2 %).
2.Клеточное строение. Все живые организмы, кроме вирусов, имеют клеточное строение.
3.Обмен веществ (метаболизм) и энергозависимость. Живые организмы являются открытыми системами, они зависят от поступления в них из внешней среды веществ и энергии.
Живые существа способны использовать два вида энергии – световую и химическую, и поэтому признаку делятся на две группы: фототрофы (организмы, использующие для биосинтеза световую энергию – растения, цианобактерии) и хемотрофы (организмы, использующие для биосинтеза энергию химических реакций окисления неорганических соединений – нитрифицирующие бактерии, железобактерии, серобактерии и др.).
Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма – обмена веществ.
Выделяют две составные части метаболизма – катаболизм и анаболизм.
Катаболизм (энергетический обмен, диссимиляция) – совокупность реакций, приводящих к образованию простых веществ из более сложных (гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и др. веществ). Катаболические реакции идут обычно с высвобождением энергии.
Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме – аденозинтрифосфата (АТФ). Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Катаболизм делится на несколько этапов:
1) подготовительный этап (расщепление сложных углеводов до простых – глюкозы, жиров до жирных кислот и глицерина, белков до аминокислот);
2) бескислородный этап дыхания – гликолиз, в результате глюкоза расщепляется до ПВК (пировиноградной кислоты); в итоге образуется 2АТФ (из 1 моль глюкозы).
У анаэробов или у аэробов при его недостатке кислорода протекает брожение.
3) кислородный этап – дыхание – полное окисление ПВК осуществляется в митохондриях эукариот в присутствии кислорода и включает две стадии: цепь последовательных реакций – цикл Кребса (цикл трикарбоновых кислот) и цикл переноса электронов; в итоге образуется 36АТФ (из 1 моль глюкозы).
Анаболизм (пластический обмен, ассимиляция) – понятие, противоположное катаболизму: совокупность реакций синтеза сложных веществ из более простых (образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза).
Для протекания анаболических реакций требуются затраты энергии. Наиболее важным метаболическим процессом пластического обмена является фотосинтез (фотоавтотрофия) – синтез органических соединений из неорганических за счет энергии света.
Процессы пластического и энергетического обмена неразрывно связаны между собой.
Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.
4.Саморегуляция (гомеостаз). Живые организмы обладают способностью поддерживать гомеостаз – постоянство своего химического состава и интенсивность обменных процессов.
5.Раздражимость. Живые организмы проявляют раздражимость, то есть способность отвечать на определенные внешние воздействия специфическими реакциями.
Реакция многоклеточных животных на раздражение осуществлявляется с участием нервной системы – рефлекс. Реакция на раздражение у простейших животных называется – таксис, выражающийся в изменении характера и направления движения. По отношению к раздражителю выделяют фототаксис – движение под воздействием источника света, хемотаксис – перемещение организма в зависимости от концентрации химических веществ и др.
Основные уровни организации живой природы
Выделяют положительный или отрицательный таксис в зависимости от того, действует раздражитель на организм позитивно или негативно.
Реакция на раздражение у растений – тропиз,выражающийся в определенный характер роста. Так, гелиотропизм (от греч. «Гелиос» – Солнце) означает рост наземных частей растений (стебля, листьев) по направлению к Солнцу, а геотропизм (от греч.
«Гея» – Земля) – рост подземных частей (корней) по направлению к центру Земли.
6.Наследственность. Живые организмы способны передавать неизменными признаки и свойства из поколения в поколение с помощью носителей информации – молекул ДНК и РНК.
7.Изменчивость. Живые организмы способны приобретать новые признаки и свойства.
Изменчивость создает разнообразный исходный материал для естественного отбора, т.е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях, что в свою очередь приводит к появлению новых форм жизни, новых видов организмов.
8.Самовоспроизведение (размножение). Живые организмы способны размножаться – воспроизводить себе подобных.
Благодаря размножению осуществляются смена и преемственность поколений. Принято различать два основных типа размножения:
— Бесполое размножение (участвует одна особь) наиболее широко распространено среди прокариот, грибов и растений, но встречаются и у различных видов животных.
Основные формы бесполого размножения: деление, спорообразование, почкование, фрагментация, вегетативное размножение и клонирование (клон – генетическая копия одной особи).
— Половое размножение (обычно осуществляется двумя особями) характерно для подавляющего большинства живых организмов и имеет огромное биол.
значение. Вся совокупность явлений, связанных с половым размножением, складывается из 4 основных процессов: образование половых клеток – гамет (гаметогенез); оплодотворение (сингамия – слияние гамет и их ядер) и образование зиготы; эмбиогенез (дробление зиготы и формирование зародыша); дальнейший рост и развитие организма в послезародышевый (постэмбриональный) период.
