хемилюминесцентный иммуноанализ на микрочастицах что это значит
Коронавирус SARS-CoV-2, нейтрализующие антитела IgG к RBD домену S-белка (Architect, Abbott) (кол.) в Москве
Количественное определение уровня антител класса IgG к рецептор-связывающему домену (RBD) S-белка бета-коронавируса SARS-CoV-2 в сыворотке крови методом хемилюминесцентного иммуноанализа на микрочастицах (реагенты SARS-CoV-2 IgG II Quant Reagent Kit).
Приём и исследование биоматериала
Когда нужно сдавать анализ Коронавирус SARS-CoV-2, нейтрализующие антитела IgG к RBD домену S-белка (Architect, Abbott) (кол.)?
Подробное описание исследования
Исследование может быть использовано для количественной оценки гуморального иммунного ответа у пациентов после перенесённой коронавирусной инфекции, а также после иммунизации против COVID-19 вакциной «Спутник V» (Гам-КОВИД-Вак) и другими, кроме вакцины «ЭпиВакКорона».
SARS-CoV-2 – это бета-коронавирус семейства Coronaviridae. Вирион, или вирусная частица, представляет собой генетический материал – рибонуклеиновую кислоту (РНК), – связанный со специальным нуклеокапсидным белком (N-белком), упакованный в сферическую белковую оболочку.
На внешней поверхности оболочки вириона находятся «шипы», образованные S-белком (от английского Spike – шип). Благодаря «шипам» происходит проникновение вириона в клетку. S-белок состоит из двух функциональных субъединиц: S1 (содержащая RBD-домен) обеспечивает связывание с рецептором клетки-мишени, S2 способствует слиянию вируса и клеточной мембраны. Также с S-белком, способным самостоятельно циркулировать в крови и даже проникать через гематоэнцефалический барьер, связывают нарушения в системе гемостаза и иные патологические состояния у больных и переболевших COVID-19.
Как правило, инфекционный процесс начинается после проникновения вируса в эпителиальные клетки, выстилающие слизистые оболочки верхних дыхательные путей. В зараженных клетках начинается активная репликация вируса – многократное увеличение числа копий вирусных частиц, или вирионов. Новые вирионы выходят из пораженных клеток и заражают все большее количество здоровых клеток уже не только верхних, но и нижних дыхательных путей. В том числе возможно поражение альвеолярных клеток II типа, что определяет развитие пневмонии.
Вирионы SARS-CoV-2 способны проникать в клетки, на поверхности которых присутствует мембранный белок ангиотензинпревращающий фермент II типа (АПФ2, ACE2), который служит рецептором для вирусной частицы. АПФ2 представлен на оболочках клеток органов дыхательной и центральной нервной системы, пищевода, подвздошной кишки, почек, мочевого пузыря, сердца. Новый коронавирус способен поражать нервные клетки, в том числе клетки головного мозга, с чем связывают расстройство восприятия запахов у некоторых пациентов.
Инфекция SARS-CoV-2 может протекать бессимптомно (до 50% случаев), в легкой и в тяжелой формах. В последнем случае возможно развитие острого респираторного синдрома (Severe Acute Respiratory Syndrome, SARS) на фоне двусторонней пневмонии. Инкубационный период длится 2–14 суток, чаще 5–7 суток. После чего у пациента появляются симптомы острой респираторной вирусной инфекции (ОРВИ).
Все инфицированные коронавирусом, даже те, у кого инфекция протекает в стёртой или в бессимптомной форме, являются источником инфекции уже в первые дни после заражения. Так как они выделяют вирусные частицы в окружающую среду с выдыхаемым воздухом, при разговоре, кашле, чихании. Вирусовыделение в среднем продолжается около 20 суток, однако в отдельных случаях может продолжаться дольше месяца.
В связи с тем, что новая коронавирусная инфекция пока недостаточно изучена, а также с коротким сроком применения вакцин, пока достоверно не известен срок циркуляции в крови нейтрализующих антител.
Особенности и преимущества методики
SARS-CoV-2 IgG II Количественный Реагенты для ARCHITECT, Abbott.
Использованная литература
Другие названия этого исследования
Quantitative detection of neutralizing IgG antibodies to the spike (S) protein of SARS-CoV-2
Подготовка к исследованию
Противопоказания и ограничения
Абсолютных противопоказаний нет.
Интерпретация результата
Результат исследования, в котором указано значение >5680 BAU/ml, свидетельствует о достаточном уровне гуморального иммунного ответа. Показатели сероконверсии и периода циркуляции антител обусловлены индивидуальными особенностями организма, и нет объективных причин для их оценки у пациентов с достаточным уровнем иммунного ответа.
Современные возможности технологии хемилюминесцентного анализа в хирургической клинике
Ю.С. Винник, А.А. Савченко, О.В. Теплякова, Е.В. Онзуль, А.И. Дробушевская
ГОУ ВПО «Красноярский государственный медицинский университет Министерства здравоохранения и социального развития РФ им. В.Ф.Войно-Ясенецкого»,
Кафедра общей хирургии
История изучения хемилюминесценции (ХЛ) биологических объектов насчитывает около пяти десятилетий с тех пор, как итальянские астрономы Л.Колли и У.Фаччини обнаружили свечение непигментированных тканей растений. Если в первых работах интерес к ХЛ был связан, в основном, с поисками принципиальных доказательств образования возбужденных и свободнорадикальных состояний в темновых биологических реакциях, то сейчас ХЛ является по существу обычным лабораторным методом, широко используемым в клинике. Успехи в этой области во многом связаны с совершенствованием техники регистрации слабых световых потоков, позволяющей улавливать излучение отдельных клеток и получать микроскопическое изображение свечения [11, 17].
На сегодняшний день химические и физические явления, лежащие в основе превращения энергии биохимических реакций в световое излучение, в основном расшифрованы. Хемилюминесцентная реакция включает следующие основные стадии: а) восстановление одного из участников реакции и окисление второго, приводящее к накоплению химической энергии в системе; б) перенос электрона на один из более высоких энергетических уровней и образование, таким образом, продукта реакции в электронно-возбужденном состоянии; в) высвечивание фотона при переходе молекулы из электронно-возбужденного в основное состояние (люминесценция) [2, 3, 19]. Разнообразие реальных механизмов хемилюминесцентных реакций определяется природой и энергетикой отдельных стадий, структурой реагентов, большим числом промежуточных и конечных продуктов.
Сверхслабое свечение или собственное излучение клеток и тканей практически всегда сопровождает процессы жизнедеятельности и может быть обусловлено тремя типами реакций: реакциями активных форм кислорода (АФК), реакциями цепного (перекисного) окисления липидов, реакциями с участием оксида азота [22]. Главным источником АФК в организме человека и животных служат клетки-фагоциты: гранулоциты, моноциты крови и тканевые макрофаги. Непосредственной причиной собственной хемилюминесценции активированных фагоцитов считают образование синглетного кислорода в реакциях между кислородными радикалами, перекисью водорода и гипохлоритом.
Одной из основных составляющих собственной (неактивированной) хемилюминесценции животных клеток и тканей является свечение, сопровождающее цепное окисление липидов в мембранных структурах клеток и липопротеинах крови. В реакции взаимодействия двух радикалов липопероксида образуются молекулы кетона и кислорода в электронно-возбужденном состоянии, которые затем переходят в основное состояние, испуская квант света (фотон). Увеличение продукции радикалов в системе сопровождается ростом интенсивности ХЛ. Вещества-антиоксиданты, реагирующие со свободными радикалами и тормозящие цепное окисление, одновременно подавляют хемилюминесценцию. При этом подавление собственной хемилюминесценции тканей и клеток антиоксидантами, например токоферолом, указывает на то, что это свечение обусловлено реакциями цепного окисления липидов. С другой стороны, изучая влияние различных природных и синтетических соединений на кинетику ХЛ, можно получать представление о способности этих веществ препятствовать повреждающему действию свободных радикалов [5, 12, 22].
Собственная хемилюминесценция, сопровождающая биохимические реакции в клетках и тканях, отличается низкой интенсивностью, что явилось основным препятствием на пути к широкому ее использованию в аналитических целях. Значительное распространение получило измерение хемилюминесценции в присутствии активаторов (индукторов). Химическими активаторами (зондами ХЛ) называют соединения, вступающие в реакции с активными формами кислорода или органическими свободными радикалами, в ходе которых образуются молекулы продуктов в возбужденном электронном состоянии. Наблюдаемое при этом свечение связано с переходом молекул в основное состояние, что приводит к высвечиванию фотонов. Известными представителями группы химических активаторов являются люминол (3-аминофталевый гидразид) и люцигенин [Бис(N-метилакридиний)] [2, 5].
Физические активаторы не вступают в химические реакции и не влияют на ход реакций, сопровождающихся свечением, но, тем не менее, многократно усиливают интенсивность хемилюминесценции. К ним относятся некоторые люминесцирующие соединения, усиливающие ХЛ при цепном окислении липидов, в том числе родамин Ж, ализариновый красный, конго красный, фуксин кислый, метиленовый голубой, акридиновый оранжевый, некоторые порфирины и редкоземельные металлы. Поиск веществ-активаторов, не оказывающих влияния на ход реакций перекисного окисления, но многократно увеличивающих интенсивность свечения, продолжается в настоящее время.
В широкой клинической практике хемилюминесцентный анализ используется в трех основных вариантах: ХЛ сыворотки крови и других биологических жидкостей, клеточная ХЛ и хемилюминесцентный иммунный анализ.
Индуцированная ХЛ сыворотки крови, по мнению большинства исследователей, является наиболее чувствительным и объективным методом изучения процесса перекисного окисления липидов. Реакции цепного окисления отличаются большой сложностью и включают в себя целый ряд быстропротекающих стадий. Основные участники реакций, свободные радикалы, обычными методами химического анализа определены быть не могут из-за своей крайне высокой реакционной способности и неустойчивости в биохимических системах. Поэтому регистрация интенсивности свечения в режиме реального времени представляет собой ценную информацию для анализа механизма реакций перекисного окисления липидов.
Уровень ХЛ сыворотки крови является отражением подвижного равновесия, объективным интегральным показателем соотношения интенсивности ПОЛ и активности биологических антиоксидантных систем организма. Регистрация ХЛ тканей и биологических жидкостей лежит в основе многообразия методов выявления ранних стадий нарушения защитно-приспособительных реакций организма, диагностики состояния предболезни, определения прогноза и тяжести заболевания, выбора этиопатогенетического воздействия и контроля состояния пациента [1, 11, 15, 18].
Концентрация свободных радикалов в исследуемом объекте определяется по значению максимальной интенсивности сигнала (I max) и светосуммы (S). Антиоксидантный потенциал пробы коррелирует со скоростью падения кривой хемилюминесценции (tg a) и коэффициентом К, определяемым по соотношению I max/S. При острых воспалительных процессах наблюдается увеличение I max и S, при этом степень увеличения пропорциональна тяжести воспалительного процесса. Снижение значений указанных показателей более чем в два раза регистрируется при наличии злокачественных новообразований [5, 13].
Анализ кинетики хемилюминесцентных реакций различных биологических жидкостей (сыворотки крови, мочи, ликвора, слюны, раневого, плеврального и перитонеального экссудата) позволяет осуществлять дифференциальную диагностику неспецифического воспаления и онкологического процесса, функционального и органического поражения. Так, определение интенсивности ХЛ сыворотки крови лежит в основе экспресс-метода дифференциальной диагностики приступа абдоминальной формы периодической болезни и заболеваний, протекающих с картиной «острого живота», и позволяет уменьшить частоту необоснованных хирургических вмешательств [2, 11, 18].
Существенный интерес представляет изучение влияния на ХЛ разнообразных внешних агентов, обладающих как про-, так и антиоксидантным действием. В клинической практике способность антиоксидантов подавлять люцигенинзависимую хемилюминесценцию используется для оценки их количественного содержания в биологическом материале. С другой стороны, анализ интенсивности ХЛ является адекватным критерием эффективности и безопасности антиоксидантной и окислительной терапии [8, 9, 10, 16, 20]. Исследование ХЛ сыворотки крови позволило подтвердить, в частности, эффективность озонотерапии в компенсации свободнорадикального окисления [8, 9, 16, 17].
По мнению Е.В.Иванишкиной и соавт., наиболее информативным хемилюминесцентным показателем контроля эффективности микроволновой резонансной терапии в лечении язвенной болезни является суммарная антиоксидантная активность сыворотки крови. Изучение динамики ХЛ раневого экссудата у больных с длительно незаживающими ранами и трофическими язвами нижних конечностей позволяет прогнозировать скорость процесса репарации и оценить эффективность влияния различных средств местного лечения.
В последнее время, однако, термин «клеточная ХЛ» чаще употребляется в более узком смысле: так называют свечение, сопровождающее продукцию активных форм кислорода клетками-фагоцитами. В основе этого типа клеточной ХЛ лежит образование супероксидного анион-радикала в результате одноэлектронного восстановления молекулярного кислорода ферментной системой НАДФН-оксидазой. Дальнейшие превращения этого первичного радикала сопровождаются хемилюминесценцией. Высокая чувствительность данного метода, абсолютная безвредность по сравнению с радиоиммунологическим анализом, а также большой научный интерес к деятельности клеток-фагоцитов привели к тому, что число публикаций по данному вопросу ежегодно исчисляется тысячами, а сфера применения метода постоянно растет. ХЛ анализ позволяет исследовать механизмы активации фагоцитов (полиморфноядерных лейкоцитов, тканевых макрофагов), оценить иммунореактивность организма под влиянием иммунодепрессивных и стимулирующих воздействий, выявить недостаточность опсонических факторов сыворотки, в том числе индуцирующихся при активации альтернативного пути комплемента, специфических антител.
Метод регистрации ХЛ клеток крови позволяет проводить изучение и отбор иммуномодулирующих фармакологических препаратов на основании сравнения люминолзависимой стимулированной хемилюминесценции до и после введения в пробу с лейкоцитарной взвесью исследуемых препаратов.
Хемилюминесцентный тест является высокочувствительным и безопасным методом диагностики непереносимости лекарственных средств. В случае непереносимости инкубация цельной крови с раствором этих препаратов в терапевтических концентрациях сопровождается достоверным снижением генерации активных форм кислорода нейтрофилами, стимулированными неспецифическими активаторами. Снижение люминолзависимой хемилюминесценции цельной крови при непереносимости лекарственного препарата отмечается независимо от химических свойств и принадлежности медикаментов к фармакологическим группам.
Возможности хемилюминометрии значительно расширились после разработки ее модификаций, основанных на хемилюминесцентном иммунном анализе. Для определения содержания в средах организма антигенов, антител и биологически активных веществ используется связывание одного из реагентов с хемилюминесцентной меткой, изменяющей энергетическое состояние во время иммунологической реакции антиген-антитело. Хемилюминесцентной меткой чаще всего служат низкомолекулярные соединения, по химической структуре близкие люминолу и люцигенину, такие как изолюминол, сукцинилированный люминол, эфиры акридиния и другие. Присоединение метки производится либо к антигену, т.е. низкомолекулярному соединению (хемилюминесцентный иммунный анализ), либо к антителу на этот антиген (иммунохемилюминометрический анализ). Оба метода направлены на экспресс-определение биологически активных низкомолекулярных соединений (гормонов, антител, лимфокинов и др.) в сверхнизких концентрациях [7, 24].
В заключении необходимо отметить, что анализ данных литературы демонстрирует большие возможности применения хемилюминесцентного анализа в клинико-биохимических лабораториях для целей медицинской диагностики. К перспективам использования метода можно отнести расширение круга изучаемых заболеваний, уточнение патогенеза болезней и прогнозирование их исхода, динамическое наблюдение за эффективностью терапии, определение новых направлений лечебно-профилактического воздействия.
1. Авзалетдинова, А.Р. Хемилюминесценция крови и мочи у больных геморрагической лихорадкой с почечным синдромом /А.Р. Авзалетдинова, Р.Р. Фархутдинов, Р.М. Фазлыева // Здравоохранение Башкортостана.- 1994.- №4.- С. 36- 39.
3. Дамбаева, С.В. Оценка продукции активных форм кислорода методом лазерной проточной цитометрии в клетках периферической крови человека / С.В. Дамбаева, Д.В. Мазуров, Б.Г. Пинегин // Иммунология.- 2001.- №6.- С.58- 60.
4. Демин, Д.Б. Прогностическое значение содержания продуктов липопероксидации в тканях при панкреонекрозе / Д.Б. Демин, В.С. Тарасенко, Д.В. Волков // Вестник хирургии.- 2003.- Том 162.- №5.-С. 47-50.
6. Друх, В.М. Метод изучения хемилюминесценции лейкоцитов цельной крови / В.М. Друх // Клин. лаб. диагностика.- 2004.- №12.- С.41.
7. Кондрашова, Е.А. Хемилюминесценция как наиболее чувствительный метод иммуноферментного анализа и его применение / Е.А. Кондрашова, М.Г. Кожанов// Клиническая лабораторная диагностика.- 1999.- №9.- С.32.
9. Коррекция гомеостаза при остром панкреатите методом озонотерапии / М.И. Гульман, Ю.С. Винник, С.В. Миллер и др.//- Красноярск, 2003.-С.179.
10. Кузнецов, Н.А. Результаты применения синтетических антиоксидантов в лечении больных деструктивным панкреатитом / Н.А. Кузнецов, Г.В. Родоман // Хирургия.-2005.-№3.- С.36-39.
12. Меньшикова, Е.Б. Антиоксиданты и ингибиторы радикальных окислительных процессов / Е.Б. Меньшикова, Н.К. Зенков // Успехи современной биологии.- 1993.- №4.- С. 422- 455.
13. Меньшикова, Е.Б. Окислительный стресс при воспалении / Е.Б. Меньшикова, Н.К. Зенков // Успехи современной биологии.- 1997.- №2.- С. 155- 171.
15. Островский, В.К. Оценка тяжести и прогноз гнойно-деструктивных заболеваний органов брюшной полости / В.К. Островский, А.В. Мащенко // Хирургия.- 2007.- №1.- С.33.37.
17. Стежко, Д.В. Новая хемилюминесцентная технология и прибор определения воздействия озона во время проведения сеансов озонотерапии / Д.В. Стежко // Новая технология: Научн. техн. сборник.- 2003.- №1.- С. 21-24.
18. Терехина, Н.А. Хемилюминесцентный анализ биологических жидкостей больных сахарным диабетом / Н.А. Терехина // Клин. лаб. диагностика.- 2004.- №10.- С.20.
Антитела класса IgA/IgG к коронавирусу COVID-19 (Anti-SARS-CoV-2 IgA/IgG), полуколичественное комплексное определение
Описание
Исследуемый биоматериал: Кровь венозная (сыворотка)
Метод исследования: иммуноферментный анализ (ИФА), хемилюминесцентный иммуноанализ на микрочастицах (ХИАМ)
Антитела – белки, вырабатываемые иммунной системой человеческого организма для обеспечения защиты (иммунитета) от инфекции (в данном случае вируса SARS-CoV-2). Чаще всего антитела остаются в организме человека длительное время. Выявление антител к SARS-CoV-2 имеет вспомогательное значение для диагностики текущей инфекции и основное для оценки иммунного ответа на текущую или перенесенную инфекцию.
Антитела класса А (IgA) начинают формироваться примерно со 2 дня от начала заболевания, достигают пика через 2 недели и сохраняются в крови длительное время. Антитела класса IgA к субъединице S1 в первую неделю заболевания выявляются у 75% больных.
Антитела класса G (lgG) к N-белку начинают выявляться примерно с 3-й недели или ранее и сохраняются на длительный период. Они указывают на то, что пациент мог заразиться COVID-19 в недавнем прошлом и у него выработался иммунный ответ, который может защитить от инфекции в будущем.
Внимание! Наличие антител к N-белку, не всегда коррелирует с наличием антител к S белку (Spike белок) коронавируса.
Анализ на антитела часто используется в качестве дополнительного метода к определению РНК вируса на слизистых рото- и носоглотки методом ПЦР. Так как мазок на коронавирус методом ПЦР может оказаться отрицательным (зависит от стадии репликации вируса на слизистых оболочках верхних дыхательных путей), то в таких случаях используются серологические методы диагностики, основанные на выявлении специфических антител к антигенам SARS-CoV-2. Обнаружение антител и нарастание их титра в динамике (через 5-7 дней от момента первичного исследования крови на антитела) свидетельствует, что причиной заболевания является инфицирование вирусом SARS-CoV-2.
Исследование антител IgA к субъединице S1 выполняется методом иммуноферментного анализа (ИФА) на автоматическом иммуноферментном анализаторе «Alisei Q.S.» с использованием тест систем «SARS-CoV-2-ELISA (IgA)» производства Euroimmun, Германия.
Исследование антител lgG к N-белку выполняется методом ХИАМ (хемилюминесцентный иммуноанализ на микрочастицах) на автоматическом анализаторе «ARCHITECT I2000» с использованием тест-систем «SARS-CoV-2 IgG» производства фирмы Abbott, США.
Подготовка
Сдавать кровь рекомендуется не ранее чем через 3 часа после последнего приема пищи, допускается употребление негазированной воды.
Показания
Определение антител используется как дополнительный метод диагностики коронавирусной инфекции.
Также тест на антитела к COVID-19 может быть назначен:
если ваш лечащий врач считает, что вы могли подвергнуться воздействию коронавируса на основании ваших текущих или предыдущих признаков и симптомов заболевания (лихорадка, кашель, затрудненное дыхание, потеря обоняния);
если Вы недавно путешествовали;
если Вы были в тесном контакте с человеком, у которого есть подозрение или подтверждено наличие COVID-19 или вы хотите проверить, контактировали ли вы с вирусом в недавнее время.
Формат результата
Единицы измерения
Интерпретация результата
В медицинской компании «LabQuest» Вы можете получить персональную консультацию врача службы «Doctor Q» по расшифровке результатов исследования во время приема или по телефону.
Необходимо помнить, что расшифровка анализов должна проводиться только врачом, так как результаты лабораторных исследований не являются единственным критерием, для постановки диагноза и назначения соответствующего лечения. Они должны рассматриваться в комплексе с данными анамнеза и результатами других возможных обследований, включая инструментальные методы диагностики.
Одновременное определение в сыворотке крови антител IgG и IgA к коронавирусу SARS-CoV-2 (положительный результат) чаще всего означает, что пациент недавно перенес инфекцию или в данный момент проходит стадию выздоровления. Обнаружение же только антител IgA, скорее всего, будет говорить о присутствии инфекции в организме в данное время. Если же определена только IgG, то, по всей вероятности, пациент уже перенес инфекцию.
Хемилюминесцентный иммуноанализ на микрочастицах что это значит
В настоящее время представлено множество моделей автоматических анализаторов, отличающихся по методу, используемому для обнаружения искомого вещества. Основными используемыми методами анализа являются:
Рассмотрим подробней иммунохемилюминесцентный анализ.
Иммунохемилюминесцентный анализ основывается на иммуноферментном методе, принцип которого был разработан в 1971, как замена радиоиммунному анализу, который представлял опасность для здоровья сотрудников лаборатории, проводивших исследования.
Дальнейшее развитие систем анализа использующих ИФА, в том числе их повсеместная автоматизация, привели к появлению разновидностей ИФА, а именно иммунохемилюминесцентному анализу.
Иммунохемилюминесцентный анализ (ИХЛА) является лабораторным анализом, который сочетает хемилюминесценцию (электромагнитное излучение, вызванное химической реакцией с образованием света) с реакцией образования иммунного комплекса «антиген-антитело». Как и в случае с другими видами иммуноанализа (РИА, ИФА), в ИХЛА используются химические компоненты, которые могут генерировать световое излучение в результате химической реакции, например, меченные антитела. Таким образом, метод обладает высокой чувствительностью и позволяет обнаружить широкий спектр веществ белковой природы.
ИХЛА бывает двух типов качественный и количественный. В первом случае определяется наличие или отсутствие в анализируемом материале искомого компонента, во втором случает определяется найденная концентрация определяемого компонента в материале. Чаще всего используется количественный тип ИХЛА.
В лабораторной диагностике, с применением ИХЛА, основными видами исследуемых жидкостей организма являются цельная кровь, плазма, сыворотка, моча, спинномозговая жидкость, мазки с слизистых оболочек. Вид используемой в исследовании жидкости определяется используемой моделью анализатора и совместимыми наборами реагентов.
Основные плюсы метода:
— Безопасность для персонала, проводящего исследование;
— Широкий спектр применения;
— Относительная простота используемого оборудования;
— Широкий линейный диапазон.
Основные минусы:
— Дороговизна реагентов и оборудования;
— Интерпретацию результатов должен осуществлять специалист;
— Низкая восприимчивость к инфекционным заболеваниям (большинство используемых реагентов могут лишь косвенно указать на наличие инфекции)
— Лечащему персоналу необходимо знать, какой аналит должен быть найден, при назначении исследования.
В последние годы ИХЛА привлекает все большее внимание в различных областях, включая биологию, клиническую диагностику, мониторинг окружающей среды, безопасность пищевых продуктов и фармацевтический анализ.