хеш для чего нужен

Одним из ключевых слов, которые новички слышат, когда узнают о блокчейне, являются понятия хэша и алгоритма хэширования, которые кажутся распространёнными для безопасности. Запуск децентрализованной сети и консенсуса, такой как биткойн или сеть эфириум с десятками тысяч узлов, соединенных через p2p, требует, как “надежности”, так и эффективности проверки. То есть, эти системы нуждаются в способах кодирования информации в компактном формате, позволяющем обеспечить безопасную и быструю проверку ее участниками

Основным примитивом, обрабатываемым как Биткойном, так и Эфириумом, является понятие блока, который представляет собой структуру данных, включающую транзакции, временную метку и другие важные метаданные. Критическая часть их безопасности включает в себя возможность сжимать большие куски информации о глобальном состоянии сети в короткий стандарт сообщений, который может быть эффективно проверен, если это необходимо, известный как хэш.

Напомним, что «хорошие» алгоритмы хэширования имеют следующие свойства:

Одним из первых стандартов алгоритма хэширования был MD5 hash, который широко использовался для проверки целостности файлов (контрольных сумм) и хранения хэшированных паролей в базах данных веб-приложений. Его функциональность довольно проста, так как она выводит фиксированную 128-битную строку для каждого входа и использует тривиальные однонаправленные операции в нескольких раундах для вычисления детерминированного результата. Его короткая выходная длина и простота операций сделали MD5 очень легким для взлома и восприимчивым к атаке «дня рождения».

Вы когда-нибудь слышали о том, что если вы поместите 23 человека в комнату, есть 50% шанс, что у двух из них будет один и тот же день рождения? Доведение числа до 70 человек в комнате дает вам 99,9% шанс. Если голуби рассажены в коробки, причем число голубей больше числа коробок, то хотя бы в одной из клеток находится более одного голубя. То есть фиксированные ограничения на выход означают, что существует фиксированная степень перестановок, на которых можно найти коллизию.

На самом деле MD5 настолько слаб к сопротивлению к коллизиям, что простой бытовой Процессор Pentium 2,4 ГГц может вычислить искусственные хэш-коллизии в течение нескольких секунд. Кроме того, его широкое использование в более ранние дни текущей сети создало тонны утечек MD5 предварительных прообразов в интернете, которые можно найти с помощью простого поиска Google их хэша.

NSA (Агентство национальной безопасности) уже давно является пионером стандартов алгоритмов хэширования, с их первоначальным предложением алгоритма Secure Hashing Algorithm или SHA1, создающий 160-битные выходы фиксированной длины. К сожалению, SHA1 просто улучшил MD5, увеличив длину вывода, количество однонаправленных операций и сложность этих односторонних операций, но не дает каких-либо фундаментальных улучшений против более мощных машин, пытающихся использовать различные атаки. Так как мы можем сделать что-то лучше?

В 2006 году Национальный институт стандартов и технологий (NIST) запустил конкурс, чтобы найти альтернативу SHA2, которая будет принципиально отличаться в своей архитектуре, чтобы стать стандартом. Таким образом, SHA3 появился как часть большой схемы алгоритмов хэширования, известной как KECCAK (произносится Кетч-Ак). Несмотря на название, SHA3 сильно отличается своим внутренним механизмом, известным как «конструкция губки», которая использует случайные перестановки для «Впитывания» и «Выжимания» данных, работая в качестве источника случайности для будущих входов, которые входят в алгоритм хэширования.

SHA3 не был единственным прорывом, который вышел из конкурса хеширования NIST в 2006 году. Несмотря на то, что SHA3 выиграл, алгоритм, известный как BLAKE, занял второе место. Для реализации шардинга Ethereum 2.0 использует более эффективное. Алгоритм хэширования BLAKE2b, который является высокоразвитой версией BLAKE от конкурентов, интенсивно изучается за его фантастическую эффективность по сравнению с KECCAK256 при сохранении высокой степени безопасности. Вычисление BLAKE2b фактически в 3 раза быстрее, чем KECCAK на современном процессоре.

