какую форму имеет черная дыра
Какие бывают черные дыры и как они могут помочь человечеству?
Это может показаться абсурдной идеей, но физики давно размышляют, смогут ли черные дыры однажды использоваться для получения энергии человечеством. Рассказываем о типах черных дыр, как их открыли, и реально ли их «приручить».
Читайте «Хайтек» в
Типы черных дыр
Чёрные дыры звёздной массы — маленькие, но смертельные
Млечный Путь содержит около ста миллионов черных дыр, которые образовались в результате коллапса очень массивных звезд. Каждая из этих звездных черных дыр весит примерно в 10 раз больше нашего Солнца. Очень немногие из этих черных дыр находятся на близком расстоянии от обычной звезды, которая медленно перетекает в черную дыру. Когда этот газ падает в сторону черной дыры, он нагревается сильной гравитацией и трением. Рядом с черной дырой газ достигает типичной температуры 10 миллионов градусов по Цельсию. Эти источники рентгеновского излучения черных дыр легко наблюдать по всему Млечному Пути, а также в близлежащих галактиках с помощью орбитальных рентгеновских обсерваторий.
Примечательно, что любая черная дыра полностью описывается всего двумя числами, которые определяют ее массу и скорость вращения. Мы не знаем ничего более простого, кроме элементарной частицы, такой как электрон. Ученые из CFA измерили оба этих фундаментальных параметра — массу и спин — для более чем дюжины звездных черных дыр, изучая все аспекты этих черных дыр и их систем.
Несмотря на свою повсеместность во Вселенной, черные дыры остаются крайне загадочными объектами. Нам нужна теория квантовой гравитации, которая объединит теорию относительности Эйнштейна 1916 года с теорией квантовой механики 1926 года. Такой теории не существует, несмотря на десятилетия теоретических усилий физиков, изучающих теорию струн и других специалистов. Создание теории квантовой гравитации станет венцом физики наравне с достижениями Ньютона, Эйнштейна и других гигантов.
Чёрная дыра средней массы (IMBH) — застряли посередине
Между классами черных дыр звездной величины и сверхмассивных должен существовать еще один — промежуточный. Во всяком случае, по законам логики. Разве не должны существовать черные дыры среднего размера, которые определяют разницу между черными дырами звездной массы и сверхмассивными черными дырами? Эти космические средние массы, которые могут варьироваться от примерно 100 до 1 миллиона солнечных масс — хотя конкретный диапазон варьируется в зависимости от того, кого вы спросите, — называются черными дырами промежуточной массы (Intermediate-mass black holes, IMBHs). И хотя астрономы нашли несколько убедительных кандидатов на IMBH, разбросанных по всей Вселенной, вопрос о том, действительно ли они существуют, все еще не решен. Однако улик начинает накапливаться.
Хотя окончательное доказательство существования IMBH остается неуловимым, за последние несколько десятилетий был проведен ряд исследований, в которых были обнаружены интригующие доказательства, намекающие на существование этих не очень больших, не очень маленьких черных дыр.
Точно так же в 2009 году исследователи обнаружили еще более сильные свидетельство существования черной дыры среднего размера. Расположенный примерно в 290 млн световых лет от края галактики ESO 243-49, команда наблюдала невероятно яркий рентгеновский источник под названием HLX-1 (гиперсветящийся источник рентгеновского излучения номер один, Hyper-Luminous X-ray source 1), не имеющий оптического аналога. Это говорит о том, что наблюдаемый объект не просто звезда или галактика. Кроме того, исследователи обнаружили, что рентгеновская сигнатура HLX-1 менялась со временем, предполагая, что черная дыра становится ярче каждый раз, когда ближайшая звезда приближается к ней, подавая газ и вызывая короткие вспышки рентгеновских лучей, которые затем медленно исчезают. прочь. Основываясь на яркости наблюдаемых вспышек, исследователи рассчитали минимальную массу черной дыры примерно в 500 раз больше массы Солнца, хотя по некоторым оценкам ее вес приближается к 20 000 масс Солнца.
Планковская чёрная дыра (Micro black hole)
Планковская чёрная дыра — гипотетическая чёрная дыра с минимально возможной массой, которая равна планковской массе.
Плотность вещества такой чёрной дыры составляет около 10 94 кг/м³ и, возможно, является максимальной достижимой плотностью массы. Физика на таких масштабах должна описываться пока не разработанными теориями квантовой гравитации. Такой объект тождественен гипотетической элементарной частице с (предположительно) максимально возможной массой — максимону.
Планковские чёрные дыры характеризует крайне малое сечение взаимодействия. Малость сечения взаимодействия нейтральных максимонов с веществом приводит к тому, что значительная (или даже основная) часть материи во Вселенной в настоящее время могла бы состоять из максимонов, не приводя к противоречию с наблюдениями. В частности, максимоны могли бы играть роль невидимого вещества (темной материи), существование которого признается в настоящее время в космологии.
Сверхмассивные черные дыры — рождение гигантов
Маленькие черные дыры населяют вселенную, но их кузены, сверхмассивные черные дыры, доминируют. Эти огромные черные дыры в миллионы или даже миллиарды раз массивнее Солнца, но имеют примерно такой же размер в диаметре. Считается, что такие черные дыры находятся в центре практически каждой галактики, включая Млечный Путь.
Ученые не уверены, как возникают такие большие черные дыры. После того, как эти гиганты сформировались, они собирают массу из пыли и газа вокруг себя, материала, которого много в центре галактик, что позволяет им вырасти до еще более огромных размеров.
Сверхмассивные черные дыры могут быть результатом слияния сотен или тысяч крошечных черных дыр. Большие газовые облака также могут быть ответственны за их коллапс и быстрое увеличение массы. Или это коллапс звездного скопления, группы звезд, падающих вместе. Сверхмассивные черные дыры могут возникать из больших скоплений темной материи. Это вещество, которое мы можем наблюдать через его гравитационное воздействие на другие объекты; однако мы не знаем, из чего состоит темная материя, потому что она не излучает свет и не может быть непосредственно наблюдаемой.
Новый класс черных дыр — «сверхсверхмассивные» или огромные черные дыры
Итак, как мы уже знаем, наша Вселенная содержит огромные черные дыры. Сверхмассивная черная дыра в центре нашей галактики имеет массу 4 миллиона Солнц, но она довольно мала, как галактические черные дыры. Масса многих галактических черных дыр составляет миллиард солнечных масс, а масса самой массивной из известных черных дыр оценивается примерно в 70 миллиардов Солнц. Но насколько большой может быть черная дыра?
Чтобы черная дыра стала действительно массивной, она должна поглотить большое количество вещества в начале своей жизни. Если она медленно потребляет материю, тогда окружающая ее галактика встанет на свое место, и Вселенная расширится, так что черная дыра не сможет захватить намного больше вещества. Но когда черная дыра быстро поглощает большое количество вещества, материя становится очень горячей и имеет тенденцию отталкивать другую материю, что затрудняет рост черной дыры.
Основываясь на наблюдениях за крупнейшими черными дырами и компьютерном моделировании образования черных дыр, считается, что верхний предел массы галактических черных дыр составляет около 100 миллиардов солнечных масс. Но новое исследование предполагает, что предел массы может быть намного выше.
В работе ученых отмечается, что, хотя галактические черные дыры, вероятно, действительно имеют предел солнечной массы в сотни миллиардов, более крупные черные дыры могли образоваться независимо на ранних этапах существования Вселенной. Эти первичные черные дыры могут иметь массу более чем в миллион раз больше, чем самые большие галактические черные дыры. Исследовательская группа называет их невероятно большими черными дырами или SLABs (stupendously large black holes).
Идея первичных черных дыр существует уже давно. Они были предложены как решение всего, от темной материи до того, почему мы еще не открыли гипотетическую девятую планету в нашей солнечной системе. Но теоретические модели предполагают, что первичные черные дыры были бы намного меньше, чем даже черные дыры звездной массы, образованные из крошечных флуктуаций плотности в ранней Вселенной. Но это новое исследование предполагает, что темная материя и другие факторы могут вызвать колоссальный рост некоторых из них.
Если ранняя Вселенная была богата темной материей, особенно формой темной материи, известной как слабо взаимодействующие массивные частицы (WIMP), то первичная черная дыра могла потреблять темную материю, чтобы быстро расти. Поскольку темная материя не сильно взаимодействует со светом, захваченная темная материя не будет излучать много света или тепла, чтобы замедлить скорость роста. В результате эти черные дыры могли быть огромными еще до того, как Вселенная остыла и образовались галактики. Верхний предел массы SLAB будет зависеть от того, как темная материя WIMP взаимодействует с самой собой, поэтому, если мы обнаружим какие-либо SLAB, это может помочь нам понять темную материю.
Как человечество может использовать черные дыры?
Теория относительности предсказывает, что вращающиеся черные дыры можно использовать в качестве источников энергии. В 1969 году Роджер Пенроуз описал процесс, позволяющий это сделать. Вокруг вращающихся черных дыр существует эргосфера — область, предшествующая горизонту событий. Все тела в эргосфере вращаются вместе с черной дырой.
Процесс Пенроуза (также называемый механизмом Пенроуз) теоретически рассматривает черные дыры как средство извлечения энергии. Такое извлечение может произойти, если вращательная энергия черной дыры расположена не внутри горизонта событий, а снаружи — в области керровского пространства-времени. В этой эргосфере любая частица обязательно движется в локомотивном режиме одновременно с вращающимся пространством-временем, т.е. все объекты в там увлекаются им. При этом кусок вещества, попадающий в эргосферу, расщепляется на две части. Например, материя может состоять из двух частей, которые разделяются путем выстрела взрывчатого вещества или ракеты, которая раздвигает ее половинки. Импульс двух частей материи, когда они разделяются, можно организовать так, чтобы одна часть ускользнула из черной дыры (она «ускользнула в бесконечность»), а другая упала за горизонт событий в черную дыру. При тщательном размещении у убегающей части материи может быть большая масса-энергия, чем у исходной, а её падающая часть получает отрицательную массу-энергию. Хотя импульс сохраняется, эффект заключается в том, что при таком процессе можно извлечь больше энергии, чем изначально предусмотрено. Причем разница обеспечивается самой черной дырой. Таким образом, процесс приводит к небольшому уменьшению углового момента черной дыры, что соответствует передаче энергии материи. Потерянный импульс, в свою очередь, преобразуется в извлеченную энергию.
Процесс Пенроуза указывает на возможность получения энергии из черной дыры, но его нельзя назвать хорошим практическим методом. Для его реализации необходимо, чтобы две новорожденные частицы обладали скоростью, превышающей половину скорости света. Ожидаемая частота таких событий настолько редка, что не позволит получить значительное количество энергии.
Поэтому ученые активно ищут другие механизмы. К примеру, Стивен Хокинг показал, что черные дыры могут высвобождать энергию за счет теплового излучения. Еще одним способом извлечения энергии является процесс Блэнфорда-Знаека, основанный на электромагнитном взаимодействии.
Лука Комиссо (Luca Comisso) из Колумбийского Университета и Фелипе Асенхо (Felipe A. Asenjo) из Университета Адольфо Ибаньеса описали в своей статье еще одну из альтернатив процессу Пенроуза.
Черные дыры окружены горячей плазмой, частицы которой обладают магнитным полем. Основа нового механизма получения энергии из вращающихся черных дыр — пересоединение силовых линий магнитного поля внутри эргосферы. Черная дыра при этом должна находиться во внешнем магнитном поле, иметь большой спин (a
1) и окружающую ее плазму с сильной намагниченностью. Нужными свойствами обладают, например, черные дыры, образовавшиеся в результате длинных и коротких гамма-всплесков и сверхмассивные черные дыры в активных ядрах галактик.
Магнитное пересоединение ускоряет часть плазмы в направлении вращения дыры. Другая часть ускоряется в обратном направлении и падает за горизонт событий. Выделение энергии, как и в механизме Пенроуза, происходит, если поглощаемая плазма имеет отрицательную энергию, а ускоренная — «ускользает» из эргосферы. Отличие состоит в том, что для образования частиц с отрицательной энергией требуется диссипация энергии магнитного поля. В процессе, описанном Пенроузом, роль играет только инерция частиц.
Как говорят ученые, КПД описанного процесса — 150 процентов. Это значит, что процесс позволяет получить в полтора раза больше энергии, чем нужно затратить на его реализацию. Достижение КПД больше 100 процентов возможно, потому что высвобожденные из эргосферы частицы плазмы уносят энергию черной дыры. Открытие нового механизма извлечения энергии из черных дыр позволит астрономам лучше оценить их вращательный момент и понять, как они излучают энергию. До практического применения открытия еще далеко: необходимо выяснить, как долететь до черной дыры и разместить что-то в ее эргосфере, не угодив за горизонт событий.
Теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10 −35 м
На поверхности черной дыры
А разве у них есть поверхность? Ведь все привыкли к представлению о черной дыре как о сингулярности скрытой от нашего взора горизонтом события. Впрочем, исследуя термодинамику черных дыр, физики давно пришли к выводу, что они ведут себя не как трехмерные, а как двухмерные объекты. Например, количество составных частей черной дыры как термодинамической системы, пропорционально квадрату радиуса горизонта события, а не его кубу. Но данный «прозрачный намёк» принято относить скорее к проблемам, таким как: Куда девается информация провалившаяся за горизонт события? Если из двух квантово запутанных частиц одна пересекла горизонт события, то с чем запутана оставшаяся?
Однако показать, что такая поверхность вполне материальна, можно используя известные эффекты теории относительности. Так, с точки зрения неподвижного внешнего наблюдателя, никакой падающий в черную дыру объект никогда не пересечет горизонт события, потому что по мере приближения к нему, время в системе отсчета, связанной с объектом, будет замедляться относительно внешнего наблюдателя из-за того, что в гравитационном поле вблизи массивных тел, время даже для неподвижных тел течет медленнее, чем вне поля. Скорость такого объекта относительно внешнего наблюдателя сначала нарастает, а затем замедляется. При приближении к горизонту события время для такого объекта почти остановится, поэтому для того чтобы преодолеть остаток пути с точки зрения внешнего наблюдателя ему потребуется бесконечно большой промежуток времени.
С другой стороны, в системе отсчета связанной с падающим объектом всё произойдет очень быстро. Однако, и в ней пересечь горизонт события не удастся, но уже по другой причине. По мере того, как скорость движения приближается к скорости света, расстояния в направлении движения сокращаются. Поэтому, при движении по радиусу, горизонт события из почти сферического превратится в плоский диск, а события движения горизонта события и центра дыры станут одновременными. Следовательно, оказаться между горизонтом события и центром такой объект не сможет ни в какой момент времени. Кроме того, с точки зрения этого объекта дыра приближается к нему со скоростью, стремящейся к скорости света. Следовательно, ее масса также должна стремиться к бесконечности. Это приводит к увеличению радиуса горизонта события (радиуса диска), и к «обострению» решений уравнений движения.
Для дилетанта, этих рассуждений для двух крайних случаев уже достаточно, чтобы понять, что если в любой внешней системе отсчета ничто не может оказаться внутри горизонта события, то тогда там нет пространства, и не может существовать масса. Однако, аккуратно доказать это совсем не просто. Дело в том, что реальное вещество, в реальную дыру, как правило попадает не по радиусу, а по спирали. Для неподвижного внешнего наблюдателя это еще один механизм замедления падения, а в системе отсчета, связанной с веществом всё сильно усложняется, т.к. надо бы доказать, что длина спирали не возрастает быстрее релятивистского сокращения ее длины. При этом эта спираль после точки пересечения горизонта события оказывается в несуществующем пространстве за пределами применения уравнений гравитации.
Но прежде чем доказать, нужны правильные уравнения. С точки зрения внешнего наблюдателя дыра и падающий в нее объект представляют собой замкнутую систему, для которой должен выполняться закон сохранения энергии. Поэтому масса этой системы во внешней системе отсчета должна оставаться постоянной в процессе падения, а для этого должна оставаться постоянной и масса каждого тела. Однако по мере ускорения объекта его масса согласно специальной теории относительности должна возрастать. Следовательно, необходимо скомпенсировать этот прирост тем, что на ту же величину уменьшается потенциальная энергия объекта и, следовательно, суммарная масса-энергия остается постоянной. Тогда масса неподвижного объекта в гравитационном поле должна уменьшаться по мере приближения к массивному объекту и на границе события для внешнего наблюдателя она стремится к нулю. Поэтому внутри горизонта события массы и нет. Падающее вещество сохраняет массу, но не может пересечь этот горизонт, а масса неподвижного, оставшегося от сверхновой, вещества обнулилась бы при его пересечении. Получается, что выйти наружу из-за горизонта события не может ни только свет, но и гравитация, что логично, т.к. она (гравитационные волны) тоже распространяются со скоростью света.
Жизнь черной дыры в чем-то аналогично жизни звезды солнечного типа. Когда такая звезда израсходует запас водорода, она увеличивается в размерах (для Солнца максимальный радиус может быть близок к орбите Земли), сбрасывает газовые оболочки и затем сжимается в белый карлик. Этот рост размера при уменьшении температуры, а следовательно, сил, удерживающих звезду от сжатия, на первый взгляд, выглядит противоестественно. Также противоестественно выглядит утверждение, что по мере увеличения радиуса горизонта события, как бульдозер ножом, выталкивает массу из центра звезды, сосредотачивая ее перед собой.
Уравнения общей теории относительности (ОТО) представляют собой равенство тензора Эйнштейна, который является дифференциальным оператором второй степени от тензора кривизны пространства g, тензору массы-энергии умноженному на константу. В принципе, ничто не мешает подставлять в эти уравнения «правильные» массы с учетом потенциальной энергии (см. выше) и изменения размерности пространства (см. ниже), но существующая форма тензора массы-энергии слишком уж провоцирует на ошибки. Например, решая уравнения во внешней системе координат, подставляют массу из внутренней (локальной) системы координат (не вычитая потенциальную энергию), скорости из внешней, а напряжения (если их учитывают) опять из внутренней. К тому же чтобы правильно учесть потенциальную энергию надо знать кривизну пространства, т.е. поправки к компонентам тензора массы-энергии должны зависеть от тензора кривизны g, что нарушает красоту уравнений: пространство слева — материя справа. Но тут уж не до красоты — было бы правильно.
Тензор массы-энергии был введен из условия того, чтобы при переходе в другие системы отсчета выполнялись законы сохранения энергии, импульса и момента количества движения. Сами эти законы следуют из теоремы Нётер в случае наличия в пространстве соответствующих групп симметрии. Однако, в общем случае искривленного пространства Римана эти группы симметрии отсутствуют. Поэтому Эйнштейн с Клаузифильцем попытались доказать, что поскольку на пространство наложено ограничение в виде уравнений общей теории относительности (ОТО), то реализуется частный случай искривленного пространства, в котором эти группы симметрии присутствуют. Таким образом справедливость законов сохранения пытались доказать при помощи уравнений, выведенных с использованием этих же законов. Но и в этом доказательстве, как было показано Логуновым в семидесятые годы двадцатого века, была допущена математическая ошибка.
То, что в уравнениях ОТО не всё в порядке, обнаруживалось не раз. В результате было создано несколько альтернативных теорий гравитации, в рамках которых пытались преодолеть выявленные недостатки. Однако широкого распространения они не получили не только по физическим, но и по социально-психологическим причинам, аналогичных тем, по которым капитализация биткойна превышает капитализацию большинства альтернативных криптовалют, хотя технологически они почти все лучше биткойна. Если человек сталкивается с чем-то очень сложным, непонятным и трудно проверяемым то, как правило, он не старается преодолеть эту сложность, а идет проторенным путем, доверяя авторитетам, и даже понимая, что он заблуждается, предпочитает заблуждаться вместе со всеми также как и раньше. Так и в теории черных дыр доминируют те представления, которые основаны на изначальном решении уравнений ОТО, несмотря на все их проблемы и несуразности.
С физической точки зрения к этим проблемам привели три ошибки. Во-первых, теория черных дыр возникла из решения Шварцшильда уравнений ОТО для поля, создаваемого материальной точкой. Это самое первое, самое востребованное решение этих уравнений, и до открытия гравитационных волн почти все экспериментальные подтверждения ОТО касались именно него. Оно хорошо описывает гравитационное поле звезд и поле черных дыр, за исключением области, близкой к горизонту события. Однако, это решение для массы сосредоточенной в точке. Данная абстрактная модель изначально, до решения предполагает сингулярность, и решение уравнений «подтверждает» наличие этой сингулярности. Ошибка в том, что изначально предполагается наличие массы там, где ее быть не может.
Во-вторых, в уравнения подставляется масса без учета потенциальной энергии.
В-третьих, всё пространство черной дыры, исключая может быть саму сингулярность, изначально считается четырехмерным пространством-временем, т.е. не рассматривается изменение размерности пространства.
Откуда возникла возможность изменения размерности? В системе отсчета, связанной с падающим по радиусу объектом горизонт события превращается в диск. Достигнув его объект оказывается в двумерном пространстве, т.к. все длины между физическими объектами в направлении движения стремятся к нулю. Поэтому он не может вылететь из этого диска, даже если не столкнется там с веществом. При таком переходе «исчезнувшая» пространственная ось преобразуется в ось времени так, что пространство снаружи становится прошлым для вещества на поверхности черной дыры.
Существенно, что изменение размерности пространства происходит несколько раньше, чем объект достигает горизонта события. Если бы такой переход происходил при достижении самого горизонта, то почти вся масса черной дыры оказалась бы сосредоточенной на горизонте события, но масса неподвижного вещества на горизонте события с точки зрения внешнего наблюдателя равна нулю, т.е. для внешнего наблюдателя такая черная дыра имела бы почти нулевую массу. Это является следствием стремления скорости падающего объекта к скорости света. Однако согласно двойной специальной теории относительности из-за вязкости физического вакуума (взаимодействия с виртуальными частицами) пределом скорости для реального объекта является вторая скорость света, которая немного меньше той, которая используется в уравнениях теории относительности и которой соответствует горизонт события.
Таким образом, существует физический механизм, который «спасает от бесконечностей» за счет сил вязкости физического вакуума и уменьшения размерности пространства. В результате масса черной дыры оказывается сосредоточенной на ее поверхности, которая находится на небольшом расстоянии снаружи горизонта события. Это расстояние может зависеть от распределения масс по поверхности, т.е. у поверхности черной дыры может быть рельеф, который влияет на излучение Хокинга, что разрешает известные проблемы с потерей информации и квантовой запутанности и находится в соответствии с термодинамикой черных дыр.
Такая модель естественным образом объясняет асимметрию вещества и антивещества на поверхности черной дыры. Всё, что упало на эту поверхность снаружи является веществом. Для него время идет в одну сторону, соответственно направлению движения к центру для внешнего «трехмерного» наблюдателя (здесь и далее размерность пространства указывается по количеству пространственно подобных осей). Античастицы, которые как известно «движутся» во времени в обратном направлении, могут образоваться в небольших количествах в процессах взаимодействия этого двумерного вещества. При этом античастицы достаточно высоких энергий, которые могут образоваться, например, при коллапсе двумерного вещества в черную дыру с одномерной поверхностью, могут выйти из двумерного пространства в окружающее трехмерное.
Для описания такого перехода в двумерное состояние в уравнениях ОТО на поверхности черной дыры должны вырождаться уравнения, соответствующие оси времени окружающего пространства, т.е. верхняя строка и левый столбец тензорного уравнения. Для этого в тензоре массы-энергии должны быть соответствующим образом учтены эффекты двойной специальной теории относительности.
Поскольку переход вещества из трехмерного состояния в двумерное в приведенных выше рассуждениях связан с достижением скорости близкой, но меньшей чем скорость света, а не с кривизной пространства, то данное явление, в принципе, должно иметь место и при ускорении вещества вне черной дыры. При этом если элементарные частицы имеют внутреннюю геометрию, что предполагается в теории суперструн и некоторых других теориях, сводящих физику к геометрии, то частицы с трехмерной геометрией при достижении таких скоростей будут становиться неотличимыми от частиц с двумерной геометрией, являющейся проекцией данной трехмерной геометрии, на плоскость перпендикулярную направлению движения. Здесь речь идет о геометрии частицы в размерностях окружающего пространства, а сама частица может иметь дополнительные локально свернутые размерности. Известно, что существует уровень энергии, при котором происходит объединение электромагнитного и слабого взаимодействия в единое электрослабое взаимодействие, что приводит к тому, что частицы, отличающиеся только зарядом слабого взаимодействия становятся неотличимыми. Естественно предположить тождественность этих переходов, т.е. что уменьшение размерности связано с объединением взаимодействий. Тогда, по аналогии можно предположить, что при достижении еще более высокого уровня энергии, при котором электрослабое взаимодействие объединяется с сильным, частицы становятся одномерными, а при энергии великого объединения остается единственная ось времени, т.е. все частицы без локально свернутых размерностей превращаются в кванты времени. При этом частицы с меньшей размерностью в пространстве с большей размерностью будут релятивистскими.
Теперь представим такую ситуацию. В четырехмерном пространстве вещество на ранних стадиях своей эволюции испытало уменьшение размерности. Это может быть не только при достижении поверхности трехмерной черной дыры в четырехмерном внешнем пространстве, но и, например, при выбросе вещества из белой дыры. Тогда также будет иметь место превалирование вещества над антивеществом, если перед уменьшением размерности это вещество двигалось в одну сторону. При этом трехмерные частицы станут релятивистскими в исходном четырехмерном пространстве. Однако относительно друг друга они могут двигаться с малыми скоростями, что позволит им сконденсироваться в барионное вещество, эволюция которого может привести к появлению в этом веществе физиков.
Эти физики, естественно, будут считать, что находятся в неподвижной системе координат, а частицы с двумерной и одномерной геометрией будут считать релятивистскими. Частицы «неподвижные» (точнее, не релятивистские) в исходном четырехмерном пространстве также будут для них релятивистскими, потому что соотношение времени в четырехмерном пространстве течет быстрее времени в трехмерном в огромное количество раз, и поэтому даже небольшая (для «четырехмерного» наблюдателя) составляющая скорости «неподвижных» частиц в проекции на оси трехмерного пространства с точки зрения находящихся в нем физиков будет восприниматься как скорость света. При этом они обнаружат, что эти «неподвижные» частицы не имеют парных античастиц, и все пары частица-античастица аннигилируют с образованием именно этих «неподвижных» частиц (в силу действия закона сохранения количества движения в исходном четырехмерном пространстве). Кроме того, они обнаружат, что масса частиц из которых состоят физики, является следствием нарушения симметрии, для объяснения чего им придется придумывать поле Хиггса. Ведь им скорее всего не придет в голову более простое объяснение, что это обычная масса, обусловленная движением релятивистских частиц в исходном четырехмерном пространстве, которая сохраняется и в трехмерном, но выглядит как следствием нарушения симметрии. Вам это ничего не напоминает?