Биологическое значение полового размножения заключается не только в самовоспроизведении особей, но и в обеспечении биологического разнообразия видов, их адаптивных возможностей и эволюционных перспектив. Это позволяет считать половое размножение биологически, более прогрессивным, чем бесполое. Половое размножение осуществляется с помощью специализированных половых клеток – гамет, имеющих вдвое меньшим числом хромосом, чем соматические клетки.
Женские гаметы называют яйцеклетками, мужские – сперматозоидами. Для некоторых групп организмов характерны так называемые нерегулярные типы полового размножения: партеногенез (развитие зародыша из неоплодотворенной яйцеклетки – пчелы, муравьи, термиты, тля, дафнии), апомиксис (развитие зародыша из клеток зародышевого мешка или неоплодотворенной яйцеклетки у цветковых растений) и др.
9.Индивидуальное развитие (онтогенез). Каждой особи свойственен онтогенез – индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления).
Развитие сопровождается ростом.
10.Эволюционное развитие (филогенез). Живой материи в целом свойственен филогенез – историческое развитие жизни на Земле с момента ее появления до настоящего времени.
11.Адаптации. Живые организмы способны адаптироваться, то есть приспосабливаться к условиям окружающей среды.
12.Ритмичность. Живые организмы проявляют ритмичность жизнедеятельности (суточную, сезонную и др.).
13.Целостность и дискретность. С одной стороны, вся живая материя целостна, определенным образом организована и подчиняется общим законам; с другой стороны, любая биологическая система состоит из обособленных, хотя и взаимосвязанных элементов.
Любой организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т.е. обособленных или отграниченных в пространстве, но, тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство.
14.Иерархичность. Начиная от биополимеров (белков и нуклеиновых кислот) и заканчивая биосферой в целом, все живое находится в определенной соподчиненности.
Функционирование биологических систем на менее сложном уровне делает возможным существование более сложного уровня.
15.Негэнтропия. Согласно II закону термодинамики все процессы, самопроизвольно протекающие в изолированных системах, развиваются в направлении понижения упорядоченности, т.е. возрастания энтропии. В то же время по мере роста и развития живые организмы, наоборот, усложняются, что, казалось бы, противоречит второму началу.
На самом деле это мнимое противоречие. Дело в том, что живые организмы представляют собой открытые системы. Организмы питаются, поглощая при этом энергию извне, выделяют в окружающую среду тепло и продукты жизнедеятельности, наконец, погибают и разлагаются.
По образному выражению Э. Шредингера, «организм питается отрицательной энтропией». Совершенствуясь и усложняясь, организмы вносят хаос в окружающий их мир.
Кроме перечисленных, иногда выделяют физиологические свойства, присущие живому – рост, развитие, выделение и т.д.
Живая материя на Земле представляет собой сложную систему, структуру которой определяет ряд иерархически связанных уровней — от органических молекул до биосферы, — возникших эволюционным путем.
Первый и самый низший уровень организации живой материи — это молекулярный.
На нем выделяют биополимеры, которые не встречаются (или почти не встречаются) в неживой природе, и для которых характерны определенные химические реакции, а также образование комплексов молекул. На молекулярном уровне жизни осуществляются такие процессы как редупликация ДНК, синтез молекул АТФ, катализ и др. Это элементарные явления этого уровня, а элементарными объектами на нем являются биологические молекулы.
Следующий уровень — клеточный. Элементарной единицей на нем выступает клетка.
Для нее характерно проявление почти всех свойств живого: обмен веществ и поток энергии, гомеостаз, размножение и др. Клетка лежит в основе живой материи на Земле, вне ее жизни нет.
Такие уровни организации живой материи как тканевой и органный часто объединяют в один — тканево-органный. Этот уровень характерен только для многоклеточных организмов. Элементарными единицами здесь являются ткани и органы. Ткань — это группа клеток, сходного строения и функциональности.
Она образуется в процессе онтогенеза многоклеточного организма путем дифференцировки клеток. Орган обычно состоит из нескольких разных тканей, объединенных между собой для выполнения единой функции. Органы, в свою очередь, объединяются в системы органов. Элементарными проявлениями жизни на тканево-органном уровне являются различные процессы жизнедеятельности, обеспечиваемые соответствующими тканями, органами, системами органов.
У одноклеточных организмов (например, инфузорий) есть специальные клеточные органоиды, аналогичные по функциям органам многоклеточных.
Так сократительная вакуоль по-сути представляет собой выделительную систему, пищеварительная вакуоль — пищеварительную и т. п.
Организм, особь или индивидуум — это элементарная единица организменного уровня организации жизни. На этом уровне наиболее ярко проявляются такие свойства живой материи как рост и развитие (онтогенез), размножение, раздражимость. Для одноклеточных форм жизни организменный и клеточный уровни совпадают. Многоклеточный организм представляет собой комплекс систем органов, каждая из которых выполняет свои функции, но во взаимосвязи с другими системами.
Уровни организации живой материи. Методы биологии
Организмы одного вида живут в природе не изолированно друг от друга. Обычно они объединены в популяции — совокупности особей одного вида, населяющих одно местообитание. Вид обычно состоит из множества популяций. Таким образом выделяют популяционно-видовой уровень организации живой материи. Именно в популяциях происходит половое размножение, накопление генетического разнообразия и элементарные эволюционные процессы, приводящие в конечном итоге к видообразованию.
Т. е. эволюция жизни на Земле возможна только на надорганизменном уровне.
На биогеоценотическом (экосистемном) уровне происходит объединение популяций разных видов, но обитающих на одной территории. Эти популяции взаимосвязаны пищевыми цепями, потоком энергии, созданием друг для друга условий обитания.
Биогеоценоз — элементарная единица этого уровня, для которого характерны такие явления как поток энергии и круговорот веществ.
Все биоценозы Земли составляют последний наивысший уровень организации жизни — биосферный. Элементарная единица — биосфера (причем только одна единственная). На этом уровне происходят глобальные круговороты веществ и превращения энергии, объединяющие все экосистемы в единое целое.
Уровни организации живой материи
В настоящее время выделяют несколько уровней организации живой материи.
Любая живая система проявляется на уровне функционирования биополимеров, построенных из мономеров. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.
Существует три типа биологических полимеров:
Не менее важными для организма органическими соединениями являются также липиды.
Клетка является структурной и функциональной единицей живых организмов, она представляет собой саморегулирующуюся, самовоспроизводящуюся живую систему.
Свободноживущих неклеточных форм жизни на Земле не существует.
Ткань представляет собой совокупность сходных по строению клеток и межклеточного вещества, объединенных выполнением общей функции.
Органы — это структурно-функциональные объединения нескольких типов тканей. Например, кожа человека как орган включает эпителий и соединительную ткань, которые вместе выполняют целый ряд функций, среди которых наиболее значительная — защитная, т.е. функция отграничения внутренней среды организма от окружающей среды.
Многоклеточный организм представляет собой целостную систему органов, специализированных для выполнения различных функций.
Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка.
В этой системе осуществляются простейшие, эволюционные преобразования.
Биогеоценоз — совокупность организмов разных видов и факторов среды их обитания, объединенных обменом веществ и энергии в единый природный комплекс.
Биосфера — система высшего порядка, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.
Клетка представляет собой обособленную, наименьшую по размерам структуру, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях окружающей среды поддерживать эти свойства в самой себе, а также передавать их в ряду поколений.
Клетка составляет основу строения, жизнедеятельности и развития всех живых форм — одноклеточных, многоклеточных и даже неклеточных.
В природе ей принадлежит роль элементарной структурной, функциональной и генетической единицы.
Благодаря заложенным в ней механизмам клетка обеспечивает обмен веществ, использование биологической информации, размножение, свойства наследственности и изменчивости, обусловливая тем самым присущие органическому миру качества единства и разнообразия.
В организации живого все указанные свойства проявляются на всех уровнях. Но каждый из них имеет и свои особенности. Проявления жизни чрезвычайно разнообразны.
Структурные уровни организации живой материи отражают критерий масштабности мира живой природы. Вслед за известным генетиком И..В.Тимофеевым-Ресовским выделим четыре уровня организации живой материи: молекулярно-генетический, онтогенетический, популяционно-видовой и биогеоценозный.
При этом критериями должны быть элементарные структуры и явления, которые проявляются на данном уровне. Деление живой материи на уровни весьма условно, но отражает системный подход в изучении природы. Уровни организации жизни.
Для живой природы характерны разные уровни организации ее структур, между которыми существует сложное соподчинение.
Жизнь на каждом уровне изучают соответствующие разделы биологии: молекулярная биология, цитология, генетика, анатомия, физиология, эволюционное учение, экология.
Уровни организации жизни
Шесть основных структурных уровней жизни:
Общая биология изучает законы, характерные для всех уровней организации жизни.
1. Самый нижний, наиболее древний уровень жизни — это уровень молекулярных структур. Здесь проходит граница между живым и неживым.
Выше находится клеточный уровень жизни. И клетка, и заключенные в ней молекулярные структуры в главных чертах строения у всех организмов сходны.
Было показано, что живое вещество обладает способностью к саморегуляции, поддерживающей жизнедеятельность и препятствующей неуправляемому распаду структур и веществ и рассеянию энергии, тогда как мертвое органическое вещество подвержено самопроизвольному распаду.
В то же время организму присущи свойства, отличные от свойств составляющих его частей.
2. Клеточный уровень. Особь, индивид— элементарная неделимая единица жизни на Земле. Элементарными структурами являются клетки. Клетка—структурная и функциональная единица, а также единица размножения и развития всех организмов.
Клеточный, субклеточный подуровни отражают процессы специализации клеток и внутриклеточных внедрений. Процессы в самой клетке происходят в специализиро ванных органоидах. Живая клетка — это сложная высоко-упорядоченная система. Установлено, что в клетке непрерывно совершается синтез крупных молекул из мелких и простых (анаболические реакции, на которые тратится энергия) и их распад (катаболические реакции).
Совокупность их в клетке есть процесс метаболизма. Особи, изучаемые на этом уровне, не существуют абсолютно изолированно в природе, они объединены на более высоком уровне организации — на уровне популяции.
3 Онтогенетический уровень — следующий уровень организации жизни, на котором изучается организм как целостная сложная саморегулирующая система, способная самостоятельно существовать.
Внутри него выделяют организменный и органно-тканевый подуровни, отражающие признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живой материи.
Онтогенез — процесс реализации наследственной информации, закодированной в зародышевой клетке. Проверяется согласованность ее с работой управляющих систем особи в пространстве ивремени жизни на Земле. Термин онтогенез ввел Э.Геккель (1866 г.) для рассмотрения структурной и функциональной организации отдельных организмов.
4. Популяционно-видовой — следующий уровень организации жизни на Земле — образуется, когда относящиеся к одному виду особи сходны по структуре, имеют одинаковый кариотип (греч.
karyon «орех, ядро ореха»; здесь — ядро клетки) и единое происхождение, способны к скрещиванию и дают плодовитое потомство. Популяция — совокупность особей одного вида, занимающих одну территорию и обменивающихся генетическим материалом.
Популяция — часть вида, т.е. все составляющие ее особи принадлежат к одному виду. Она более однородна по составу, поскольку между ее особями происходит непрерывный обмен генами.
Популяция—элементарная единица в современной теории эволюции. Элементарное явление — мутация. На популяцию могут оказывать давление и вызывать ее изменение — мутационный процесс, популяционные волны, изоляция и естественный отбор.
При нарушении изоляции между различными популяциями происходит скрещивание или обмен генами. Этот уровень важен при определении численности популяций и эволюции живого.
Вид — генетически замкнутая система. Поскольку между видами не может быть скрещивания, то возникшая мутация не выйдет за пределы вида. Организмы, обитающие на изолированных островах, образуют подвид, иногда подвид образуют группы популяций.
Число видов на Земле пытались подсчитать многие.
Генетик Т. Добржанский насчитал (1953 г.) 1 млн. видов животных и 265,5 тыс. видов растений, таким образом, животный мир более разнообразен (по современным оценкам, видов животных — от 1,5 до 2 млн, видов растений — около 500 тыс.). Но среди животных 75% приходится на долю членистоногих, но не все виды еще открыты. Позвоночных — менее 4%, из них 1/2 — виды рыб, а млекопитающих — еще на порядок меньше.
Из 3500 видов млекопитающих 2500 — грызуны. В растительном мире около 150 тыс. видов покрытосеменных (цветковых) растений, развившихся из голосеменных (семенных папоротников или близких к ним растений).- 5. Биогеоценозный уровень — следующий уровень структуры живой материи.
Популяции разных видов, населяющие участок земной поверхности или водоем с определенными природно-климатическими условиями (среда обитания, или геоценоз), и связанное с ними сообщество растений, животных и микроорганизмов образуют неразделимый взаимообусловленный (с динамичными обратными связями) комплекс — биоценоз. Это понятие ввел В.Н.Сукачев (1940 г.). Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов. Биогеоценоз автономен и саморегулируем и поэтому является элементарной единицей этого уровня и служит средой для входящих в него популяций.
Биомы — крупнейшие наземные сообщества, тесно связанные с определенными природными зонами и поясами.
Растения и животные существуют в тесной зависимости от окружающей неживой природы и от других организмов, испытывают на себе их воздействие и приспосабливаются к ним. В процессе исторического развития и естественного отбора на Земле под влиянием конкретных природных факторов сложились различные группы организмов — сообщества, взаимодействующие со своей средой обитания. Вместе с конкретными участками поверхности, занимаемыми биоценозами, и прилегающей атмосферой они называются экосистемой.
По определению А.Тенсли, экосистема — взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществом и энергией. Изучением взаимоотношений совместно живущих организмов и их зависимости от внешней среды занимается отрасль биологии — экология. Этот термин предложил в 1866 г. немецкий биолог-эволюционист Э.Геккель, сторонник и пропагандист учения Дарвина.
Совокупность биогеоценозов составляет земную биосферу, они связаны круговоротом вещества и энергии.
В этом круговороте жизнь выступает ведущим фактором (В.И.Вернадский, В.Н.Сукачев). И биогеоценоз — открытая система, имеющая энергетические «входы» и «выходы», которые связывают соседние биогеоценозы.