какую часть массы газопылевого облака захватило солнце

§ 16. Солнечная система как комплекс тел, имеющих общее происхождение

Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учёными ещё в XVII в. В 40-е гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твёрдых до планетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом. В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных учёных.

В пользу этой гипотезы свидетельствуют многие научные данные. Так, в последние годы вокруг нескольких звёзд были обнаружены газопылевые облака, из вещества которых могут образовываться планеты. Исследования далёкого прошлого Земли говорят о том, что наша планета никогда не была полностью расплавленной. Метеоритная «бомбардировка» планет по сути дела является продолжением того процесса, который в прошлом привёл к их образованию. В настоящее время, когда в межпланетном пространстве метеоритного вещества остаётся все меньше и меньше, этот процесс идёт значительно менее интенсивно, чем на начальных стадиях формирования планет.

Возраст наиболее древних пород, которые обнаружены в составе метеоритов, составляет примерно 4,5 млрд лет. Породы такой же древности обнаружены в доставленных на Землю образцах лунного грунта. Расчёты возраста Солнца дали близкую величину — 5 млрд лет. На основании этих данных принято считать, что все тела, которые в настоящее время составляют Солнечную систему, образовались примерно 4,5— 5 млрд лет тому назад. Облако, из которого они образовались, представляло собой смесь частиц, которые относились к трем компонентам: скальному, ледяному и летучему. Именно из этих трёх компонентов в различных соотношениях и состоят все тела Солнечной системы.

В течение нескольких миллиардов лет само облако и входящее в его состав вещество значительно изменялись. Разумеется, далеко не все детали процессов, которые произошли за это время, поддаются точным расчётам, тем не менее современная наука позволила составить общую картину формирования Солнечной системы.

В течение нескольких миллиардов лет само облако и входящее в его состав вещество значительно изменялись. Разумеется, далеко не все детали процессов, которые произошли за это время, поддаются точным расчётам, тем не менее современная наука позволила составить общую картину формирования Солнечной системы.

Вначале сжатие облака гравитационными силами привело к образованию центрального горячего ядра — будущего Солнца. Оно захватило себе основную часть массы облака — примерно 90%. Тяготение образовавшегося Солнца воздействовало на форму оставшейся части облака: оно становилось всё более и более плоским диском. Частицы этого диска, обращаясь вокруг Солнца по самым различным орбитам, сталкивались между собой. В результате одних столкновений частицы разрушались, а при других объединялись в более крупные.

Источник

Из пыли и газа. Загадка появления Солнечной системы

Это странно, но людей гораздо больше интересует, что же произойдёт с Солнечной системой в будущем, нежели как она образовалась в прошлом. В подтверждение этому тысячи статей о возможных вариантах гибели нашего светила и гораздо меньшее количество информации о его рождении. А между тем образование Солнечной системы — это одна из загадок, так до сих пор и не разгаданных учёными.

какую часть массы газопылевого облака захватило солнце. d28609c8f34f14553d22201cfffa4bc0. какую часть массы газопылевого облака захватило солнце фото. какую часть массы газопылевого облака захватило солнце-d28609c8f34f14553d22201cfffa4bc0. картинка какую часть массы газопылевого облака захватило солнце. картинка d28609c8f34f14553d22201cfffa4bc0. Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учёными ещё в XVII в. В 40-е гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твёрдых до планетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом. В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных учёных.

По пустому и абсолютно чёрному пространству во все стороны расползались огромные облака газа и пыли. Во Вселенной и сейчас есть подобные образования. Подобные газопылевые облака астрономы наблюдают в туманности Ориона. Считается, что они очень похожи на те, что послужили материалом для создания Солнечной системы. Подобные формирования не редкость для современной Вселенной. Например, гигантское облако Смита, в миллионы раз превышающее по массе наше Солнце, прямо сейчас мчится в сторону нашей с вами галактики Млечный Путь.

Газовое облако Смита состоит по большей части из водорода, имеет протяжённость 11 000 световых лет и ширину 2500 световых лет. Его скорость — около 1 100 000 километров в час, а после столкновения с нашей галактикой предполагается образование нескольких миллионов новых звёзд. Впрочем, до этого момента ещё осталось около 30 миллионов лет и в ожидании этого события мы вернёмся к образованию Солнечной системы.

