какую роль выполняет ирнк в клетке
Биологическая роль ДНК и РНК
ДНК – самая важная молекула для всех живых существ, даже растений. Она определяет наследование, кодирования белков и содержит инструкции для развития и размножения всего организма и каждой его клетки в отдельности. Достижения генетики позволили раскрыть информацию, содержащуюся в ДНК, и использовать ее с пользой для людей. Теперь каждый может сделать конфиденциальный ДНК-тест, чтобы получить ответы на самые сложные вопросы. Давайте узнаем больше, как работает и какова биологическая роль ДНК.
Какие функции выполняет ДНК в организме
ДНК несет ответственность за рост и поддержание жизни, что выражается в выполнении этой молекулой трех функций.
Таким образом, на что влияет ДНК в организме? Размеры ее влияния огромны – эта молекула содержит инструкции, необходимые организму для развития, жизни и размножения. Эти инструкции находятся внутри каждой клетки и передаются от обоих родителей их детям.
ДНК помогает синтезу РНК
Матричная РНК, или мРНК, – это одноцепочечная промежуточная молекула, которая переносит генетическую информацию от ДНК в ядре к цитоплазме, где она служит шаблоном в образовании полипептидов. мРНК синтезируется в ядре с использованием нуклеотидной последовательности ДНК в качестве матрицы.
Процесс создания мРНК из ДНК называется транскрипцией и происходит в ядре. мРНК направляет синтез белков, который происходит в цитоплазме. мРНК, образованная в ядре, транспортируется из ядра в цитоплазму, где она присоединяется к рибосомам. Белки собираются на рибосомах с использованием нуклеотидной последовательности мРНК в качестве инструкции. Таким образом, мРНК несет «сообщение» от ядра к цитоплазме. Сообщение закодировано в нуклеотидной последовательности мРНК, которая комплементарна нуклеотидной последовательности ДНК, служившей матрицей для синтеза мРНК. Создание белков из мРНК называется трансляцией. В этом заключается биологическая роль РНК.
Молекулярные болезни и связь молекул ДНК
Молекулярное, или генетическое, заболевание – это любое заболевание, вызванное сбоем на молекулярном уровне, то есть в молекуле ДНК. Генетическая аномалия может варьироваться от незначительной до крупной – от одной мутации в единственном основании в ДНК до грубой хромосомной аномалии, включающей изменение количества или набора хромосом. Мутации могут происходить либо случайно, либо из-за воздействия окружающей среды.
Существует ряд различных типов генетических нарушений обмена, в том числе:
Однако далеко не все мутации в генах – это приговор. Гены могут включаться и выключаться при определенных условиях среды. Поэтому даже имея предрасположенность к тому или иному заболеванию, для предупреждения их развития человек может соблюдать назначенный врачом план питания и тренировок, отказываясь от вредных привычек.
Строение и действие гена РНК
ДНК – дезоксирибонуклеиновая кислота, а РНК – рибонуклеиновая кислота. Хотя и ДНК, и РНК несут генетическую информацию и имеют связь между собой, между ними довольно много различий. Что общего между ДНК и РНК и в чем отличия?
Функции ДНК и РНК в организме разные. ДНК отвечает за хранение и передачу генетической информации, в то время как РНК непосредственно кодирует аминокислоты и выступает в качестве посредника между ДНК и рибосомами для производства белков.
Преимущества проведения анализов в лаборатории Медикал Геномикс Украина
Лаборатория Медикал Геномикс Украина – крупнейшая в стране английская лаборатория генетических исследований. Здесь вы можете пройти любой генетический тест, в том числе для установления родственных отношений, а также медицинские, генеалогические исследования.
Мы работаем быстро и качественно, гарантируя конфиденциальность и высокую точность результата, поскольку используем передовое оборудование, а каждый тест проверяется двумя независимыми группами ученых.
Позвоните нам, если у вас есть вопросы – наши консультанты ответят на них и помогут оформить заказ. Сдать биоматериалы можно в одном из наших 78 пунктов приема образцов по всей Украине или заказав набор для домашнего забора материала.
Что такое биосинтез белка в клетке
В статье мы дадим определение биосинтезу и рассмотрим основные этапы синтеза белков. Разберёмся, чем трансляция отличается от транскрипции.
В клетках непрерывно идут процессы обмена веществ — процессы синтеза и распада веществ. Каждая клетка синтезирует необходимые ей вещества. Этот процесс называется биосинтезом.
Биосинтез — это процесс создания сложных органических веществ в ходе биохимических реакций, протекающих с помощью ферментов. Биосинтез необходим для выживания — без него клетка умрёт.
Одним из важнейших процессов биосинтеза в клетке является процесс биосинтеза белков, который включает в себя особые реакции, встречающиеся только в живой клетке — это реакции матричного синтеза. Матричный синтез — это синтез новых молекул в соответствии с планом, заложенным в других уже существующих молекулах.
Синтез белка в клетке протекает при участии специальных органелл — рибосом. Это немембранные органеллы, состоящие из рРНК и рибосомальных белков.
Последовательность аминокислот в каждом белке определяется последовательностью нуклеотидов в гене — участке ДНК, кодирующем именно этот белок. Соответствие между последовательностью аминокислот в белке и последовательностью нуклеотидов в кодирующих его ДНК и иРНК определяется универсальным правилом — генетическим кодом.
Информация о белке может быть записана в нуклеиновой кислоте только одним способом — в виде последовательности нуклеотидов. ДНК построена из 4 видов нуклеотидов: аденина (А), тимина (Т), гуанина (Г), цитозина (Ц), а белки — из 20 видов аминокислот. Таким образом, возникает проблема перевода четырёхбуквенной записи информации в ДНК в двадцатибуквенную запись белков. Генетический код — соотношения нуклеотидных последовательностей и аминокислот, на основе которых осуществляется такой перевод.
Процесс синтеза белка в клетке можно разделить на два этапа: транскрипция и трансляция.
Транскрипция — первый этап биосинтеза белка
Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК.
Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.
Специальный фермент находит ген и раскручивает участок двойной спирали ДНК. Фермент перемещается вдоль цепи ДНК и строит цепь информационной РНК в соответствии с принципом комплементарности. По мере движения фермента растущая цепь РНК матрицы отходит от молекулы, а двойная цепь ДНК восстанавливается. Когда фермент достигает конца копирования участка, то есть доходит до участка, называемого стоп-кодоном, молекула РНК отделяется от матрицы, то есть от молекулы ДНК. Таким образом, транскрипция — это первый этап биосинтеза белка. На этом этапе происходит считывание информации путём синтеза информационной РНК.
Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.
После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК. На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков). После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.
Транскрипция пошагово:
Проверьте себя: помните ли вы принцип комплементарности? Молекула ДНК состоит из двух спирально закрученных цепей. Цепи в молекуле ДНК противоположно направлены. Остов цепей ДНК образован сахарофосфатными остатками, а азотистые основания одной цепи располагаются в строго определённом порядке напротив азотистых оснований другой — это и есть правило комплементарности.
Трансляция — второй этап биосинтеза белка
Трансляция — это перевод информации с языка нуклеотидов на язык аминокислот.
Что же происходит в клетке? Трансляция представляет собой непосредственно процесс построения белковой молекулы из аминокислот. Трансляция происходит в цитоплазме клетки. В трансляции участвуют рибосомы, ферменты и три вида РНК: иРНК, тРНК и рРНК. Главным поставщиком энергии при трансляции служит молекула АТФ — аденозинтрифосфорная кислота.
Во время трансляции нуклеотидные последовательности информационной РНК переводятся в последовательность аминокислот в молекуле полипептидной цепи. Этот процесс идёт в цитоплазме на рибосомах. Образовавшиеся информационные РНК выходят из ядра через поры и отправляются к рибосомам. Рибосомы — уникальный сборочный аппарат. Рибосома скользит по иРНК и выстраивает из определённых аминокислот длинную полимерную цепь белка. Аминокислоты доставляются к рибосомам с помощью транспортных РНК. Для каждой аминокислоты требуется своя транспортная РНК, которая имеет форму трилистника. У неё есть участок, к которому присоединяется аминокислота и другой триплетный антикодон, который связывается с комплементарным кодоном в молекуле иРНК.
Цепочка информационной РНК обеспечивает определённую последовательность аминокислот в цепочке молекулы белка. Время жизни информационной РНК колеблется от двух минут (как у некоторых бактерий) до нескольких дней (как, например, у высших млекопитающих). Затем информационная РНК разрушается под действием ферментов, а нуклеотиды используются для синтеза новой молекулы информационной РНК. Таким образом, клетка контролирует количество синтезируемых белков и их тип.
Трансляция пошагово:
По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!
Резюме
Теперь вы знаете, что биосинтез необходим для выживания — без него клетка умрёт. Процесс биосинтеза белков включает в себя особые реакции, встречающиеся только в живой клетке, — это реакции матричного синтеза.
Синтез белка состоит из двух этапов: транскрипции (образование информационной РНК по матрице ДНК, протекает в ядре клетки) и трансляции (эта стадия проходит в цитоплазме клетки на рибосомах). Эти этапы сменяют друг друга и состоят из последовательных процессов.
Биология. 11 класс
§ 8. Строение и функции РНК. АТФ
Строение и функции РНК. РНК, так же как и ДНК, представляет собой биополимер, построенный из нуклеотидов. Однако молекулы РНК имеют ряд особенностей. Вы знаете, что в состав нуклеотидов РНК вместо дезоксирибозы входит рибоза, а вместо тимина (Т) — урацил (У). Кроме того, молекулы РНК значительно короче ДНК и представлены одной полинуклеотидной цепью, а не двумя.
Лишь некоторые вирусы имеют двухцепочечные молекулы РНК, представляющие собой генетический материал этих неклеточных форм.
*Количество нуклеотидов в молекулах ДНК, как правило, исчисляется миллионами, в то время как полинуклеотидные цепи РНК обычно состоят из 75—3000 мономерных звеньев. Известно, что некоторые РНК могут включать десятки тысяч нуклеотидов, но это является не правилом, а исключением.*
Молекулы РНК могут принимать различную пространственную конфигурацию, прежде всего за счет образования водородных связей. Но, в отличие от ДНК, эти связи формируются не между двумя разными цепями, а между отдельными участками одной и той же цепи, комплементарными друг другу.
*Содержание ДНК в клетках организма сравнительно постоянно, а количество РНК сильно варьирует. Молекулы РНК обеспечивают синтез белков, поэтому наибольшее их содержание характерно для клеток, активно вырабатывающих белки. Это, например, секреторные клетки пищеварительных и эндокринных желез, синтезирующие ферменты и белковые гормоны, лейкоциты, продуцирующие антитела, и т. д.*
Существует несколько видов РНК, различающихся по строению молекул, содержанию в клетке и выполняемым функциям. Все виды РНК синтезируются на определенных участках одной из цепей ДНК. Такой синтез называется матричным, поскольку молекула ДНК является матрицей (т. е. образцом, моделью) для построения молекул РНК.
Рибосомные РНК (рРНК) составляют более 80 % всех РНК клетки. Молекулы рРНК соединяются с особыми белками и образуют рибосомы — органоиды, в которых происходит синтез белков из аминокислот.
*Молекулы рРНК составляют более 50 % массы рибосомы и имеют сложную объемную структуру. Бóльшую часть цепи рРНК составляют комплементарные участки. Они соединяются водородными связями и приобретают спиральную конфигурацию. Взаимодействуя с рибосомными белками, одна или несколько молекул рРНК компактно укладываются в пространстве. Так формируются субъединицы рибосом — структурные компоненты этих органоидов.
Установлено, что рРНК в составе рибосомы выполняют не только структурную функцию, но и каталитическую. В процессе синтеза белка они ускоряют образование пептидных связей между аминокислотами, т. е. действуют подобно ферментам. Такие молекулы РНК, обладающие каталитическим действием, были названы рибозимами (сокращение от «рибонуклеиновая кислота» и «энзим»). Кроме рРНК, известны и другие рибозимы. Они могут катализировать расщепление самих себя или других молекул РНК, а также соединять фрагменты РНК друг с другом.
До открытия рибозимов единственными биологическими катализаторами считались ферменты. За исследование каталитических свойств рибонуклеиновых кислот американские молекулярные биологи С. Олтмен и Т. Чек в 1989 г. были награждены Нобелевской премией.*
Транспортные РНК (тРНК) — самые маленькие из молекул РНК, участвующих в синтезе белков. В среднем они состоят из 80 нуклеотидов. тРНК связывают аминокислоты, доставляют их в рибосомы и обеспечивают правильное включение этих аминокислот в полипептидную цепь. Для каждой из 20 белокобразующих аминокислот существует как минимум одна особая разновидность тРНК, а для некоторых аминокислот — несколько. Содержание тРНК составляет около 15 % от общего количества клеточных РНК.
Все тРНК имеют сходное строение. Благодаря образованию внутримолекулярных водородных связей молекулы тРНК приобретают особую структуру, в которой комплементарно связанные участки чередуются с петлями (рис. 8.1). Такая пространственная конфигурация была названа клеверным листом.
*Как и любая другая полинуклеотидная цепь, молекула тРНК имеет 5′- и 3′-концы. У всех тРНК на 5′-конце находится гуаниловый нуклеотид, а 3′-конец завершается последовательностью ЦЦА. Присоединение аминокислоты происходит именно к 3′-концу молекулы тРНК, поэтому он называется акцепторным хвостом.*
Матричные, или информационные, РНК (мРНК, иРНК) наиболее разнообразны по строению и длине цепей. Молекулы мРНК содержат информацию о первичной структуре определенных белков. Во время синтеза белков в рибосомах они служат матрицами, определяющими порядок расположения аминокислот в белковых молекулах. Поэтому биосинтез белка, так же как и синтез РНК, относится к матричным процессам. Количество мРНК не превышает 3—5 % всех РНК, содержащихся в клетке.
*У ядерных организмов каждая молекула мРНК, как правило, содержит закодированную информацию о структуре одного белка. Для бактерий и вирусов характерны мРНК, кодирующие несколько разных белков.*
Функции рассмотренных видов РНК связаны с процессами синтеза белка. Следовательно, рРНК, тРНК и мРНК обеспечивают реализацию наследственной информации, хранящейся в молекулах ДНК.
Какую роль выполняет ирнк в клетке
Биосинтез белка в клетке
• какую роль играет АТФ в жизнедеятельности клетки;
Понятие о биосинтезе. Каждая живая клетка создаёт (синтезирует) вещества своего тела. Процессы образования органических веществ, происходящие в живых клетках с помощью ферментов и внутриклеточных структур, называют биосинтезом (греч. bios — «жизнь» и synthesis — «соединение»). Биосинтез всегда идёт с потреблением энергии. Так, биосинтез простых углеводов у зелёных растений протекает за счёт энергии света. Биосинтез белка осуществляется за счёт энергии, заключённой в химических связях АТФ.
Этапы синтеза белка в клетке. В биосинтезе молекул белка участвуют аминокислоты, многочисленные ферменты, рибосомы и разные типы РНК ( рРНК—рибосомная. тРНК — транспортная и иРНК — информационная. Биосинтез белка осуществляется в рибосомах.
Характер биосинтеза определяется наследственной информацией, закодированной в определённых участках ДНК хромосом — генах. Гены хранят и передают информацию об очерёдности аминокислот синтезируемого белка, иными словами, кодируют структуру белковой молекулы. Информация о каждой аминокислоте «записана» комбинацией из трёх нуклеотидов (триплетом, или кодоном). В этом состоит суть генетического кода: различные сочетания из трёх нуклеотидов кодируют определённые аминокислоты.
Генетический код универсален — он одинаков для всех живых организмов.
Молекулы информационной РНК (иРНК) переносят информацию с ДНК из ядра в цитоплазму клетки, где происходит «сборка» молекул белка. Схематически процесс биосинтеза белка можно представить так:
Процесс биосинтеза белка совершается в два этапа.
Образовавшаяся таким способом цепь иРНК оказывается точной копией определённого участка ДНК-матрицы. Принцип копирования генетической информации с ДНК на иРНК называют копированием, переписыванием или транскрипцией (от лат. transcription — «переписывание»).
Участок молекулы ДНК, несущий информацию о структуре одного белка, отграничивается от других участков. Существуют триплеты, которые «запускают» синтез полинуклеотидной цепочки, и триплеты, которые его прекращают, т. е. служат «знаками препинания».
Транскрипция — первый этап биосинтеза белка. На этом этапе происходит «списывание» генетической информации путём создания иРНК.
Второй этап биосинтеза. Все процессы «сборки» молекулы белка происходят в цитоплазме, где находятся аминокислоты, многочисленные транспортные РНК (тРНК), ферменты, катализирующие процесс биосинтеза, и АТФ, обеспечивающий его энергией Здесь из двух субъединиц образуются рибосомы и сюда из ядра поступает иРНК Образовавшаяся иРНК выходит из ядра в цитоплазму через поры в ядерной мембране. Связываясь с рибосомами, она служит матрицей, на которой происходит синтез белковых молекул.
Рибосома — уникальный «сборочный аппарат». Она перемещается по иРНК не плавно, а прерывисто, триплет за триплетом. В результате в строгом соответствии с последовательностью расположения нуклеотидов иРНК определённые аминокислоты объединяются на ней в длинную полимерную цепь белка. Порядок аминокислот в этой цепи соответствует генетической информации, скопированной («списанной») с определённого участка ДНК Синтез полипептидных цепей на матрице и PHК. происходящий в рибосомах, называют трансляцией (лат. translatio — «передача»).
Трансляция – построение полимерной молекулы белка из многочисленных мономеров – аминокислот на основе считывания генетической информации, заключенной в иРНК, второй этап биосинтеза
Аминокислоты доставляются к рибосомам с помощью тРНК. В клетке имеется столько же разных тРНК, сколько кодонов, шифрующих аминокислоты. В молекуле каждой тРНК содержится последовательность из трёх нуклеотидов, комплементарных нуклеотидам кодона в иРНК. Её называют антикодоном. Для каждой аминокислоты требуется определённая («своя») тРНК, антикодон которой соответствует определённому кодону иРНК. На соединение каждой аминокислоты с тРНК расходуется энергия одной молекулы АТФ.
Изменение последовательности нуклеотидов иРНК, произошедшее при её копировании с ДНК-матрицы, может привести к изменению последовательности аминокислот в белке. Такой белок приобретает новые свойства и может оказать значительное влияние на жизнедеятельность организма — как положительное, так и отрицательное.
После завершения синтеза полипептидная цепочка отделяется от матрицы — молекулы иРНК.
Обычно вдоль одной молекулы иРНК движется сразу несколько рибосом, при этом одновременно синтезируется несколько белковых молекул.
Молекула иРНК может использоваться для синтеза белков многократно, как и рибосома.
Срок жизни иРНК — от двух минут у бактерий до нескольких дней у высших организмов. В итоге ферменты разрушают иРНК до отдельных нуклеотидов, которые затем используются для синтеза новых иРНК. Расщепляя и синтезируя иРНК, клетка строго регулирует синтез белков, их тип и количество.
Какую роль выполняет ирнк в клетке
Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК
в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь — матричная):
Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.
Генетический код (иРНК)
основание
основание
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда; второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
Схема решения задачи включает:
1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смысловая):
2. Нуклеотидная последовательность антикодона 5ʹ-УГА-3ʹ (по условию третий триплет) соответствует кодону на иРНК 5ʹ-УЦА-3ʹ;
3. По таблице генетического кода этому кодону соответствует аминокислота сер, которую будет переносить данная тРНК.
1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
На ДНК с 3′ конца строится тРНК с 5′ — конца.
2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
3. По таблице генетического кода кодону 5′-УЦА-3′ соответствует аминокислота —Сер, которую будет переносить данная тРНК.
Пояснение к строению ДНК в условии:
Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК. Молекула ДНК спирально закручена вокруг своей оси. На один виток ДНК приходится приблизительно 10 пар оснований.
Смысловая цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию.
Транскрибируемая (антисмысловая) цепь по сути является копией смысловой цепи ДНК. Служит матрицей для синтеза иРНК (информацию о первичной структуре белка), тРНК, рРНК, регуляторной РНК.
Вставьте в текст «Биосинтез белка» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.
В результате пластического обмена в клетках синтезируются специфические для организма белки. Участок ДНК, в котором закодирована информация о структуре одного белка, называется ______(А). Биосинтез белков начинается
с синтеза ______(Б), а сама сборка происходит в цитоплазме при участии ______(В). Первый этап биосинтеза белка получил название _________(Г), а второй — трансляция.
7) комплекс Гольджи
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
В результате пластического обмена в клетках синтезируются специфические для организма белки. Участок ДНК, в котором закодирована информация о структуре одного белка, называется ген. Биосинтез белков начинается с синтеза иРНК, а сама сборка происходит в цитоплазме при участии рибосом. Первый этап биосинтеза белка получил название транскрипция, а второй — трансляция.
Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5′ концу в одной цепи соответствует 3′ конец другой цепи). Синтез нуклеиновых кислот начинается с 5′ конца. Рибосома движется по иРНК в направлении от 5′ к 3′ концу. Ретровирусы в качестве генетической информации имеют молекулу РНК. Проникая в клетку, они создают ДНК-копию своего генома. В клетку проникла вирусная РНК, фрагмент которой имеет следующую последовательность:
Определите последовательность фрагмента ДНК, который синтезируется на матрице данной РНК, и фрагмент полипептида, кодируемого этой ДНК, если известно, что матрицей для синтеза иРНК служит цепь ДНК, комплементарная исходной вирусной РНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.
Генетический код (иРНК от 5′ к 3′ концу)
основание
основание
1. Нуклеотидная последовательность участка ДНК:
2. Нуклеотидная последовательность иРНК:
3. По таблице генетического кода находим последовательность полипептида: асп-сер-гли-сер-цис
Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу в одной цепи соответствует 3’конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Ретровирус в качестве генома содержит молекулу РНК. При заражении клетки он создаёт ДНК-копию своего генома и встраивает её в геном клетки-мишени. Фрагмент генома ретровируса имеет следующую последовательность:
Определите последовательность фрагмента ДНК-копии, которая будет встроена в геном клетки-мишени. Определите последовательность фрагмента белка, синтезируемого на данном фрагменте ДНК-копии, если цепь, комплементарная исходной молекуле РНК, будет служить матрицей для синтеза иРНК. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.
Генетический код (иРНК от 5’ – к 3’ – концу)
основание
основание
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда; второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
Схема решения задачи включает:
1. По принципу комплементарности на основе вирусной РНК находим транскрибируемую цепь ДНК, на основе транскрибируемой цепи ДНК находим смысловую ДНК.
Последовательность фрагмента ДНК-копии, которая будет встроена в геном клетки-мишени:
5′-АЦГТАТГЦТАГАТГЦ-3′ (смысловая цепь)
3′-ТГЦАТАЦГАТЦТАЦГ-5′ (транскрибируемая цепь)
2. По принципу комплементарности на основе транскрибируемой цепи ДНК находим иРНК.
Нуклеотидная последовательность иРНК:
3. По таблице генетического кода определяем аминокислотную последовательность фрагмента белка:
1. Цепь ДНК-копии находится по принципу комплементарности (А=Т(У), Г=Ц). Из условия узнаём, что цепь, комплементарная исходной молекуле РНК, будет служить матрицей для синтеза иРНК, следовательно, это транскрибируемая цепь ДНК. Достраиваем нуклеотиды смысловой цепи.
(При наличии в ответе только одной цепи ДНК элемент 1 незасчитывается.)
Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя — транскрибируемая):
Генетический код (иРНК)
основание
основание
Схема решения задачи включает:
1) поскольку нижняя цепь ДНК транскрибируемая, по принципу комплементарности определяем последовательность иРНК:
2) аминокислота мет кодируется триплетом АУГ, следовательно, синтез белка начинается с 3-го нуклеотида А (с триплета АУГ) на иРНК, (т.е с третьего нуклеотида Т на транскрибируемой ДНК).
3) по таблице генетического кода находим последовательность белка: мет-лей-тре-про-тир-ала
Какова роль нуклеиновых кислот в биосинтезе белка?
1) В ДНК содержится информация о первичной структуре молекул белка.
2) Эта информация переписывается на молекулу и-РНК, которая переносит ее из ядра к рибосоме, т. е. и-РНК служит матрицей для сборки молекул белка.
3) Т-РНК присоединяют аминокислоты и доставляют их к месту синтеза белка — к рибосоме.
» и-РНК служит матрицей для сборки молекул белка» неверно, так как на рибосоме матричная-РНК, или рибосомальная, служит матрицей для сборки белка
Установите соответствие между признаками и видами нуклеиновых кислот.
ПРИЗНАКИ НУКЛЕИНОВЫХ КИСЛОТ | ВИДЫ НУКЛЕИНОВЫХ КИСЛОТ | |||||||||||||||||||||||||||||||
Второе основание | Третье основание | |||||||||||||||||||||||||||||||
У | Ц | А | Г | Второе основание | Третье основание | |||||||||||||||||||||||||||
У | Ц | А | Г | Второе основание | Третье основание | |||||||||||||||||||||||||||
У | Ц | А | Г | Второе основание | Третье основание | |||||||||||||||||||||||||||
У | Ц | А | Г | Второе основание | Третье основание | |||||||||||||||||||||||||||
У | Ц | А | Г |
Молекула нуклеиновой кислоты | Составная часть нуклеотида | Функция |
---|---|---|
А | дезоксирибоза | хранение и передача наследственной информации |
тРНК | Б | доставка аминокислот к месту синтеза белка |
иРНК | рибоза | В |
СПИСОК ТЕРМИНОВ И ПОНЯТИЙ:
2) построение тела рибосомы
3) перенос информации о первичной структуре белка
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Молекула нуклеиновой кислоты | Составная часть нуклеотида | Функция |
---|---|---|
А — ДНК | дезоксирибоза | хранение и передача наследственной информации |
тРНК | Б — урацил | доставка аминокислот к месту синтеза белка |
иРНК | рибоза | В — перенос информации о первичной структуре белка |
Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса биосинтеза белка в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) Процесс происходит при наличии ферментов.
2) Центральная роль в процессе принадлежит молекулам РНК.
3) Процесс сопровождается синтезом АТФ.
4) Мономерами для образования молекул служат аминокислоты.
5) Сборка молекул белков осуществляется в лизосомах.
РЕАЛИЗАЦИЯ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ В КЛЕТКЕ ЭУКАРИОТ (СИНТЕЗ БЕЛКА):
1) переписывание информации с ДНК на иРНК (транскрипция) в ядре;
2) иРНК перемещается из ядра в цитоплазму и 5’-концом связывается с малой субъединицей рибосомы (позже, с присоединением к иРНК первой тРНК присоединяется и большая субъединица рибосомы);
3) разные тРНК связываются (активация аминокислот) со свободными аминокислотами цитоплазмы (затрачивается энергия АТФ) и перемещают их к месту синтеза белка (к рибосоме);
4) антикодон тРНК связывается с соответствующим (комплементарным) кодоном иРНК;
5) аминокислота, прикрепленная к тРНК, связывается пептидной связью с растущей полипептидной цепью;
6) освободившаяся от аминокислоты тРНК выходит из рибосомы;
7) рибосома перемещается на один кодон вдоль иРНК;
8) стадии с 4 по 7 повторяются несколько раз пока не будет синтезирован белок;
9) синтезированный белок освобождается из рибосомы.
(1) Процесс происходит при наличии ферментов — биосинтез белка;
(2) Центральная роль в процессе принадлежит молекулам РНК — биосинтез белка;
(3) Процесс сопровождается синтезом АТФ — признак выпадает (биосинтез белка сопровождается расщеплением АТФ);
(4) Мономерами для образования молекул служат аминокислоты — биосинтез белка;
(5) Сборка молекул белков осуществляется в лизосомах — признак выпадает (ложное утверждение, сборка молекул белка происходит не в лизосомах, а на рибосомах).
Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).
Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
Генетический код (иРНК)
основание
основание
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда; второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
Схема решения задачи включает:
1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смысловая):
2. Нуклеотидная последовательность антикодона УГА (по условию третий триплет) соответствует кодону на иРНК УЦА;
1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
На ДНК с 3′ конца строится тРНК с 5′ — конца.
2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
Пояснение к строению ДНК в условии:
Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК. Молекула ДНК спирально закручена вокруг своей оси. На один виток ДНК приходится приблизительно 10 пар оснований.
Смысловая цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию.
Транскрибируемая (антисмысловая) цепь по сути является копией смысловой цепи ДНК. Служит матрицей для синтеза иРНК (информацию о первичной структуре белка), тРНК, рРНК, регуляторной РНК.
Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: 5′ − ЦГААГГТГАЦААТГТ −3′ 3′ − ГЦТТЦЦАЦТГТТАЦА −5′ Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
Генетический код (иРНК)
основание
основание
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда; второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
По принципу комплементарности на основе матричной цепи ДНК определяем последовательность участка тРНК: 5′ − ЦГААГГУГАЦААУГУ − 3′;
2) нуклеотидная последовательность антикодона УГА (третий триплет) соответствует кодону на иРНК УЦА;
3) по таблице генетического кода этому кодону соответствует аминокислота Сер, которую будет переносить данная тРНК.
Пояснение к строению ДНК в условии:
Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК.
Смысловая (кодирующая) цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию.
Транскрибируемая (антисмысловая/матричная) цепь по сути является копией смысловой цепи ДНК. Служит матрицей для синтеза иРНК (информацию о первичной структуре белка), тРНК, рРНК, регуляторной РНК.
В данном типе заданий ключевыми словами являются: «все виды РНК синтезируются на ДНК-матрице».
Т. е. нам необходимо найти именно тРНК — молекулы, состоящие из 70—90 нуклеотидов, которые свернуты определенным образом и напоминают по форме клеверный лист и переносят аминокислоты в биосинтезе белка. Синтезируются они на ДНК в определенных участках, которые видны под микроскопом в виде ядрышек.
Поэтому, сначала на ДНК по принципу комплементарности определяем участок тРНК (так же как мы это делали при определении иРНК).
Затем находим тот триплет, который является центральным, именно его по принципу комплементарности переводим в иРНК и только теперь по таблице генетического кода находим аминокислоту.
Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: 5′ − ГТГТАТГААТГЦАТА −3′ 3′ − ЦАЦАТАЦТТАЦГТАТ −5′
Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
Генетический код (иРНК)
основание
основание
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда; второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
1) По принципу комплементарности на основе матричной цепи ДНК определяем последовательность участка тРНК: 5′ − ГУГ-УАУ-ГАА-УГЦ-АУА − 3′.
2) нуклеотидная последовательность антикодона ГАА (третий триплет) соответствует кодону на иРНК УУЦ;
3) по таблице генетического кода этому кодону соответствует аминокислота Фен, которую будет переносить данная тРНК.
Пояснение к строению ДНК в условии:
Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК.
Смысловая (кодирующая) цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию.
Транскрибируемая (антисмысловая/матричная) цепь по сути является копией смысловой цепи ДНК. Служит матрицей для синтеза иРНК (информацию о первичной структуре белка), тРНК, рРНК, регуляторной РНК.
В данном типе заданий ключевыми словами являются: «все виды РНК синтезируются на ДНК-матрице».
Т. е. нам необходимо найти именно тРНК — молекулы, состоящие из 70—90 нуклеотидов, которые свернуты определенным образом и напоминают по форме клеверный лист и переносят аминокислоты в биосинтезе белка. Синтезируются они на ДНК в определенных участках, которые видны под микроскопом в виде ядрышек.
Поэтому, сначала на ДНК по принципу комплементарности определяем участок тРНК (так же как мы это делали при определении иРНК).
Затем находим тот триплет, который является центральным, именно его по принципу комплементарности переводим в иРНК и только теперь по таблице генетического кода находим аминокислоту.
- какую роль выполняет институт адвокатуры
- какую роль выполняет источник тока