Источник

Что такое хэш и хэш-функция: практическое применение, обзор популярных алгоритмов

Цифровые технологии широко применяют хеширование, несмотря на то, что изобретению более 50 лет: аутентификация, осуществление проверки целостности информации, защита файлов, включая, в некоторых случаях, определение вредоносного программного обеспечения и многие другие функции. Например, множество задач в области информационных технологий требовательны к объему поступающих данных. Согласитесь, проще и быстрее сравнить 2 файла весом 1 Кб, чем такое же количество документов, но, к примеру, по 10 Гб каждый. Именно по этой причине алгоритмы, способные оперировать лаконичными значениями, весьма востребованы в современном мире цифровых технологий. Хеширование – как раз решает эту проблему. Разберемся подробно, что такое хэш и хэш-функция.

Что за «зверь» такой это хеширование?

хеш для чего нужен. tn hesh. хеш для чего нужен фото. хеш для чего нужен-tn hesh. картинка хеш для чего нужен. картинка tn hesh. Одним из ключевых слов, которые новички слышат, когда узнают о блокчейне, являются понятия хэша и алгоритма хэширования, которые кажутся распространёнными для безопасности. Запуск децентрализованной сети и консенсуса, такой как биткойн или сеть эфириум с десятками тысяч узлов, соединенных через p2p, требует, как “надежности”, так и эффективности проверки. То есть, эти системы нуждаются в способах кодирования информации в компактном формате, позволяющем обеспечить безопасную и быструю проверку ее участниками

Чтобы в головах читателей не образовался «винегрет», начнем со значения терминологий применительно к цифровым технологиям:

Исходя из пояснений, делаем вывод: хеширование – процесс сжатия входящего потока информации любого объема (хоть все труды Уильяма Шекспира) до короткой «аннотации» в виде набора случайных символов и цифр фиксированной длины.

Коллизии

Коллизии хэш-функций подразумевает появление общего хэш-кода на два различных массива информации. Неприятная ситуация возникает по причине сравнительно небольшого количества символов в хэш. Другими совами, чем меньше знаков использует конечная формула, тем больше вероятность итерации (повтора) одного и того же хэш-кода на разные наборы данных. Чтобы снизить риск появления коллизии, применяют двойное хеширование строк, образующее открытый и закрытый ключ – то есть, используется 2 протокола, как, например, в Bitcoin. Специалисты, вообще, рекомендуют обойтись без хеширования при осуществлении каких-либо ответственных проектов, если, конечно же, это возможно. Если без криптографической хэш-функции не обойтись, протокол обязательно нужно протестировать на совместимость с ключами.

Важно! Коллизии будут существовать всегда. Алгоритм хеширования, перерабатывающий различный по объему поток информации в фиксированный по количеству символов хэш-код, в любом случае будет выдавать дубли, так как множеству наборов данных противостоит одна и та же строчка заданной длины. Риск повторений можно только снизить.

Технические параметры

Основополагающие характеристики протоколов хеширования выглядят следующим образом:

Здесь стоит так же отметить важные свойства алгоритмов: способность «свертывать» любой массив данных, производить хэш конкретной длины, распределять равномерно на выходе значения функции. Необходимо заметить, любые изменения во входящем сообщении (другая буква, цифра, знак препинания, даже лишний пробел) внесут коррективы в итоговый хэш-код. Он просто будет другим – такой же длины, но с иными символами.

Требования

К эффективной во всех отношениях хэш-функции выдвигаются следующие требования:

Данные требования выполнимы исключительно тогда, когда протокол базируется на сложных математических уравнениях.

Практическое применение

Процедура хеширования относительно своего функционала может быть нескольких типов:

Разберемся детальней в сфере применения протоколов хеширования.

Скачивание файлов из Всемирной Паутины

Этим занимается фактически каждый активный пользователь Всемогущей Сети, сталкиваясь с хэш-функциями сам того не осознавая, так как мало кто обращает внимание при скачивании того или иного файла на череду непонятных цифр и латинских букв. Однако именно они и есть хэш или контрольные суммы – перед вереницей символов стоит название используемой категории протокола хеширования. В общем-то, для обывателей абсолютно ненужная «инфа», а продвинутый юзер может выяснить, скачал ли он точную копию файла или произошла ошибка. Для этой процедуры необходимо установить на собственный ПК специальную утилиту (программу), которая способна вычислить хэш по представленному протоколу.

Важно! Установив на ПК пакет утилит, прогоняем через него файлы. Затем сравниваем полученный результат. Совпадение символов говорит о правильной копии – соответствующей оригиналу. Обнаруженные различия подразумевают повторное скачивание файла.

Алгоритм и электронно-цифровая подпись (ЭЦП)

Цифровая резолюция (подпись) – кодирование документа с использованием ключей закрытого и открытого типа. Другими словами, первоначальный документ сопровождается сообщением, закодированным закрытым ключом. Проверка подлинности электронной подписи осуществляется с применением открытого ключа. При обстоятельствах, когда в ходе сравнения хэш двух информационных наборов идентичен, документ, который получил адресат, признается оригинальным, а подпись истинной. В сухом остатке получаем высокую скорость обработки потока наборов данных, эффективную защиту виртуального факсимиле, так как подпись обеспечивается криптографической стойкостью. В качестве бонуса – хэш подразумевает использование ЭЦП под разнообразными типами информации, а не только текстовыми файлами.

Ревизия паролей

Очередная область применения хэш-функции, с которой сталкивается практически каждый пользователь. Подавляющее большинство серверов хранит пользовательские пароли в значении хэш. Что вполне обоснованно, так как, сберегая пароли пользователей в обычной текстовой форме, можно забыть о безопасности конфиденциальных, секретных данных. Столкнувшись с хэш-кодом, хакер даже время терять не будет, потому что, обратить вспять произвольный набор символов практически невозможно. Конечно же, если это не пароль в виде «12345» или что-то на подобии него. Доступ осуществляется путем сравнения хэш-кода вводимого юзером с тем, который хранится на сервере ресурса. Ревизию кодов может осуществлять простейшая хэш-функция.

Важно! В реальности программисты применяют многоярусный комплексный криптографический протокол с добавлением, в большинстве случаев, дополнительной меры безопасности – защищенного канала связи, чтобы виртуальные мошенники не перехватили пользовательский код до того, как он пройдет проверку на сервере.

Как появилось понятие хэш?

Сделаем небольшую паузу, чтобы интеллект окончательно не поплыл от потока сложных для простых пользователей терминов и информации. Расскажем об истории появления термина «хэш». А для простоты понимания выложим «инфу» в табличной форме.

Дата (год)Хронология событий
1953Известный математик и программист Дональд Кнут авторитетно считает, что именно в этот промежуток времени сотрудник IBM Ханс Питер Лун впервые предложил идею хеширования.
1956Арнольд Думи явил миру такой принцип хеширования, какой знают его подавляющее большинство современных программистов. Именно эта «светлая голова» предложила считать хэш-кодом остаток деления на любое простое число. Кроме этого, исследователь видел идеальное хеширование инструментов для позитивной реализации «Проблемы словаря».
1957Статья Уэсли Питерсона, опубликованная в «Journal of Research and Development», впервые серьезно затронула поиск информации в больших файлах, определив открытую адресацию и ухудшение производительности при ликвидации.
1963Опубликован труд Вернера Бухгольца, где было представлено доскональное исследование хэш-функции.
1967В труде «Принципы цифровых вычислительных систем» авторства Херберта Хеллермана впервые упомянута современная модель хеширования.
1968Внушительный обзор Роберта Морриса, опубликованный в «Communications of the ACM», считается точкой отсчета появления в научном мире понятия хеширования и термина «хэш».

Интересно! Еще в 1956 году советский программист Андрей Ершов называл процесс хеширования расстановкой, а коллизии хэш-функций – конфликтом. К сожалению, ни один из этих терминов не прижился.

Стандарты хеширования: популярные варианты

Итак, от экскурса в историю перейдем вновь к серьезной теме. Опять-таки, ради простоты восприятия предлагаем краткое описание популярных стандартов хеширования в табличном виде. Так проще оценить информацию и провести сравнение.

На этом, пожалуй, закончим экскурсию в мир сложных, но весьма полезных и востребованных протоколов хеширования.

Источник

Что такое хэш в майнинге? Как он работает?

хеш для чего нужен. chto takoe hesh. хеш для чего нужен фото. хеш для чего нужен-chto takoe hesh. картинка хеш для чего нужен. картинка chto takoe hesh. Одним из ключевых слов, которые новички слышат, когда узнают о блокчейне, являются понятия хэша и алгоритма хэширования, которые кажутся распространёнными для безопасности. Запуск децентрализованной сети и консенсуса, такой как биткойн или сеть эфириум с десятками тысяч узлов, соединенных через p2p, требует, как “надежности”, так и эффективности проверки. То есть, эти системы нуждаются в способах кодирования информации в компактном формате, позволяющем обеспечить безопасную и быструю проверку ее участниками

хеш для чего нужен. yobit. хеш для чего нужен фото. хеш для чего нужен-yobit. картинка хеш для чего нужен. картинка yobit. Одним из ключевых слов, которые новички слышат, когда узнают о блокчейне, являются понятия хэша и алгоритма хэширования, которые кажутся распространёнными для безопасности. Запуск децентрализованной сети и консенсуса, такой как биткойн или сеть эфириум с десятками тысяч узлов, соединенных через p2p, требует, как “надежности”, так и эффективности проверки. То есть, эти системы нуждаются в способах кодирования информации в компактном формате, позволяющем обеспечить безопасную и быструю проверку ее участниками

хеш для чего нужен. colibri. хеш для чего нужен фото. хеш для чего нужен-colibri. картинка хеш для чего нужен. картинка colibri. Одним из ключевых слов, которые новички слышат, когда узнают о блокчейне, являются понятия хэша и алгоритма хэширования, которые кажутся распространёнными для безопасности. Запуск децентрализованной сети и консенсуса, такой как биткойн или сеть эфириум с десятками тысяч узлов, соединенных через p2p, требует, как “надежности”, так и эффективности проверки. То есть, эти системы нуждаются в способах кодирования информации в компактном формате, позволяющем обеспечить безопасную и быструю проверку ее участниками

Как работает хэш

Основой любой криптовалюты является блокчейн, который представляет собой глобальную бухгалтерскую книгу, образованную объединением отдельных блоков данных транзакций.

Блокчейн содержит только надежные, проверенные транзакции и тем самым предотвращает мошеннические операции и двойные траты.

Зашифрованное значение представляет собой последовательность цифр и букв, которые совсем не похожи на исходные данные – это и называется хэшем. Майнинг криптовалюты проделывает работу с этим хэшем.

Хеширование требует обработку данных из блока через математическую функцию, что и приводит к выводу фиксированной длины. Использование фиксированной длины повышает безопасность, так как любой, кто пытается взломать хэш, не сможет определить длину, увидив длину вывода.

Решение хэша – это решение сложной математической задачи, которое начинается с данных, доступных в заголовке блока. Каждый заголовок блока содержит номер версии, временную метку, хэш, использованный в предыдущем блоке, хэш Merkle, одноразовый номер и целевой хэш.

Майнер сосредотачивается на одноразовом числе, строке чисел. Этот номер добавляется к хэшированному содержимому предыдущего блока, который затем сам хэшируется. В случае если новый хэш меньше или равен целевому хэшу, то он становится решением и майнер получает свое вознаграждение, а сам блок добавляется в цепочку блоков.

Способ проверки транзакций блокчейна образован на шифровании данных с использованием алгоритмического хеширования.

Решение хэша требует от майнера определить, какую строку использовать в качестве одноразового номера, что само по себе требует значительного количества проб и ошибок.

Это связано с тем, что одноразовый номер является случайной строкой. Вряд ли майнер удачно придумает правильный одноразовый номер с первой попытки, а это значит, что он потенциально может протестировать большое количество вариантов одноразового номера, прежде чем получить его правильное значение.

Пример хэша

Хэширование слова «Компьютер» будет той же длины, что и хеш фразы «Майнинг это круто». Функция, используемая для генерации хеша, является детерминированной, что означает, что она будет давать один и тот же результат каждый раз, когда используется один и тот же ввод.

Обработка хеш-функций, необходимых для шифрования новых блоков, требует значительной вычислительной мощности компьютера (майнинг фермы), что становится в наше время дорогостоящим занятием.

Чтобы привлечь как можно больше майнеров, сама сеть криптовалюты вознаграждает их как новыми токенами, так и монетами с комиссии за транзакцию.

Майнеры получают монеты только в том случае, если они первыми создали хэш, который отвечает требованиям, указанным в целевом хеше.

Источник

Что такое хеширование?

Как обычные, так и криптографические хэш-функции являются детерминированными. Быть детерминированным означает, что до тех пор, пока входные данные не изменяются, алгоритм хеширования всегда будет выдавать один и тот же результат (также известный как дайджест или хэш).

Алгоритмы хеширования в криптовалютах разработаны таким образом, что их функция работает в одностороннем порядке, это означает, что данные не могут быть возвращены в обратном порядке без вложения большого количества времени и ресурсов для осуществления вычислений. Другими словами, довольно легко создать выход из входных данных, но относительно трудно осуществить процесс в обратном направлении (сгенерировать вывод на основе входных данных). Чем сложнее найти входное значение, тем более безопасным считается алгоритм хеширования.

Как работает хэш-функция?

Различные виды хэш-функций производят вывод разной величины, но возможный размер данных на выходе для каждого из алгоритмов хеширования всегда является постоянным. Например, алгоритм SHA-256 может производить вывод исключительно в формате 256-бит, в то время как SHA-1 всегда генерирует 160-битный дайджест.

Чтобы проиллюстрировать это, давайте пропустим слова “Binance“ и “binance” через алгоритм хеширования SHA-256 (тот, который используется в биткоин).

Обратите внимание, что незначительное изменение (регистр первой буквы) привело к совершенно другому значению хэша. Поскольку мы используем SHA-256, данные на выходе всегда будут иметь фиксированный размер в 256 бит (или 64 символа), независимо от величины ввода. Помимо этого, не имеет значения какое количество раз мы пропустим эти два слова через алгоритм, два выхода не будут видоизменяться, поскольку они являются постоянными.

Таким же образом, если мы пропустим одни и те же входные данные с помощью алгоритма хеширования SHA-1, мы получим следующие результаты:

Стоит отметить, что акроним SHA расшифровывается как Secure Hash Algorithms (безопасный алгоритм хеширования). Он относится к набору криптографических хэш-функций, который включает такие алгоритмы как SHA-0 и SHA-1 вместе с группами SHA-2 и SHA-3. SHA-256 является частью группы SHA-2, наряду с SHA-512 и другими аналогами. В настоящее время, только группы SHA-2 и SHA-3 считаются безопасными.

Почему это имеет значение?

Хеширование демонстрирует весь свой потенциал при работе с огромным количеством информации. Например, можно пропустить большой файл или набор данных через хэш-функцию, а затем использовать вывод для быстрой проверки точности и целостности данных. Это возможно благодаря детерминированной природе хэш-функций: вход всегда будет приводить к упрощенному сжатому выходу (хэшу). Такой метод устраняет необходимость хранить и запоминать большие объемы данных.

Хеширование является в особенности полезным в отношении технологии блокчейн. В блокчейне биткоина осуществляется несколько операций, которые включают себя хеширование, большая часть которого заключается в майнинге. По факту, практически все криптовалютные протоколы полагаются на хеширование для связывания и сжатия групп транзакций в блоки, а также для создания криптографической взаимосвязи и эффективного построения цепочки из блоков.

Криптографические хэш-функции

Опять же обращаем ваше внимание на то, что хэш-функция, которая использует криптографические методы, может быть определена как криптографическая хэш-функция. Для того, чтобы ее взломать потребуется бесчисленное множество попыток грубого подбора чисел. Чтобы реверсировать криптографическую хэш-функцию, потребуется подбирать входные данные методом проб и ошибок, пока не будет получен соответствующий вывод. Тем не менее, существует возможность того, что разные входы будут производить одинаковый вывод, в таком случае возникает коллизия.

С технической точки зрения, криптографическая хэш-функция должна соответствовать трем свойствам, чтобы считаться безопасной. Мы можем описать их как: устойчивость к коллизии, и устойчивость к поиску первого и второго прообраза.

Прежде чем начать разбирать каждое свойство, обобщим их логику в трех коротких предложениях.

Устойчивость к коллизии: невозможно найти два разных входа, которые производят хэш, аналогичный выводу.

Устойчивость к поиску первого прообраза: отсутствие способа или алгоритма обратного восстановления хэш-функцию (нахождение входа по заданному выходу).

Устойчивость к поиску второго прообраза: невозможно найти любой второй вход, который бы пересекался с первым.

Устойчивость к коллизии

Как упоминалось ранее, коллизия происходит, когда разные входные данные производят одинаковый хэш. Таким образом, хэш-функция считается устойчивой к коллизиям до тех пор, пока кто-либо не обнаружит коллизию. Обратите внимание, что коллизии всегда будут существовать для любой из хэш-функций, в связи с бесконечным количеством входных данных и ограниченным количеством выводов.

Таким образом, хэш-функция устойчива к коллизии, когда вероятность ее обнаружения настолько мала, что для этого потребуются миллионы лет вычислений. По этой причине, несмотря на то, что не существует хэш-функций без коллизий, некоторые из них на столько сильные, что могут считаться устойчивыми (например, SHA-256).

Устойчивость к поиску первого прообраза

Данное свойство тесно взаимосвязано с концепцией односторонних функций. Хэш-функция считается устойчивой к поиску первого прообраза, до тех пор, пока существует очень низкая вероятность того, что кто-то сможет найти вход, с помощью которого можно будет сгенерировать определенный вывод.

Обратите внимание, что это свойство отличается от предыдущего, поскольку злоумышленнику потребуется угадывать входные данные, опираясь на определенный вывод. Такой вид коллизии происходит, когда кто-то находит два разных входа, которые производят один и тот же код на выходе, не придавая значения входным данным, которые для этого использовались.

Свойство устойчивости к поиску первого прообраза является ценным для защиты данных, поскольку простой хэш сообщения может доказать его подлинность без необходимости разглашения дополнительной информации. На практике многие поставщики услуг и веб-приложения хранят и используют хэши, сгенерированные из паролей вместо того, чтобы пользоваться ими в текстовом формате.

Устойчивость к поиску второго прообраза

Для упрощения вашего понимания, можно сказать, что данный вид устойчивости находится где-то между двумя другими свойствами. Атака нахождения второго прообраза заключается в нахождении определенного входа, с помощью которого можно сгенерировать вывод, который изначально образовывался посредством других входных данных, которые были заведомо известны.

Другими словами, атака нахождения второго прообраза включает в себя обнаружение коллизии, но вместо поиска двух случайных входов, которые генерируют один и тот же хэш, атака нацелена на поиск входных данных, с помощью которых можно воссоздать хэш, который изначально был сгенерирован с помощью другого входа.

Следовательно, любая хэш-функция, устойчивая к коллизиям, также устойчива и к подобным атакам, поскольку последняя всегда подразумевает коллизию. Тем не менее, все еще остается возможность для осуществления атаки нахождения первого прообраза на функцию устойчивую к коллизиям, поскольку это предполагает поиск одних входных данных посредством одного вывода.

Майнинг

В этом случае, хешрейт представляет собой количество мощности вашего компьютера, которое вы инвестируете в майнинг биткоинов. Если хешрейт начинает увеличиваться, протокол биткоина автоматически отрегулирует сложность майнинга так, чтобы среднее время необходимое для добычи блока составляло не более 10 минут. Если несколько майнеров примут решение прекратить майнинг, что приведет к значительному снижению хешрейта, сложность добычи будет скорректирована таким образом, чтобы временно облегчить вычислительную работу (до тех пор, пока среднее время формирования блока не вернется к 10 минутам).

Обратите внимание, что майнерам не нужно искать коллизии, в связи с некоторым количеством хэшей, которые они могут генерировать в качестве валидного выхода (начинающегося с определенного количества нулей). Таким образом, существует несколько возможных решений для определенного блока и майнеры должны найти только одно из них, в соответствии с порогом, который определяется сложностью майнинга.

Поскольку майнинг биткоина является столь затратной задачей, у майнеров нет причин обманывать систему, так как это приведет к значительным финансовым убыткам. Соответственно, чем больше майнеров присоединяется к блокчейну, тем больше и сильнее он становится.

Заключение

Нет сомнений в том, что хэш-функции являются одним из основных инструментов информатики, особенно при работе с огромными объемами данных. В сочетании с криптографией, алгоритмы хеширования могут быть весьма универсальными, предлагая безопасность и множество способов аутентификации. Таким образом, криптографические хеш-функции жизненно важны практически для всех криптовалютных сетей, поэтому понимание их свойств и механизмов работы, безусловно полезно для всех, кто интересуется технологией блокчейн.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *