какую основную измерительную задачу решают при помощи спектрометров
Спектрометр
Спектрометр (лат. spectrum от лат. spectare — смотреть и метр от др.-греч. μέτρον — мера, измеритель) — оптический прибор, используемый в спектроскопических исследованиях для накопления спектра, его количественной обработки и последующего анализа с помощью различных аналитических методов. Анализируемый спектр получается путем регистрации флуоресценции после воздействия на исследуемое вещество каким-либо излучением (рентгеновским или лазерным излучением, искровым воздействием и др.). Обычно измеряемыми величинами являются интенсивность и энергия (длина волны, частота) излучения, но могут регистрироваться и другие характеристики, например, поляризационное состояние. Термин «спектрометр» применяется к приборам, работающим в широком диапазоне длин волн: от гамма до инфракрасного диапазона.
Содержание
Методы регистрации спектров
Для регистрации спектра могут использоваться полупроводниковые детекторы, сцинтилляционные счётчики, либо детекторы на базе ПЗС линейки или ПЗС матрицы. Спектрометры могут различаться по спектральному диапазону, спектральной чувствительности, оптической схеме. При интерпретации спектров в большинстве случаев производится сравнение полученного спектра со спектром вещества известного состава. Ранние спектроскопы представляли собой простые призмы с градуировкой, обозначающей длины волн света, в современных приборах также используется дифракционная решётка.
Типы спектрометров
Различают следующие типы спектрометров:
История
Предком спектрометра является спектроскоп. Спектроскоп был изобретён Йозефом Фраунгофером в начале XIX века. В нём свет прошедший через щели и коллимирующие линзы превращался в тонкий пучок параллельных лучей. Затем свет проходил через призму, которая за счёт дисперсии расщепляла пучок на спектр (разные длины волн отклоняются на разные углы). Изображение наблюдалось через трубку со шкалой, накладываемой на спектральное изображение, позволяя таким образом проводить измерения.
С изобретением фотографической пленки был создан более точный прибор: спектрограф. Работая по такому же принципу, он имел фотокамеру вместо наблюдательной трубки. В середине двадцатого века камера сменилась трубкой электронного фотоумножителя, что позволило значительно увеличить точность и проводить анализ в реальном времени.
Современные спектрометры оснащены цифровыми камерами для просмотра в реальном времени, работают с компьютерами и коммутаторами, обладают встроенными охладителями и контрольными системами.
Применение
Спектроскопы часто используются в астрономии и некоторых направлениях химии. Их основные области применения:
Принципы работы спектрометра
08.05.2020
Спектрометр – прибор, работающий на основе принципа разложения излучения на монохроматические компоненты в видимом, ультрафиолетовом и инфракрасном диапазонах. Устройство позволяет проводить количественные и качественные исследования световых потоков, отраженных или поглощаемых различными веществами, определять аналитические качества и химический состав. Приборы используются в промышленной, научной и других отраслях жизнедеятельности человека. Они показывают точные результаты.
КАК РАБОТАЮТ СПЕКТРОМЕТРЫ?
Аналитический спектр получают методом регистрации флуоресценции после воздействия рентгеновским, лазерным или другим типом излучений. Чаще всего спектрометр используют для измерения длины волн, интенсивности и частоты излучения. Возможно исследование дополнительных параметров, в том числе поляризационного состояния.
Спектрометр позволяет сканировать широкую спектральную область: матрицу (ПЗС или фотодиодную), преобразователь электрооптический, многоэлементный приемник и другие элементы.
ГДЕ ИСПОЛЬЗУЮТСЯ СПЕКТРОМЕТРЫ?
Приборы необходимы в таких отраслях:
Устройство применяется для флуоресцентного, лазерного, рамановского и иных видов анализа в промышленных и научных исследованиях.
АТОМНО-АБСОРБЦИОННЫЕ СПЕКТРОМЕТРЫ И ПРИНЦИП ИХ ДЕЙСТВИЯ
Современные лаборатории для исследования материалов применяют атомно-абсорбционные спектрометры. Это устройства, используемые для проведения элементного и количественного анализа путем поглощения атомов. Прибор определяет объемы содержания металлов в солевых растворах, минерализатах, технологических жидкостях и природных водах.
Главными задачами этого оборудования являются контроль за окружающей средой, анализ пищевых продуктов, исследования в медицинской отрасли, геологии, металлургической, химической промышленности, научные разработки. Аппарат также применяется в иных сферах.
Принцип работы атомно-абсорбционных спектрографов основан на измерении степени поглощения световых лучей резонансной длины волн от источника, проходящего сквозь атомный пар исследуемой пробы. Для трансформации исследуемого объекта в эмиссионный пар используется атомизатор. Разные узкополосные источники отправляют световые лучи. Проходя через атомные пары, свет направляется на монохроматор, после чего – на приемник, который фиксирует степень излучения.
Достоинства атомно-абсорбционного метода спектрометрии:
С помощью данного метода определяют около 70 элементов (преимущественно металлов). Можно выявлять количество газов, неметаллов с длиной волн от 190 нм. Анализ элементов Nb, Hf, Та, W, Zr при использовании графитовой печи невозможен, поскольку они образуют труднолетучие карбиды.
Атомно-абсорбционные спектрометры в автоматическом режиме анализируют до 500 проб в час. Приборы с использованием графитовой печи – около 30 проб/час. Это прецизионные устройства, обеспечивающие воспроизводимость измерительных условий, автоматическое ведение проб, регистрацию полученных результатов исследований.
Методика используется для определения ряда физико-химических и физических величин, изучения молекулярных спектров, исследования процессов диссоциации.
КАК РАБОТАЮТ АТОМНО-АБСОРБЦИОННЫЕ аппараты?
Устройства используются для работы с жидкими веществами. Для анализа проводят такие операции:
В качестве источника линейчатого излучения в устройствах используют одноэлементные лампы с полым катодом, заполненные неоном. Для определения ряда легколетучих элементов используют высокочастотные безэлектронные лампы.
Для точного анализа объекты должны находиться в газовом состоянии. Переведение исследуемого материала в атомизированное состояние и формирование слоя пара нужной формы происходит в пламени или трубчатой печи атомизатора.
Область использования атомно-абсорбционных аппаратов:
Заказать атомно-абсорбционные аппараты можно в компании «Хроматограф.ру». Организация продает качественное оборудование, предоставляет профессиональную консультацию. К услугам фирмы относятся:
При заказе оборудования сотрудники «Хроматограф.ру» помогают подобрать устройство, исходя из потребностей клиента. В ходе оформления услуги ремонта прибора специалист выезжает на место бесплатно, чтобы диагностировать неисправность. После этого составляется точный расчет стоимости работ. Клиенты не переплачивают за дополнительные услуги. Профессиональный подход и высокое качество обслуживания гарантировано каждому заказчику.
Как проводится хроматография
Хроматографический анализ представляет собой один…
18.03.2021
Абсорбционная спектрометрия уже больше века…
18.03.2021
Основные Параметры Хроматографических Пиков
Ключевую для хроматографии информацию получают…
21.01.2021
Результатом хроматографии является хроматограмма, дающая…
21.01.2021
Распространённые причины поломки хроматографов
Использование любых сложных видов оборудования…
02.10.2020
Как Хроматография Применяется в Парфюмерии?
Методику хроматографии активно используют в…
02.10.2020
Хроматография: история открытия и развития
Хроматография сегодня активно используется в…
06.09.2020
Как правильно выбрать хроматограф?
Хроматография – метод анализа жидкостных…
05.09.2020
Работа любого сложного устройства сопровождается…
28.07.2020
Сегодня хроматография остается самым используемым…
28.07.2020
Предшественником всех современных спектрометров считается…
06.07.2020
Разделение сложных смесей на единичные…
06.07.2020
Хроматографические методы в криминалистике
Криминалистические экспертизы играют важную роль…
06.07.2020
Хроматография в фармацевтической промышленности
В настоящее время можно выделить…
27.05.2020
Принципы работы спектрометра
Спектрометр – прибор, работающий на…
08.05.2020
Хромато-масс-спектрометры: принцип действия
Командой Хроматограф.ру в Печорской центральной…
08.05.2020
Порядок технического обслуживания оборудования производства «НПО СПЕКТРОН»
При поставке приборы снабжаются всем…
17.04.2020
Хроматография в контроле качества продовольственного сырья и пищевых продуктов
Безопасность и качество продуктов питания…
17.04.2020
Телемедицина для хроматографов
Что такое телемедицина? Это консультация…
15.04.2020
Основные производители хроматографов в мире, в России
Хроматографы используются в аналитических исследованиях,…
02.12.2019
Области применения газовых и жидкостных хроматографов
Хроматография – способ разделения многокомпонентных…
02.12.2019
Хроматографические Методы Анализа
Хроматографические методы анализа базируются на…
02.12.2019
Хроматограф — принцип действия, виды хроматографов
Одним из самых популярных методов…
23.02.2019
Обучение с выдачей удостоверения
С июня 2017 года наши…
28.11.2018
7 (343) 300 90 95 обратный звонок
info@gcpro.ru написать письмо
Екатеринбург, Сибирский
тракт, 57 оф. 308/311
Какую основную измерительную задачу решают при помощи спектрометров
Задать вопрос | |
Наши партнеры | |
PRo-движение | |
АНОНС | |
PRo Погоду | |
Сотрудничество | |
|
Время и Судьбы | |
Росатом подписал Кодекс этики в сфере искусственного интеллекта | [27/10/2021] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Росатом наряду с другими крупнейшими российскими компаниями подписал Кодекс этики в сфере искусственного интеллекта Директор по цифровизации Госкорпорации «Росатом» Екатерина Солнцева приняла участие в церемонии подписания Кодекса этики в сфере искусственного интеллекта, которая прошла в рамках международного форума «Этика искусственного интеллекта: начало доверия». Проект Кодекса был разработан Альянсом в сфере искусственного интеллекта совместно с Аналитическим центром при Правительстве РФ и Минэкономразвития России.
|