какую часть массы газопылевого облака захватило солнце. b5f30918403090fd5c5684257bafcb38. какую часть массы газопылевого облака захватило солнце фото. какую часть массы газопылевого облака захватило солнце-b5f30918403090fd5c5684257bafcb38. картинка какую часть массы газопылевого облака захватило солнце. картинка b5f30918403090fd5c5684257bafcb38. Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учёными ещё в XVII в. В 40-е гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твёрдых до планетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом. В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных учёных.

Примерно две трети времени существования Вселенной потребовались на то, чтобы образовать облако пыли и газа и охладить его до требуемой температуры. Учёные считают, что облако содержало в себе не только лёгкие водород и гелий, но и оставшиеся от звёзд предыдущих поколений металлы (это свойство так и называется — металличность). Облако спокойно существовало как часть Млечного Пути (Галактика всё это время активно формировалась), однако 4,6 миллиарда лет назад что-то случилось.

«Я что-то сделала, и оно само»

Собственно, причина гравитационного коллапса, запустившего процесс образования Солнечной системы, до сих пор неизвестна. То ли звезда пролетала неподалёку, а может, ударная волна от взрыва сверхновой пошевелила массы газа. Теперь уже вряд ли получится ответить, что именно стало спусковым крючком, однако именно этот момент можно считать началом формирования Солнечной системы.

Часть вещества в облаке уплотнилась и стала центром гравитационного притяжения для остальной части Солнечной прасистемы. А дальше, как говорил классик, «всё заверте. «. Центр гравитационного коллапса начал притягивать к себе не только водород и гелий, но и многочисленные тяжёлые вещества, те же самые металлы.

какую часть массы газопылевого облака захватило солнце. acb647a41ce7f2d6f2e535f41ac93e93. какую часть массы газопылевого облака захватило солнце фото. какую часть массы газопылевого облака захватило солнце-acb647a41ce7f2d6f2e535f41ac93e93. картинка какую часть массы газопылевого облака захватило солнце. картинка acb647a41ce7f2d6f2e535f41ac93e93. Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учёными ещё в XVII в. В 40-е гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твёрдых до планетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом. В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных учёных.

Гравитационное сжатие одновременно уменьшало размеры облака (оно как бы проваливалось в центр себя, постепенно сжимаясь), но и в силу закона сохранения углового момента увеличивалась его угловая скорость. Проще говоря, облако начало всё сильнее раскручиваться вокруг своей оси, наподобие огромного космического волчка. Учёные считают, что изначально и у пылевого облака уже была небольшая угловая скорость, но гравитационный коллапс начал её многократно увеличивать.

Подобно глине на гончарном круге, будущая Солнечная система становилась всё более плоской и расширяющейся по бокам. Так центробежная сила сформировала стремительно вращающийся диск, в центре которого уже начинала загораться протозвезда, наше будущее Солнце. Облако сжималось всё сильнее, соответственно росла и внутренняя температура. Опять же проще всего представить себе гончарный круг, где по центру собирается большая часть глины, а небольшие остатки откидывает на дальние части круга, где они продолжают своё вращение.

Центральная часть пылевого облака, заботливо спрессованная гравитацией, стала будущим Солнцем, а остатки пошли на формирование планет и астероидов. Небольшие изначально уплотнения остаточных частей начали расчищать свои орбиты, формируя самостоятельные, хоть и вращающиеся вокруг центрального шара объекты.

Некоторые из них были достаточно большими, что могли и сами превратиться в звезду. Их массы лишь немного не хватило на то, чтобы запустить внутри себя термоядерную реакцию. В Солнечной системе это Юпитер — астрономы считают, что, находись он в других условиях и набери раз в десять больше массы, её могло бы хватить на формирование звезды-карлика.

какую часть массы газопылевого облака захватило солнце. a72d051c51775065fc96b97853c01606. какую часть массы газопылевого облака захватило солнце фото. какую часть массы газопылевого облака захватило солнце-a72d051c51775065fc96b97853c01606. картинка какую часть массы газопылевого облака захватило солнце. картинка a72d051c51775065fc96b97853c01606. Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учёными ещё в XVII в. В 40-е гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твёрдых до планетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом. В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных учёных.

Случись это, и о жизни на Земле можно было бы забыть. Системы с двумя и более звёздами считаются очень неустойчивыми и плохо подходящими для формирования жизни на планетах. Подобные процессы требуют времени и постоянства, а в системе из двух звезд не найти ни того, ни другого. К счастью, лишь одно Солнце загорелось, когда в протозвезде температура и давление стали достаточными для начала термоядерной реакции.

Температура внутри бывшего пылевого облака достигла нескольких миллионов кельвинов, и в самом сердце звезды началась реакция синтеза гелия из водорода, продолжающаяся и до сих пор. С днём рождения, Солнце!

Наше Солнце по спектральному классу относится к жёлтым карликам. К слову, если бы Юпитер был чуть побольше, он мог бы стать коричневым карликом. Средняя плотность Солнца всего в 1,4 раза выше воды и скорее похожа на детсадовский кисель или жидкий обойный клей. Эффективная температура поверхности Солнца — 5780 кельвинов, для человеческого глаза это практически идеальный белый свет.

Как же так, ведь глазу Солнце кажется желтоватым, а если вы внимательно рассматривали лампы накаливания, то помните, что жёлтые оттенки проявляются при температуре ниже 3000 кельвин. Всё так, но атмосфера Земли частично рассеивает идеально белый солнечный свет и придаёт ему желтоватый оттенок. В космосе же Солнце ослепительно белое, как и должно быть.

какую часть массы газопылевого облака захватило солнце. 4f53ddd9656cd0161e59ff0047bc20b9. какую часть массы газопылевого облака захватило солнце фото. какую часть массы газопылевого облака захватило солнце-4f53ddd9656cd0161e59ff0047bc20b9. картинка какую часть массы газопылевого облака захватило солнце. картинка 4f53ddd9656cd0161e59ff0047bc20b9. Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учёными ещё в XVII в. В 40-е гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твёрдых до планетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом. В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных учёных.

А как изменилась Солнечная система за миллиарды лет существования? На каком расстоянии находились планеты во время своего образования и сейчас? Стали ли они ближе к светилу или, наоборот, удаляются от Солнца в глубины бесконечного космоса? Раньше считалось, что положение планет практически неизменно. Как сформировались, так и продолжают свой бесконечный бег по кругу.

Однако последние лет тридцать точка зрения учёных меняется. Специалисты считают, что на заре своего существования Солнечная система была гораздо компактнее. Пояс Койпера за орбитой Нептуна, где до сих пор осталось много «строительного материала» для формирования планет, в своё время был гораздо ближе к нашей звезде. То есть Солнечная система постепенно расширяется, потихоньку увеличиваясь в размерах.

Земля тоже постепенно удаляется от Солнца. Совсем по чуть-чуть, примерно 15 сантиметров в год. Достаточно долго астрономам не удавалось объяснить это, в ход шли всевозможные гипотезы: потеря звездой массы в результате выбросов и солнечного ветра, а также действие загадочной тёмной материи. Однако, согласно последним теориям, всему причиной гравитационное взаимодействие Земли и Луны.

Именно наш ближайший спутник немного замедляет Землю (период обращения Земли вокруг Солнца увеличивается на три миллисекунды каждые сто лет), а также удаляет планету от Солнца на микроскопические по космическим мерками 15 сантиметров в год. Кстати, стало известно о том, что Земля удаляется от Солнца, относительно недавно. Лишь в 2004 году российские астрономы Григорий Красинский и Виктор Брумберг смогли обнаружить это постоянное удаление.

какую часть массы газопылевого облака захватило солнце. a4571089aa4080f3ee802d62f9bec395. какую часть массы газопылевого облака захватило солнце фото. какую часть массы газопылевого облака захватило солнце-a4571089aa4080f3ee802d62f9bec395. картинка какую часть массы газопылевого облака захватило солнце. картинка a4571089aa4080f3ee802d62f9bec395. Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учёными ещё в XVII в. В 40-е гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твёрдых до планетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом. В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных учёных.

Считается, что на этапе формирования планет было гораздо больше. Во внутренней части по орбитам кружилось от 50 до 100 небесных тел, готовых превратиться в постоянные планеты. В процессе формирования случались столкновения, в результате одного из них большей части своей мантии лишился Меркурий, также есть теория, что в результате другого удара Земля получила Луну. Впрочем, это лишь одна из теорий.

Так продолжалось несколько десятков миллионов лет, пока во внутренней области Солнечной системы не осталось четыре планеты земной группы, расчистившие свои орбиты от астероидов и других конкурентов. Это Меркурий, Венера, Земля и Марс, финалисты, выигравшие право получать достаточное количество тепла и света от Солнца. С этого момента можно было начинать выращивать жизнь.

какую часть массы газопылевого облака захватило солнце. 243497fdba2536f057285487b83dab5c. какую часть массы газопылевого облака захватило солнце фото. какую часть массы газопылевого облака захватило солнце-243497fdba2536f057285487b83dab5c. картинка какую часть массы газопылевого облака захватило солнце. картинка 243497fdba2536f057285487b83dab5c. Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учёными ещё в XVII в. В 40-е гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твёрдых до планетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом. В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных учёных.

Вселенная не стоит на месте. Солнечная система — это тоже не статический объект, а сложнейшая система, постоянно, хоть и очень медленно меняющаяся. Астрономы регулярно обновляют своё понимание того, как она существует. Путь от газопылевой туманности до системы, включающей в себя как минимум одну обитаемую планету, занял несколько миллиардов лет. И останавливаться на достигнутом Солнечная система не собирается.

В ближайшее время, согласно современным моделям, серьёзных изменений не ожидается. Мало что изменится до того, как Солнце израсходует свои запасы водорода. Именно тогда Солнце начнёт своё превращение в красного гиганта, а Солнечную систему ждут катастрофические изменения. Впрочем, это случится ещё очень и очень не скоро. Как говорится, поживём — увидим.

Источник

Гипотеза газопылевого облака

Гипотезы о том, как сформировалась Солнечная система, относятся к области космогонии — одного из старейших разделов теоретической астрономии. Первым такую гипотезу, исходя из общих умозрительных соображений, выдвинул немецкий философ Иммануил Кант (Immanuel Kant, 1724–1804), однако по-настоящему научное развитие она получила в трудах Пьера Симона Лапласа, первым предпринявшего попытку объяснить механику образования Солнечной системы в рамках Закона всемирного тяготения Ньютона.

В начале сценария предполагается наличие газопылевой туманности. По чистой случайности отдельные области этой туманности оказываются плотнее окружающего их вещества и, следовательно, обладают большей массой. Тут в действие вступает сила тяготения, и окружающая материя начинает устремляться к этим центрам повышенной плотности, масса которых всё возрастает. В конечном итоге материя в области каждого такого центра уплотняется настолько, что в результате гравитационного коллапса в каждой такой точке образуется звезда. Сегодня астрономы наблюдают в нашей Галактике достаточно много подобных центров формирования звезд.

В целом, остаточное газопылевое облако вокруг формирующейся звезды ведет себя хаотично, и частицы материи движутся внутри него во всех направлениях. И тут, опять же по чистой случайности, может оказаться, что большая часть газа и пыли оказываются «закрученными» в одну сторону. Соответственно, газопылевое облако вокруг формирующейся звезды приобретает чистый угловой момент количества движения. В соответствии с законом сохранения момента импульса дальнейшее сжатие (конденсация) облака в направлении центра приводит к увеличению угловой скорости вращения материи вокруг центральной части. В итоге, после завершения стадии коллапса газопылевого облака, подавляющая часть его массы оказывается сосредоточенной в центре (где впоследствии сформируется звезда), а незначительная периферийная масса облака оказывается распределенной в экваториальной плоскости вращения протозвезды вокруг собственной оси. Происходит это в результате «сплющивания» остатков распыленного раскрученного вещества под действием центробежной силы. Из вещества этого остаточного диска в дальнейшем формируются планеты.

В окружающем протозвезду остаточном газопылевом диске в результате хаотичных соударений частиц также начинают формироваться сгустки материи, которые в свою очередь начинают служить центрами притяжения для распыленного вокруг вещества. Вокруг них сначала формируются протопланеты, которые также выступают в роли источников гравитационного притяжения, в результате чего околосолнечное вещество расслаивается в кольца, а затем собирается в сгустки на определенных орбитах, из которых, в конечном итоге, и формируются планеты. Типоразмеры планет зависят от расстояния до новорожденной звезды. На небольшом удалении от нее температуры из-за начавшейся внутри звезды термоядерной реакции (см. Эволюция звезд) оказываются слишком высокими, и все легкоплавкие летучие вещества в основном просто испаряются в пространство, не имея возможности сконденсироваться в жидкое или твердое состояние. В результате ближние планеты земного типа оказываются небольшими и относительно плотными из-за преобладания в их составе тяжелых химических элементов — в Солнечной системе к этой категории относятся Меркурий, Венера, Земля и Марс.

Вообще, этот период в эволюции Солнечной системы выглядит несколько странно, если исходить из основных современных гипотез и результатов компьютерного моделирования, полученных согласно этим гипотезам. С одной стороны, накопление вещества вокруг ядер-зародышей современных планет действительно должно было происходить в соответствии с вышеописанной моделью; с другой — такое моделирование предсказывает образование еще 10-12 планет размером с Марс. Сегодня выдвигается гипотеза, что эти протопланеты попросту рассыпались в результате затяжной партии в небесный бильярд, в которую они оказались втянутыми, после чего часть их вещества осела на «успешно» сформировавшихся планетах, избежавших разрушения в результате череды соударений, а часть вещества была буквально вышвырнута на периферию Солнечной системы под воздействием мощного гравитационного поля Юпитера. Таким образом, в нашей Солнечной системе, скорее всего, до сих пор кружится, по большей части на большом удалении от Солнца, значительная масса протопланетных тел.

Луна — естественный спутник Земли — часто также классифицируется астрономами как самостоятельная планета земного типа, однако последние данные свидетельствуют, скорее, в пользу гипотезы гигантского столкновения, согласно которой Луна сформировалась позже других планет земного пояса в результате падения на раннюю Землю еще одной планеты размером с Марс и последующего выброса вещества на околоземную орбиту. Вообще, подобные столкновения на ранней стадии формирования Солнечной системы были явлением распространенным. Это, кстати, объясняет и еще одну загадку Солнечной системы. Угловые скорости вращения планет вокруг собственной оси (иными словами, продолжительность солнечных «суток» на планетах) варьируют в весьма широких пределах. В случае Венеры наблюдается уникальное явление ретроградного суточного вращения: эта планета вращается в противоположную по сравнению со всеми прочими планетами сторону. Такое отличие трудно увязать с размеренным, упорядоченным формированием планетной системы. Однако, если предположить, что итоговое собственное вращение планеты вокруг оси сложилось в результате суммы импульсов, полученных ею в результате мощных соударений с другими протопланетами, всё становится на свои места.

На большем удалении от молодого Солнца на ранней стадии формирования планетной системы было не так жарко, и там сформировались планеты иного типа. Достаточно низкие температуры не препятствовали конденсации и кристаллизации относительно легких химических элементов, в результате чего сформировались сверхмассивные твердокристаллические ядра из скальных пород и льда. Обладая мощным гравитационным полем, они захватили из окрестных газопылевых скоплений значительные объемы легких и летучих веществ — гелия и водорода, образовавших их океаны и/или атмосферу, — и стали еще массивнее (планеты земного типа с их слабым гравитационным полем на это оказались не способны). К категории так называемых газовых гигантов нашей Солнечной системы относятся Юпитер, Сатурн, Уран и Нептун. При огромных по сравнению с планетами земного типа размерах эти планеты характеризуются очень низкой средней плотностью вещества. Плотность Сатурна, например, вообще ниже плотности воды, так что, если бы нашелся океан сопоставимых с этой планетой размеров, Сатурн плавал бы в нем, как поплавок. Тем не менее, согласно современным гипотезам, внутри этих газожидкостных гигантов все-таки есть достаточно массивное плотное ядро из твердого вещества, напоминающее собой планету земного типа и образовавшееся аналогичным образом.

Особый случай представляет собой Плутон, — последняя из открытых «настоящих» планет Солнечной системы. По размеру он сопоставим с планетами земной группы и представляет собой, по сути, огромную глыбу льда летучих элементов. Долгое время ученые считали Плутон не то курьезным недоразумением, не то захваченным Солнечной системой инородным телом. Однако открытие в 1990-х годах так называемого «пояса Койпера», подобного поясу астероидов, — еще одного пояса малых планет, многие из которых движутся по очень вытянутым, «неправильным» орбитам, — заставило астрофизиков пересмотреть свои взгляды. Расположенный за орбитой Нептуна пояс Койпера — основной «поставщик» комет, залетающих в окрестности Солнца. Согласно современным взглядам, Плутон скорее всего представляет собой все-таки самое крупное небесное тело пояса Койпера — зародыш так и не сформировавшейся крупной планеты, вращающийся среди миллионов более мелких «отбросов» Солнечной системы.

Такая картина формирования планетной системы хорошо объясняет многие наблюдаемые характеристики Солнечной системы: небольшие размеры, тяжелый элементный состав и конденсированное состояние внутренних планет; большие размеры, легкий элементный состав и жидкостно-газообразное состояние внешних планет; единое направление движения планет по орбитам вокруг Солнца. В 1995 году астрономами были получены первые доказательства существования планетных систем у других звезд и выяснены некоторые их характеристики (это удалось сделать по замерам циклических отклонений звезд от их среднестатистического положения в пространстве, вызванных силой гравитационного притяжения обращающихся вокруг них планет). Благодаря этому сегодня мы точно знаем о том, что за пределами Солнечной системы планет существует гораздо больше, чем внутри нее: на момент написания этой статьи открыто 83 планеты в 71 звездной системе (теперь, когда вы читаете эти строки, число открытых планет еще возросло). Однако лишь одна из открытых планетных систем похожа на нашу Солнечную систему. Во всех остальных, судя по всему, планеты движутся вокруг своей звезды по сильно вытянутым эллиптическим траекториям, в то время как в нашей Солнечной системе орбиты всех планет, за исключением Плутона, приближаются к круговым. Кроме того, в большинстве этих систем все планеты обращаются вокруг звезд на расстояниях, не превышающих радиус орбиты Меркурия. У некоторых планет период обращения вокруг их солнца и вовсе составляет всего несколько земных суток.

Кроме планетных систем астрономам на сегодняшний день удалось открыть целый ряд околозвездных дисков — сплющенных газопылевых облаков вокруг молодых звезд. А это служит хорошим подтверждением гипотезы образования планетных систем из газопылевых облаков, пусть даже планетных систем, подобных нашей, открыты лишь считанные единицы.

Источник

Солнечная система как комплекс тел, имеющих общее происхождение.

Согласно наиболее разработанной гипотезе, Солнечная система сформировалась в результате длительной эволюции огромного холодного газопылевого облака. Подобные идеи высказывались учеными еще в XVIIв. В40-х гг. XX в. эти идеи легли в основу гипотезы об образовании Земли и других планет из холодных твердых допланетных тел — планетезималей, выдвинутой академиком Отто Юльевичем Шмидтом.

В дальнейшем она получила развитие в работах его учеников в России, а также зарубежных ученых.

В пользу этой гипотезы свидетельствуют многие научные данные. Так, в последние годы вокруг нескольких звезд были обнаружены газопылевые облака, из вещества которых могут образовываться планеты. Исследования далекого прошлого Земли говорят о том, что наша планета никогда не была полностью расплавленной. Метеоритная «бомбардировка» планет по сути дела является продолжением того процесса, который в прошлом привел к их образованию. В настоящее время, когда в межпланетном пространстве метеоритного вещества остается все меньше и меньше, этот процесс идет значительно менее интенсивно, чем на начальных стадиях формирования планет.

Возраст наиболее древних пород, которые обнаружены в составе метеоритов, составляет примерно 4,5 млрд лет. Породы такой же древности обнаружены в доставленных на Землю образцах лунного грунта. Расчеты возраста Солнца дали близкую величину — 5 млрд лет. На основании этих данных принято считать, что все тела, которые в настоящее время составляют Солнечную систему, образовались примерно 4,5 — 5 млрд лет тому назад. Облако, из которого они образовались, представляло собой смесь частиц, которые относились к трем компонентам: скальному, ледяному и летучему. Именно из этих трех компонентов в различных соотношениях и состоят все тела Солнечной системы.

В течение нескольких миллиардов лет само облако и входящее в его состав вещество значительно изменялись. Разумеется, далеко не все детали процессов, которые произошли за это время, поддаются точным расчетам, тем не менее современная наука позволила составить общую картину формирования Солнечной системы.

Вначале сжатие облака гравитационными силами привело к образованию центрального горячего ядра — будущего Солнца. Оно захватило себе основную часть массы облака — примерно 90%. Тяготение образовавшегося Солнца воздействовало на форму оставшейся части облака: оно становилось все более и более плоским диском. Частицы этого диска, обращаясь вокруг Солнца по самым различным орбитам, сталкивались между собой. В результате одних столкновений частицы разрушались, а при других объединялись в более крупные. Возникали зародыши будущих планет и других тел. Считается, что число таких допланетных тел достигало многих миллионов. Но в конце концов эволюция облака привела к тому, что основная масса вещества оказалась сосредоточенной в немногих крупных телах — больших планетах

Однако прежде, чем эти допланетные тела образовались и стали расти, произошло перераспределение вещества внутри облака, его дифференциация, и химический состав частиц в различных его частях стал неодинаковым. Под влиянием сильного нагрева из окрестностей Солнца улетучивались газы (в основном это самые распространенные во Вселенной — водород и гелий) и оставались лишь твердые тугоплавкие частицы. Из этого вещества впоследствии сформировались Земля, ее спутник — Луна, а также другие планеты земной группы.

Вдали от Солнца летучие вещества намерзали на твердые частицы, относительное содержание водорода и гелия оказалось повышенным. Объем периферийных частей облака был больше, а стало быть больше и масса вещества, из которого образовались далекие от Солнца планеты.

В ходе формирования планет и позднее на протяжении миллиардов лет в их недрах и на поверхности происходили процессы плавления, кристаллизации, окисления и другие физико-химические процессы. Это привело к существенному изменению первоначального состава и строения вещества, из которого образованы все ныне существующие тела Солнечной системы.

Однако не все вещество протопланетного облака вошло в состав планет и их спутников. Многие его сгустки остались как внутри планетной системы в виде астероидов и еще более мелких тел, так и за ее пределами в виде ядер комет.

Согласно современным представлениям, образование протопланетного облака связано с процессом формирования звезд.

Письменно ответьте на вопросы:

1. Какие общие черты объединяют все теории происхождения Солнечной системы?

2. Объяснение происхождения каких тел, кроме планет, позволяет рассмотреть

современная теория о Солнечной системе как комплексе тел, имеющих общее

3. Какие сведения, с вашей точки зрения, необходимо получить о других планетных

системах для доказательства современной гипотезы происхождения планетных

4. Является ли Луна ближайшим к Земле небесным телом?

5. Имеется ли на Луне атмосфера?

6. Ступала ли на Луну нога человека?

7. Смог ли бы космонавт на Луне воспользоваться компасом для ориентирования, как

путешественник на Земле?

8. Характерны ли для Луны резкие смены температур?

9. Похоже ли Лунное вещество на вулканические земные породы — базальты?

10. Имеются ли в Лунных породах следы органических соединений?

11. Верно ли утверждение, что возраст лунных пород составляет около 4.5 млрд лет?

12.Связаны ли с Луной явления приливов и отливов на Земле?

13. Имеется ли в лунных морях вода?

14. Являются ли кратеры самыми многочисленными образованиями на Луне?

15. Верно ли, что Луна повёрнута к Земле всегда одной стороной?

16. Можно ли изучать внутреннее строение Луны по записям сотрясений от ударов

метеоритов по её поверхности?

17. Ось вращения Луны почти перпендикулярна плоскости её орбиты. Будет ли на

небе Луны α Малой Медведицы играть роль Полярной звезды?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *