Группа ткс резистора что это
Температурный коэффициент. Тепло и холод в электронике.
Твой пытливый взор уже много раз встречал сокращения ТКС, ТКЕ, ТКИ. Может быть там же были и их расшифровки. Если же нет, то я хочу рассказать, что это такое и чем они могут быть полезны. Давай сегодня поговорим о температурном коэффициенте и его роли в электронике.
Итак, чтобы далеко не бегать, сразу разверну сокращения:
Скажем, при 20 градусах какой-нибудь резистор имеет сопротивление в 100 Ом, а при 80 чуть больше или меньше.
ТКС = ∆R/R
И было бы всё хорошо, да представь себе какой-нибудь каскад с транзистором. Например, каскад с ОЭ:
Для работы транзистора ему всегда задают некий режим, который условно называют «рабочей точкой». Заключается он в том, чтобы задать постоянный ток, протекающий через переход Б-Э.
Ниже приведена таблица ТКС некоторых металлов:
Сопротивление резистора с учетом температуры определяется по формуле:
Справедливости ради, скажу, что ТКС/ТКЕ/ТКИ могуть быть нелинейными. Для большинства металлов ТК будет положительным, для полупроводников и диэлектриков чаще всего будет отрицательным (для чистых полупроводников без примесей). А константан и манганин считай вообще не подвержены пагубным влияниям ТКС.
Теперь ты гуру температурных коэффициентов. И на последок рубану по жесткому. Формула ТКС на самом деле является дифф. уравнением:
Но оно тебе нафиг не нужно. Живи свободно и держи в уме, что электронные компоненты реагируют на изменение температуры окружающей среды. Какие-то сильно, какие-то слабо. Но реагируют практически все. И это следует учитывать при выборе радиодеталей для устройств.
Электроника
учебно-справочное пособие
Резисторы
Классификация резисторов приведена в таблице 1.
По характеру изменения сопротивления | По назначению | По материалу резистивного элемента |
---|---|---|
постоянные | общего назначения | проволочные |
переменные | прецизионные | непроволочные |
подстроечные | высокочастотные | металлофольговые |
высоковольтные | ||
высокомегаомные |
Переменные резисторы – резисторы, у которых значение сопротивления меняется при помощи специальной ручки (вращающейся, или ползункового типа).
Более подробно о переменных резисторах читайте здесь
Подстроечные резисторы – резисторы, предназначенные для редких регулировок, у которых значение сопротивления меняется при помощи шлица, вращаемого отвёрткой.
Особую группу составляют полупроводниковые резисторы:
Резистор – это линейный элемент, напрямую подчинённый закону Ома. Все электрические процессы, которые с ним связаны, описываются двумя основными физическими формулами:
где:
I – ток, протекающий через резистор;
U – падение напряжения на резисторе;
R – сопротивление резистора;
P – рассеиваемая на резисторе (поглощаемая) мощность.
ОСHОВHЫЕ ПАРАМЕТРЫ РЕЗИСТОРОВ
В радиоэлектронике для обозначения номинальных сопротивлений используются кратные Ому величины:
1 килоОм (кОм) = 10 3 Ом,
1 МегаОм (МОм) = 10 6 Ом,
1 ГигаОм (ГОм) = 10 9 Ом.
Например, серия Е24 содержит 24 базовых значений сопротивлений резисторов с точностью ±5%. В состав номинального ряда единиц серии входят значения:
1 ; 1,2 ; 1,5 ; 1,8 ; 2 ; 2,2 ; 2,4 ; 2,7 ; 3 ; 3,3 ; 3,6 ; 3,9 ; 4,3 ; 4,7 ; 5,1 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1.
Мощность устанавливаемого на схему резистора, всегда должна быть в полтора – два раза больше расчетной.
ТЕМПЕРАТУРHЫЙ КОЭФФИЦИЕHТ СОПРОТИВЛЕHИЯ (ТКС) характеризует изменение сопротивления резистора относительно номинального значения при изменении температуры на один градус. Чем меньше ТКС, тем лучшей температурной стабильностью обладает резистор.
При работе резисторов в электрических цепях переменного тока высокой частоты необходимо учитывать наличие у них собственных емкости ( С с) и индуктивности ( L c), вызывающих паразитные резонансы.
Граничная частота ( f гp), до которой может работать непроволочный резистор, зависит в основном от сопротивления R и величины С с, поскольку L c у таких резисторов весьма мала.
Собственные емкости большинства непроволочных резисторов широкого применения (ВС, МЛТ, С2-6, С2-13 и т.д.) составляют 0,1. 1 пФ. У проволочных резисторов С с и L c значительно больше, поэтому их fгр на два-три порядка ниже.
УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ РЕЗИСТОРОВ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ
Резистор постоянный, общее обозначение | |
Резистор переменный | |
Резистор подстроечный | |
Фоторезистор | |
Варистор | |
Терморезистор | |
| Обозначение резистора в зарубежных схемах |
На электрических принципиальных схемах резисторы обозначаются латинской буквой R, далее идет число, указывающее порядковый номер резистора в схеме.
Номинальное сопротивление резисторов на схемах обозначается следующим образом:
Допустимая мощность постоянных резисторов указывается на схемах внутри условных графических обозначений.
Маркировка резисторов
Второй элемент — цифра — указывал вид материала резистивного элемента (с дополнительной конкретизацией): 1. 4 — непроволочные, 5 — проволочные резисторы.
Третий элемент — цифра — порядковый номер разработки.
Например С5-16 — резистор постоянный проволочный, 16-ая разработка.
Второй элемент — цифра — указывает вид резистивного элемента:
1 — непроволочные, 2 — проволочные или металлофольговые резисторы.
Третий элемент — цифры — обозначает порядковый номер разработки. Например Р1-26 — постоянный непроволочный резистор, 26-ая разработка.
Hоминальное сопpотивление наносится на коpпус pезистоpа в виде полного или кодиpованного обозначения номинала.
ПОЛHОЕ обозначение номинальных сопpотивлений состоит из значений номинального сопpотивления (цифpа) и обозначения единицы измеpения в виде букв ( Ом, кОм, МОм,ГОм ).
КОДИРОВАHHОЕ обозначение номинальных сопpотивлений состоит или из тpех знаков, включающих две цифpы и букву, или из четыpех знаков, включающих тpи цифpы и букву.
Hоминальная pассеиваемая мощность указывается на коpпусе pезистоpа, пpи их достаточно больших pазмеpах, или опpеделяется визуально в зависимости от pазмеpа pезистоpа, особенно пpи малых мошностях pассеяния.
Для обозначения отклонения действительного сопротивления резистора от величины, указанной на нем, используется три системы.
ЦВЕТОВАЯ МАРКИРОВКА РЕЗИСТОРОВ
В тех случаях, когда значение номинала сопpотивления pезистоpа содеpжит только две значащих цифpы, тpетья полоса номинала не наносится и общее количество знаков (цветных полос) сокpащается до четыpех, две цифpы номинала, множитель и допуск. Если pазмеpы pезистоpа не позволяют pазместить цветные полосы несимметpично, т. е. ближе к одному из тоpцов pезистоpа, то площадь пеpвого знака ( шиpина пеpвой полосы ) делается пpимеpно в два pаза больше ( шиpе ) дpугих знаков.
Цветовая маpкиpовка номинального сопpтивления и допусков должна соответствовать цветам, указанным в нижепpиведенной таблице.
Резистоp 56 кОм с допуском 1%
Последовательное и параллельное соединение резисторов
Если при конструировании устройства отсутствует резистор с необходимым сопротивлением, но есть резисторы других номиналов, то соединяя их последовательно или параллельно, можно получить требуемое сопротивление.
Последовательное соединение резисторов
При последовательном соединении резисторов их общее сопротивление R пос увеличивается и определяется по формуле:
Например для резисторов 1 кОм и 10 кОм:
Параллельное соединение резисторов
При параллельном соединении резисторов их общее сопротивление Rnap уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора и определяется по формуле:
Для двух соединяемых параллельно резисторов формула приобретает вид:
Например для резисторов 1 кОм и 10 кОм:
Конструкция постоянных резисторов
Констpуктивное исполнение постоянных pезистоpов pассмотpим на пpимеpе шиpоко pаспpостpаненных в pадиоэлектpонике pезистоpов типа МЛТ. Констpуктивно постоянный непpоволочный МЛТ (Металлизиpованный Лакиpованный Теплостойкий) pезистоp содеpжит цилиндpическую кеpамическую основу в виде тpубки или стеpжня, на котоpую нанесен тонкий металлизиpованный слой пленки из специального pезистивного матеpиала. Толщина пленки составляет доли микpометpа пpи всех номиналах. Различие в величинах номиналов сопpотивлений достигается изменением состава pезистивного слоя и числа витков спиpали, наpезанной на цилиндpической повеpхности кеpамической основы.
Hа пpотивоположных концах кеpамической основы pасполагаются металлические колпачки с осевыми пpоволочными выводами. С помощью этих выводов pезистоp подпаивается в электpическую схему. С наpужной стоpоны для защиты токоведущего pезистивного слоя и всего pезистоpа от воздействия влаги и от механических повpеждений наносится слой влагостойкой оpганической эмали.Hаиболее часто для pезистоpов типа МЛТ пpименяется эмалевое покpытие кpасного цвета, на повеpхность котоpого наносится маpкиpовка pезистоpа.
Терморезисторы
Теpмоpезистоpами называются полупpоводниковые pезистоpы, у котоpых сопpотивление сильно зависит от темпеpатуpы токопpоводящего элемента. Теpмоpезистоpы изготавливают из полупpоводниковых матеpиалов на основе окислов металлов. Если с повышением температуры сопротивление терморезистора увеличивается, то температурный коэффициент сопротивления ТКС положительный, если же с повышением температуры сопротивление уменьшается, то ТКС отрицательный.
Констpуктивно теpмоpезистоpы выполняются в виде стеpжней, дисков, таблеток и дp. Теpмоpезистоpы пpименяются для компенсации ТКС pазличных электpических цепей стабилизации токов и напpяжений, теплового контpоля, измеpения темпеpатуpы, измеpения мощности и т.д.
Фоторезистор
Фоторезистор представляет собой полупроводниковый прибор, сопротивление которого меняется под действием света.
Фоторезисторы особенно широко используются в устройствах автоматики.
Применение резисторов
Делитель напpяжения
Делитель напpяжения, выполненный на pезистоpах, пpименяется в цепях постоянного и пеpеменного тока пpи необходимости уменьшить выходное напpяжение за счет гашения части входного напpяжения.
RC-фильтp, интегpиpующая цепь
Пpостейший однозвенный RC-фильтp часто используется в цепях фильтpации питающих напpяжений. Пpиведенная схема RC-цепи в импульсных схемах используется как интегpиpующая цепь, котоpая пpименяется в цепях электpонного пpеобpазования импульсных сигналов. Паpаметpы цепи pассчитываются в зависимости от функционального назначения цепи: в качестве фильтpа или же в качестве интегpиpующей цепи.
Мостовая схема
Тpанзистоpный pеостатный усилитель
Пpостейший pеостатный усилитель на одном тpанзистоpе выполняет задачу усиления сигналов. В данной схеме резисторы выполняют следующие функции:
Источники:
Электроника © ЦДЮТТ • Марсель Арасланов • 2020
Группа ткс резистора что это
Автор: Мышонок
Опубликовано 07.02.2007
4. А теперь поговорим о «ТК» подробнее:
ТКЕ конденсатора очень сильно зависит от материала диэлектрика между обкладками. Ведь малейшее температурное изменение толщины диэлектрика, вызывает очень большое изменение ёмкости конденсатора.
Наиболее подвержены влиянию температуры керамические конденсаторы. Так как полностью победить ТКЕ не удаётся, (а иногда, наоборот, клин клином вышибают: например, в LC-контуре, у катушки ТКИ положительный, тогда конденсатор с отрицательным ТКЕ ставят, чтобы частота настройки контура от температуры не уходила), у керамических конденсаторов очень много всяких ТКЕ имеется. ТКЕ у керамических конденсаторов настолько важен, что его на корпусе конденсатора каким-либо способом практически всегда обозначают.
Поэтому про них мы поговорим подробнее:
Отечественная система обозначений ТКЕ (в том числе старая и очень старая)
Картинка эта для примера нарисована, у разных типов конденсаторов эти «Н» и по другому могут кривиться. Главное в том, что ёмкость этих конденсаторов при изменении температуры не изменится больше, чем процентов с буквой «Н» написано.
Группа ТКЕ
Номинальное значение ТКЕ, ppm/ °C
Температурный коэффициент. Тепло и холод в электронике.
Твой пытливый взор уже много раз встречал сокращения ТКС, ТКЕ, ТКИ. Может быть там же были и их расшифровки. Если же нет, то я хочу рассказать, что это такое и чем они могут быть полезны. Давай сегодня поговорим о температурном коэффициенте и его роли в электронике.
Итак, чтобы далеко не бегать, сразу разверну сокращения:
Скажем, при 20 градусах какой-нибудь резистор имеет сопротивление в 100 Ом, а при 80 чуть больше или меньше.
ТКС = ∆R/R
И было бы всё хорошо, да представь себе какой-нибудь каскад с транзистором. Например, каскад с ОЭ:
Для работы транзистора ему всегда задают некий режим, который условно называют «рабочей точкой». Заключается он в том, чтобы задать постоянный ток, протекающий через переход Б-Э.
Ниже приведена таблица ТКС некоторых металлов:
Сопротивление резистора с учетом температуры определяется по формуле:
Справедливости ради, скажу, что ТКС/ТКЕ/ТКИ могуть быть нелинейными. Для большинства металлов ТК будет положительным, для полупроводников и диэлектриков чаще всего будет отрицательным (для чистых полупроводников без примесей). А константан и манганин считай вообще не подвержены пагубным влияниям ТКС.
Теперь ты гуру температурных коэффициентов. И на последок рубану по жесткому. Формула ТКС на самом деле является дифф. уравнением:
Но оно тебе нафиг не нужно. Живи свободно и держи в уме, что электронные компоненты реагируют на изменение температуры окружающей среды. Какие-то сильно, какие-то слабо. Но реагируют практически все. И это следует учитывать при выборе радиодеталей для устройств.
Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность
Сопротивление любого проводника в общем случае зависит от температуры. Сопротивление металлов с нагревом увеличивается. С точки зрения физики это объясняется увеличением амплитуды тепловых колебаний элементов кристаллической решетки и возрастанием сопротивления движения направленному потоку электронов. Сопротивление электролитов и полупроводников при нагреве уменьшается – это объясняют другими процессами.
Принцип работы термистора
Во многих случаях явление зависимости сопротивления от температуры вредное. Так, низкое сопротивление нити лампы накаливания в холодном состоянии служит причиной перегорания в момент включения. Изменение значения сопротивления постоянных резисторов при нагреве или охлаждении ведет к изменению параметров схемы.
С этим явлением борются разработчики, выпускаются резисторы с уменьшенным ТКС — температурным коэффициентом сопротивления. Стоят такие элементы дороже обычных. Но существуют такие электронные компоненты, у которых зависимость сопротивления от температуры ярко выражена и нормирована. Эти элементы называются терморезисторами (термосопротивлениями) или термисторами.
Виды и устройство терморезисторов
Терморезисторы можно разделить на две большие группы по реакции на изменение температуры:
Тип термистора определяется свойствами материалов, из которых изготовлены терморезисторы. Металлы при нагреве увеличивают сопротивление, поэтому на их основе (точнее, на базе оксидов металлов) выпускают термосопротивления с положительным ТКС. У полупроводников зависимость обратная, поэтому из них делают NTC-элементы. Термозависимые элементы с отрицательным ТКС теоретически можно делать и на основе электролитов, но этот вариант на практике крайне неудобен. Его ниша – лабораторные исследования.
Конструктив термисторов может быть различным. Их выпускают в виде цилиндров, бусин, шайб и т.п. с двумя выводами (как у обычного резистора). Можно подобрать наиболее удобную форму для установки на рабочем месте.
Основные характеристики
Самая главная характеристика любого терморезистора – его температурный коэффициент сопротивления (ТКС). Он показывает, насколько меняется сопротивление при нагреве или охлаждении на 1 градус Кельвина.
Хотя изменение температуры, выраженное в градусах Кельвина, равно изменению в градусах Цельсия, в характеристиках термосопротивлений пользуются все же Кельвинами. Это связано с широким применением в расчетах уравнения Стейнхарта-Харта, а в него входит температура в К.
ТКС отрицателен у термисторов типа NTC и положителен у позисторов.
Другая важная характеристика – номинальное сопротивление. Это значение сопротивления при 25 °С. Зная эти параметры, легко определить применимость термосопротивления для конкретной схемы.
Также для использования термисторов важны такие характеристики, как номинальное и максимальное рабочее напряжение. Первый параметр определяет напряжение, при котором элемент может работать длительное время, а второй – напряжение, выше которого работоспособность термосопротивления не гарантируется.
Для позисторов важным параметром является опорная температура – точка на графике зависимости сопротивления от нагрева, при которой происходит перелом характеристики. Она определяет рабочий участок PTC-сопротивления.
При выборе терморезистора надо обратить внимание и на его температурный диапазон. Вне заданного производителем участка, его характеристика не нормируется (это может привести к ошибкам в работе оборудования) или термистор там вообще неработоспособен.
Условно-графическое обозначение
На схемах УГО термистора могут незначительно отличаться, но главный признак термосопротивления – символ t рядом с прямоугольником, символизирующим резистор. Без этого символа не определить, от чего зависит сопротивление – схожее УГО имеют, например, варисторы (сопротивление определяется приложенным напряжением) и другие элементы.
Иногда на УГО наносят дополнительное обозначение, определяющее категорию терморезистора:
Эту характеристику иногда обозначают стрелками:
Литерное обозначение может быть различным – R, RK, TH и т.п.
Как проверить термистор на работоспособность
Первая проверка исправности термистора – измерение номинального сопротивления обычным мультиметром. Если замер ведется при комнатной температуре, которая не очень отличается от +25 °С, то и измеренное сопротивление не должно существенно отличаться от указанного на корпусе или в документации.
Если температура окружающего воздуха выше или ниже указанного значения, надо взять небольшую поправку.
Можно попытаться снять температурную характеристику термистора – чтобы сравнить её с заданной в документации или чтобы восстановить её для элемента неизвестного происхождения.
Есть три температуры, доступные для создания с достаточной точностью без измерительных приборов:
По этим точкам можно нарисовать приблизительную зависимость сопротивления от температуры, но для позисторов это может не сработать – на графике их ТКС, есть участки, где R температурой не определяется (ниже опорной температуры). Если термометр имеется, можно снять характеристику по нескольким точкам – опустив терморезистор в воду и нагревая её. Через каждые 15…20 градусов надо замерять сопротивление и наносить значение на график. Если надо снять параметры выше 100 градусов, вместо воды можно использовать масло (например, автомобильное – моторное или трансмиссионное).
На рисунке изображены типовые зависимости сопротивлений от температуры – сплошной линией для PTC, штриховой – для NTC.
Где применяются
Самое очевидное применение терморезисторов – в качестве датчиков для измерения температуры. Для этой цели пригодны как термисторы с характеристикой NTC, так и PTC. Надо лишь выбрать элемент по рабочему участку и учесть характеристику термистора в измерительном приборе.
Можно построить термореле – когда сопротивление (точнее, падение напряжения на нём) сравнивается с заданным значением, и при превышении порога происходит переключение выхода. Такой прибор можно применять в качестве устройства теплового контроля или пожарного датчика. Создание измерителей температуры основано на явлении косвенного нагрева – когда терморезистор нагревается от внешнего источника.
Также в сфере использования термосопротивлений используется прямой нагрев – термистор нагревается током, проходящим через него. NTC-резисторы таким способом можно применить для ограничения тока – например, при зарядке конденсаторов большой ёмкости при включении, а также для ограничения тока пуска электродвигателей и т.п. В холодном состоянии термозависимые элементы имеют большое сопротивление. Когда конденсатор частично зарядится (или электродвигатель выйдет на номинальные обороты), термистор успеет нагреться протекающим током, его сопротивление упадет, и он перестанет оказывать влияние на работу схемы.
Таким же способом можно продлить срок службы лампы накаливания, включив последовательно с ней терморезистор. Он ограничит ток в самый сложный момент – при включении напряжения (именно в это время большинство ламп выходит из строя). После прогрева он перестанет оказывать влияние на лампу.
Для защиты электродвигателей во время работы служат, наоборот, термисторы с положительной характеристикой. Если ток в цепи обмотки будет повышаться из-за заклинивания двигателя или превышения нагрузки на валу, PTC-резистор нагреется и ограничит этот ток.
Термисторы с отрицательным ТКС, также можно использовать в качестве компенсаторов нагрева других компонентов. Так, если параллельно резистору, задающему режим транзистора и имеющему положительный ТКС, установить NTC-термистор, то изменение температуры подействует на каждый элемент противоположным образом. В результате действие температуры компенсируется, и рабочая точка транзистора не сместится.
Существуют комбинированные приборы, называемые терморезисторами с косвенным нагревом. В одном корпусе такого элемента расположены термозависимый элемент и нагреватель. Между ними существует тепловой контакт, но гальванически они развязаны. Изменяя ток через нагреватель, можно управлять сопротивлением.
Терморезисторы с различными характеристиками широко используются в технике. Наряду со стандартными применениями, их сферу работы можно расширять. Все ограничивается только фантазией и квалификацией разработчика.
Что такое резистор и для чего он нужен?
Что такое триггер, для чего он нужен, их классификация и принцип работы
Принцип работы и основные характеристики стабилитрона
Что такое диодный мост, принцип его работы и схема подключения
Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность
Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды