Горение пластика что выделяется

Два способа определения марки пластика

В 1988 году для переработки отходов из пластиков была введена маркировка. По ней существует только 7 видов пластика. Такая маркировка применяется чаще всего на таре. Для других изделий может применяться сокращенное наименования пластиков, например ABS, PS и тп.

Обычно маркировка наносится на обратной стороне изделия, например на пластиковых бутылках на донышке.

К сожалению производители не всегда наносят маркировку на изделия, и тогда приходится прибегать к другим способам определения марки пластика:

1 способ

Горючие пластики. По цвету пламени и запаху, образующемуся при горении, определяют тип пластика. Слабым синеватым пламенем горит полиэтилен. При задувании пламени чувствуется запах горящей свечи, а продукт сгорания представляет собой мягкое, жирное на ощупь вещество. То же можно сказать и о полипропилене. Полистирол при сгорании сильно чадит, при этом появляется сладковатый запах.

Горение пластика что выделяется. chemistry. Горение пластика что выделяется фото. Горение пластика что выделяется-chemistry. картинка Горение пластика что выделяется. картинка chemistry. В 1988 году для переработки отходов из пластиков была введена маркировка. По ней существует только 7 видов пластика. Такая маркировка применяется чаще всего на таре. Для других изделий может применяться сокращенное наименования пластиков, например ABS, PS и тп.

Ацетилцеллюлоза, которая в ненагретом состоянии представляет собой эластичное и вязкое вещество, горит некоптящим пламенем, потрескивая, распространяя запах уксуса. Потрескивая при горении, с запахом фруктов горит твердый полиметилметакрилат. Ярким сильным пламенем горит нитроцеллюлоза (целлулоид).

Негорючие пластики. После поднесения пламени к полиамиду образуются наплывы, слышится потрескивание, а обожженный образец пахнет горелой шерстью. Если нагревать в пламени образец поливинилхлорида, конец язычка пламени окрасится в зеленый цвет и распространится резкий запах, схожий с запахом соляной кислоты.

Неплавящиеся пластики. Фенопласт после удаления пламени гаснет и имеет специфический запах. Аминопласт, нагреваемый в пламени, горит коптящим пламенем, потрескивая, после удаления из пламени продолжает гореть, распространяя запах аммиака (нашатырного спирта). Полиэфир в пламени растрескивается, после задувания пламени образуется сладковатый запах, напоминающий запах фруктов. Эпоксидная смола при поднесении пламени не растрескивается, а после удаления из пламени короткое время продолжает гореть. После задувания пламени пахнет, как горелая шерсть.

2 способ

Составитель: Логвиненко В.В.

Как известно, отдельным видам пластиков свойственен определенный набор косвенных признаков, знание которых поможет в полевых уловиях отнести последние к тем, либо иным группам полимеров: цвет, фактура, светопроницаемость, эластичность, упругость, характер излома.

Методика проста и заключается в анализе поведения образца пластика в открытом источнике огня, а так же продуктов сопутствующего процесса окисления (характер горения, выделяемый запах, звук).

Данный метод нужно считать условным, так как образец может содержать добавки, меняющее структуру, цвет и запах полимера при горении.

Источник

Категории статей

Двадцать второй год – взгляд из будущего

А ведь наше настоящее, для людей, живших сто лет назад, было будущим. Далее

Дыхание картошки

Овощи продолжают жизненный цикл даже после сбора урожая. Какие процессы идут в картошке? Далее

Грибы против пластика

Ученые проводят исследования по разложению пластика с помощью микроорганизмов и грибов. Далее

Ученые ставят диагноз планете

Cтолько углекислого газа, как сейчас, в атмосфере не было последние 2 млн лет, метана и закиси азота — 800 тыс. лет. Далее

Природный регулятор температуры колибри

Учитывая огромную скорость и частоту крыльев, птицы должны нагреваться до температур, несовместимых с жизнью. Далее

Популярные статьи

Польза и вред инфракрасного обогревателя (323944)

Среди электрических обогревателей, которые мы используем в быту, наиболее популярными сейчас становятся инфракрасные нагреватели. Они очень широко рекламируются в Интернете и в газетах. Говорят, что они намного эффективнее масляных радиаторов и тепловентиляторов. Меньше потребляют энергии, не сжигают кислород и т.д. Главное – они совершенно не вредные, никакого отрицательного воздействия на организм человека не оказывают. Далее

Почему горячая вода замерзает быстрее, чем холодная? (210208)

Это действительно так, хотя звучит невероятно, т.к в процессе замерзания предварительно нагретая вода должна пройти температуру холодной воды. Парадокс известен в мире, как «Эффект Мпембы». Далее

Вредно ли разогревать пищу в микроволновке? (199294)

Контролируйте температуру приготовления мяса! (181547)

При приготовлении сырого мяса, особенно, домашней птицы, рыбы и яиц необходимо помнить, что только нагревание до надлежащей температуры убивают вредные бактерии. Далее

451 градус по Фаренгейту, температура возгорания бумаги? (167319)

451 градус по Фаренгейту. Это название знаменитой книги Рэя Брэдбери. На языке оригинала звучит так: ‘Fahrenheit 451: The Temperature at which Book Paper Catches Fire, and Burns’. Действительно ли при этой температуре начинают гореть книги? Далее

Основные разделы

Можно ли жечь пластик на даче и в лесу?

На самом деле, если просмотреть информацию по этому вопросу в Интернете, то ответ не такой однозначный. Конечно, на иностранных сайтах в основном пишут, что необходимо сдать все бутылки в переработку, т.к. на специальных перерабатывающих заводах из них получат сырье для изготовления новых полезных изделий. Вопрос о возможном самостоятельном сжигании бутылок в лесу или на даче не рассматривается. Но, как я уже упомянула, это не наш случай. Увы, нам пока сдать пластик практически некуда. Правда иногда встречается мнение, что на свалках идет сортировка мусора и есть шанс, что бутылка все же попадет в переработку. Но поверить трудно, т.к. я вижу, что в наши мусорные баки во дворе складывают все, что попало, включая пищевые отходы.

Горение пластика что выделяется. dioksini. Горение пластика что выделяется фото. Горение пластика что выделяется-dioksini. картинка Горение пластика что выделяется. картинка dioksini. В 1988 году для переработки отходов из пластиков была введена маркировка. По ней существует только 7 видов пластика. Такая маркировка применяется чаще всего на таре. Для других изделий может применяться сокращенное наименования пластиков, например ABS, PS и тп.

Но, всегда ли при горении пластика образуется этот ядовитый газ? Нет. Пластики бывают разные, и все зависит от вида пластика. Внимательно рассмотрите бутылку из-под воды или спрайта. Горение пластика что выделяется. pet. Горение пластика что выделяется фото. Горение пластика что выделяется-pet. картинка Горение пластика что выделяется. картинка pet. В 1988 году для переработки отходов из пластиков была введена маркировка. По ней существует только 7 видов пластика. Такая маркировка применяется чаще всего на таре. Для других изделий может применяться сокращенное наименования пластиков, например ABS, PS и тп.Вы увидите маркировку PET или 1 в треугольнике, или по-русски ПЭТ (или ПЭТФ), что означает, что это полиэтилентерефталат, химическая формула которого (C10H8O4)n Заметьте, что этот материал не содержит в своем составе хлор, поэтому не может быть и речи о выделении диоксина при горении. Впервые ПЭТ стал использоваться в 1947 г. И сейчас он, как не странно это звучит, является самой экологичной упаковкой для пищевых продуктов и напитков, т.к. на производство и переработку ПЭТ затрачивается меньше энергии, чем на производство и переработку стеклянной и алюминиевой тары. Переработка ПЭТ не трудозатратна и очень выгодна, поэтому практически во всех странах в обязательном порядке люди сдают бутылки из ПЭТ.

Говоря о пластике, необходимо заметить, что пластики бывают разными. Например, если маркировка «3» в треугольнике, PVC (ПВХ), то это поливинилхлорид, сжигать такую тару категорически запрещается, т.к. при этом действительно выделяются диоксины и другие вредные канцерогены. Существуют и другие виды пластиков, дым от которых крайне ядовит. Самые распространенные из них, судя по всему, фторопласты, например, тефлон. Резюмируя сказанное, обращаю внимание, что перед тем, как сжечь пластик, просто необходимо изучить его маркировку. Если маркировку найти не удалось, не сжигайте пластиковые бутылки и другую упаковку, отнесите ее в мусорный бак.

Источник

Огнестойкость полимеров и полимерных материалов

Большинство промыш­ленных полимеров — органические вещества, которые при температуре 500 °С воспламеняются и горят (при тепловом импульсе более 0,85 кДж/м 2 сгорает все). Горение осущест­вляется в результате воспламенения и горения газообразных продуктов термоокислитель­ного пиролиза и представляют собой непрерывный многостадийный процесс: 1) аккуму­ляция тепловой энергии от источника зажигания, 2) разложение полимера с выделением летучих продуктов пиролиза (в ряде случаев — рекомбинация твердых или жидких про­дуктов разложения в более устойчивые соединения — пиролизованные остатки, в том чис­ле карбонизованные, кокс), 3) воспламенение газообразных веществ, 4) горение газооб­разных веществ и кокса. Суммарная скорость процесса горения определяется наиболее медленной из перечисленных стадий.

Полимеры по своему поведению при горении так же, как и при нагревании в средах с различной концентрацией кислорода, подразделяются на две группы: деструктирующиеся с разрывом связей основной цепи и образованием низкомолекулярных газообразных и жидких продуктов и коксующиеся. Образующиеся низкомолекулярные газообразные и жидкие продукты пиролиза могут быть горючими и негорючими.

Возгорание горючих газообразных продуктов пиролиза происходит при достижении нижнего концентрационного предела воспламенения. Во многих случаях наблюдается разрушение материала и вынос в газовую фазу твердых частиц с горящей поверхности полимера.

Горючесть полимерных материалов, в основном, зависит от соотношения теплоты, выделяемой при сгорании продуктов пиролиза, и теплоты, необходимой для их образования и газификации.

Для снижения горючести полимеров используют: 1) замедление реакций в зоне пиролиза снижением скорости газификации полимера и количества образующихся горючих продуктов; 2) снижение тепло- и массообмена между пламенем и конденсированной фа­зой; 3) ингибирование радикалоцепных процессов в конденсированной фазе при ее на­греве и в пламени. Практически указанные направления реализуются путем использова­ния химически модифицированных полимеров, в том числе с минимальным содержанием водорода в структуре, термоустойчивых (типа полиариленов и полигетероариленов), пу­тем введения в состав полимерного материала минеральных наполнителей, антипиренов, нанесение огнезащитных покрытий, а также комбинацией этих методов.

Полимерные материалы подразделяются (по одной из многих классификаций) на негорючие, трудносгораемые и горючие. Критерием отнесения полимерного материала к группе негорючих является его неспособность гореть на воздухе при температуре среды 900–1100 °С.

Показателями, характеризующими горючесть полимерных материалов, являются, в зависимости от метода определения горючести, температура воспламенения, скорость горения, теплота сгорания, температура поверхности горящего материала и другие. Благодаря высокой воспроизводимости результатов наибольшего внимания заслуживает метод калориметрии и метод кислородного индекса.

Существует определенный разрыв между требованиями, предъявляемыми к горючести материалов, и требованиями, предъявляемыми к огнестойкости конструкций (изделий), изготовляемых из этих материалов. Материал может быть признан негорючим, а изделие из него — не огнестойкими из-за резкого снижения эксплуатационных свойств. Ог­нестойкость конструкций определяют как их способность выдерживать эксплуатационные нагрузки в условиях пожара в течение периода, называемого пре­делом огнестойкости.

Огнестойкость материалов, применяемых в конструкции, следует определять как свойство материалов сохранять основные эксплуатационные характеристики при действии огня в течение указанного периода. При оценке огнестойкости полимерного материа­ла, в отличие от его горючести, необходимо знать изменение прочностных, теплофизических и других свойств материала при горении с тем, чтобы иметь возможность оценить предел огнестойкости конструкции или изделия.

Классификация материалов по горючести весьма приблизительна, так как воспламенение и горение материалов зависит не только от химической природы полимера и поли­мерного материала на его основе, но и от температуры источника горения, условий вос­пламенения, наличия легкосгораемых материалов-соседей, формы и положения по отношению к пламени образца, формы изделия или конструкции и ряда других причин.

Согласно принятой в России классификации полимерные материалы делят на сгораемые, трудносгораемые и несгораемые. Из сгораемых материалов выделяют трудновоспламенямые, а из них и трудносгораемых — самозатухающие. Используемая за рубежом классификация материалов по огнестойкости приблизительно соответствует отечественной. Например, полимерные материалы, характеризуемые такими показателями, как огне- и пламесопротивляемость, огне- и пламеустойчивость, а также огне- и пламезамедление, близки к полимерным материалам, характеризуемым как трудносгораемые и трудновоспламеняемые.

Горючесть полимерного материала характеризуют по ряду показателей, которые можно объединить в четыре группы:

1) Кинетические — по скорости горения, скорости распространения пламени и т.д.;

2) Тепловые — по теплоте сгорания, показателям возгораемости и т.д.;

3) Температурные — по температурам воспламенения, самовоспламенения и т.д.;

4) Концентрационные — по содержанию необходимого для горения окислителя и горючего вещества, по кислородным индексам.

Аппаратурное оформление и методики определения показателей четырех групп, размеры образцов различны.

Отнесение материалов к той или иной группе возгораемости связано со скоростью воспламенения, устойчивостью и скоростью горения. Все это обусловлено характером горения полимера и полимерного материала.

Рассматривают пять пространственных зон горения:

1) слои, прилегающие к поверхностному слою, в которых протекает пиролиз при незначительной доле процессов окисления;

2) поверхностный слой, подвергающийся термоокислительной деструкции;

3) предпламенная зона, в которой низкомолекулярные продукты, образующиеся в первых двух зонах, смешиваются с нагретым воздухом, разлагаются и окисляются под действием кислорода и активных радикалов, диффундирующих из пламени;

4) зона пламени, с необходимой концентрацией продуктов разложения, где выделяет­ся основная часть тепловой энергии и наблюдается максимальная температура и световая энергия;

5) зона продуктов сгорания и догорания, где продукты реакции смешиваются с холодным воздухом, выделяющаяся тепловая энергия вместе с энергией из зоны пламени поступает к поврежденным участкам полимерного материала за счет конвекции и излучения.

Горение полимерных материалов делят также на четыре временных стадии, относящиеся к нагреву, деструкции, воспламенению и горению:

1) взаимодействие источника горения с материалом, степень и скорость которого зависят от теплопроводности полимерного материала, скрытой теплоты плавления полиме­ра или испарения продуктов его разложения и компонентов полимерного материала, их теплоемкости и от типа источника нагрева;

2) деструкция полимерного материала зависит от температуры и скорости подвода энергии от источника нагрева (горения), суммарной теплоты и условий горения и проходит с образованием жидких, твердых и газообразных продуктов (в первой и второй зонах), которые в последних трех зонах образуют горючие и негорючие газы и дым;

3) воспламенение характеризуется температурой воспламенения образовавшихся при деструкции продуктов, температурой отходящих газов, концентрациями горючих газов и окислителя, необходимыми для окисления и горения;

4) горение, развивающееся в том случае, если выделяется избыток тепловой энергии и достаточное количество ее поступает в зону деструкции и предпламенную зону и если в зоне горения имеется достаточная концентрация горючих веществ и окислителя.

Ряд физических и химических процессов способствует тому, что появляется пятая стадия догорания. Вследствие больших тепловых потерь скорость горения становится малой, и материал охлаждается раньше превращения в газообразные продукты сгорания. Усадка полимерного материала при горении и плавление полимера или компонентов полимерного материала может способствовать (при растрескивании) или препятствовать (при уменьшении объема образца при плавлении компонентов с высокой теплоемкостью) горению. Коксование обычно приводит к затуханию материала.

Сложность процесса горения, определяемая большим числом параметров, привела к использованию большого числа методик определения горючести полимеров и полимерных материалов.

Современный комплексный подход к проблеме потребовал разработки методов исследования процессов дымообразования при горении полимерных материалов и определения токсичности продуктов горения (FST-свойства).

Стандартизацией терминологии и методов испытаний, технических условий на материалы и продукцию в области полимеров, ПМ и ПКМ в системе ИСО (ISO — International Standard Organizations) занимается подкомитет №4 (поведение при горении) комитета ТК61 (Committee: ТС 61 Plastics), который к февралю 2002 года выпустил 488 стандартов ISO.

Для оценки огнестойкости материалов используется большое количество стандартов: UL94, ГОСТ 17088-71, 15898-70, ГОСТ 28157-89 (горючесть); ГОСТ 12.1.044-89, п.4.14 (кислородный индекс), п.4.18 (коэффициент дымообразования), п.4.19 (индекс распространения пламени), п.4.20 (токсичность продуктов горения); ASTM D 2863 (кислородный индекс, КИ, предельный кислородный индекс, ПКИ, limiting oxygen index, LOI); ISO 181-189; 4589-1,2,3; 5659-1,2; ISO/TR 5656-3; 10093, 11907-1,2,3,4; ГОСТ 24632-81 (огнестойкость и дымовыделение); ASTM D 22-29, MIL-M 14 (токсичность про­дуктов горения); ГОСТ Р 51032-97 (ISO /ПМС 9239.2, распространение пламени); ГОСТ 30244-94 (горючесть); ГОСТ 30402-96 (ISO 5657-86, воспламеняемость).

В России предприятия-изготовители изделий из полимерных материалов (например, стеклопластиков, используемых в строительстве, в конструкциях подвижного состава метрополитенов и железных дорог) сертифицируют свою продукцию на соответствие требованиям норм пожарной безопасности (отраслевые нормы НПБ-109, НПБ-244; ведомственные нормы ВНПБ-03), в соответствии с которыми производится отбор образцов и их испытания в специализированных испытательных центрах:

Источник

Горение пластика что выделяется. userinfo v8. Горение пластика что выделяется фото. Горение пластика что выделяется-userinfo v8. картинка Горение пластика что выделяется. картинка userinfo v8. В 1988 году для переработки отходов из пластиков была введена маркировка. По ней существует только 7 видов пластика. Такая маркировка применяется чаще всего на таре. Для других изделий может применяться сокращенное наименования пластиков, например ABS, PS и тп.ulderevo

Правовое экологическое сопротивление

Наталия Лазарева

Токсичность горения, разложения полимеров

Полиэтилен. Бесцветный, прозрачный (в пленках) или окрашенный. Жирный на ощупь. При нагревании плавится, вытягивается в нити. Горит синеватым пламенем без копоти, образуя капли расплава и распространяя «свечной» запах. B органических растворителях не растворяется.

Полистирол. Бесцветный или ярко окрашенный, прозрачный или замутненный; твердый, довольно хрупкий. При ударе по изделию слышится металлический звук. При нагревании размягчается, деполимеризуется. Горит коптящим пламенем, распространяя специфический запах, напоминающий запах цветов гиацинтов. B органических растворителях растворяется.

Полиметилметакрилат (органическое стекло). Бесцветный или ярко окрашенный, прозрачный или замутненный, твердый. При ударе по изделию слышится глухой звук. При нагревании размягчается, деполимеризуется. Горит желтым пламенем c синеватой каймой c характерным шипением и потрескиванием. Продукты горения имеют резкий специфический запах. B органических растворителях растворяется.

Фенопласты (пластмассы на основе фенолформальдегидной смолы). Непрозрачны, обычно окрашены в темные цвета (черный, коричневый и др.). Наполнители (целлюлоза, асбест, стекловолокно и др.) придают им различные физико-механические свойства. При нагревании не плавятся, при сильном нагревании разлагаются. Горят в пламени, распространяя запах фенола. B органических растворителях не растворяются.

Аминопласты (пластмассы на основе мочевиноформальдегидной смолы). Непрозрачны, бесцветны или ярко окрашены. Твердые. При нагревании не плавятся, разлагаются.

Продукты разложения имеют неприятный запах, окрашивают лакмус в синий цвет. B пламени обугливаются.

Чрезвычайно опасен в пожарном отношении поролон, применяемый для изготовления мебели, который при горении выделяет ядовитый газ, содержащий цианистые соединения. Эти вещества даже в незначительных количествах являются высокотоксичными и поражают дыхательную и нервную системы человека. Потеря сознания и связанная c этим неспособность самостоятельного выхода из зоны пожара приводят к тому, что пострадавшие длительное время подвергаются воздействию вредных веществ. Выделяющиеся при горении пластмассы газы крайне токсичны, и могут вызвать отек легких.

При возникновении пожара в здании специалисты советуют при выходе из задымленных и горящих помещений использовать средства индивидуальной защиты органов дыхания.

Это из другой области, но тоже важно. Из чего сделан наш дом.

Многочисленные исследования показали, что практически все полимерные строительные и отделочные материалы, созданные на основе низкомолекулярных соединений, в процессе использования могут выделять (мигрировать) токсичные летучие компоненты, которые при длительном воздействии могут неблагоприятно влиять на живые организмы, в том числе и на здоровье человека.

Международное агентство по изучению рака (МАИР) обращает внимание на канцерогенную опасность полимеров, полученных из нефти и каменного угля, a Агентство по регистрации токсичных веществ и заболеваний (ATSDR) констатирует, что при производстве пластмасс используются вещества, входящие в перечень двадцати наиболее опасных токсичных веществ.

Приводим характеристику некоторых полимерных строительных и отделочных материалов, способных выделять токсичные субстанции.

Материалы на основе карбамидных смол.

Древесностружечные плиты (ДСП) выделяют формальдегида в 2,5—3 раза и больше допустимого уровня. B свободном состоянии формальдегид представляет собой раздражающий газ, обладающий общей токсичностью. Он подавляет действие ряда жизненно важных ферментов в организме, приводит к заболеваниям дыхательной системы и центральной нервной системы.

Материалы на основе фенолформальдегидных смол (ФФС).

Древесноволокнистые (ДВП), древесностружечные (ДСП) и древеснослоистые (ДСП). Выделяют в воздушную среду помещений фенол и формальдегид. Концентрация формальдегида в жилых помещениях, оборудованных мебелью и строительными конструкциями, содержащими ДСП, может превышать ПДК в 5—10 раз. Особенно высокое превышение допустимого уровня отмечается в сборно-щитовых домах. Токсичность выделяющихся веществ во многом зависит от марки смолы.

Материалы на основе эпоксидных смол.

Как и другие виды смол: карбамидные, фенольные, фурановые и полиуретановые, эпоксидные смолы содержат летучие токсичные вещества: формальдегид, дибутилфтолат, эрихлоргидин и др. Например, полимербетон (ПБ) на основе эпоксидной смолы Эд-6 c введением в его состав пластификатора МГФ-9 снижает выделение ЭХГ и может быть рекомендован только для промышленных и общественных зданий.

Поливинилхлоридные материалы (ПВХ).

ПВХ — линолеумы обладают общей токсичностью, в процессе эксплуатации могут создавать на своей поверхности статическое электрическое поле напряженностью до 2000—3000 B/см. При использовании поливинилхлоридных плиток в воздушной среде помещений обнаруживают фталаты и бромирующие вещества. Весьма отрицательное свойство плиток — низкие теплозащитные свойства, что приводит к простудным заболеваниям. Рекомендуются только во вспомогательных помещениях и коридорах.

Резиновый линолеум (релин).

Независимо от длительности нахождения в помещении выделяет неприятный специфический запах. Стиролосодержащие резиновые линолеумы выделяют стирол. Ha своей поверхности релин, как и все пластмассы, накапливает значительные заряды статического электричества. B жилых комнатах покрывать пол релином не рекомендуется.

Выделяет дибутилфталат и фенол в количествах, превышающих допустимый уровень.

Поливинилацетатные покрытия (ПВА).

При недостаточном проветривании выделяют в воздушную среду помещений формальдегид и метанол в количестве, превышающем ПДК в 2 раза и более.

Наиболее опасны растворители и пигменты (свинцовые, медные и др.). Кроме того, лакокрасочные покрытия загрязняют воздушную среду жилых помещений толуолом, ксилолом, бутилметакрилатом и др. Токсичные битумные мастики, изготовленныё на основе синтетических веществ, содержат низкомолекулярные и другие летучие токсичные соединения.

Ученые Института строительной экологии в Швеции к числу наиболее опасных химических соединений, выделяющихся в атмосферу жилища из полимерных строительных материалов, относят изоцианты, кадмий и антипирены.

Изоцианты — опасные токсичные соединения, проникающие в жилые помещения из полиуретановых материалов (уплотнителей, соединений и др.). Как отмечают шведские специалисты, полиуретановая пена очень удобна в работе, но может оказаться небезопасной для будущего жилища. Вредное воздействие изоциантов, приводящих к астме, аллергии и к другим заболеваниям, усиливается при нагревании полиуретановых материалов солнечными лучами или теплом от отопительных батарей. Возможный выброс изоциантов в атмосферу требует постоянного контроля, однако, как считают шведские специалисты из Института строительной экологии, существующие методы недостаточны, a новые пока еще в стадии разработки.

Весьма опасен кадмий — тяжелый металл, содержащийся в лакокрасочных материалах, пластиковых трубах, напольных покрытиях и т. д. Попадая в организм человека, он вызывает необратимые изменения скелета, приводит к заболеваниям почек и малокровию.

Еще одна экологическая угроза, исходящая из полимерных строительных материалов — противопожарные вещества — антипирены, содержащиеся в негорючих пластиках. Установлена связь вредных веществ, выделяющихся из них, и c заболеванием населения аллергией, бронхиальной астмой и др.

Проведенные в последние годы детальные исследования показали, что полимерные строительные материалы могут оказаться источником выделения и таких вредных веществ, как бензол, толуол, ксилол, амины, акрилаты и др.

Миграция этих и других токсичных веществ из полимерных материалов происходит вследствие их химической деструкции, т.e. старения как под действием химических и физических факторов (окисления, перепадов температуры, инсоляции и др.), так и в связи c недостаточной экологической чистотой исходного сырья, нарушением технологии их производства или использованием не по назначению. Уровень выделения газообразных токсичных веществ заметно увеличивается при повышении температуры на поверхности полимерных материалов и относительной влажности воздуха в помещении.

Один из возможных источников ухудшения экологического состояния жилых помещений — расселение по поверхности полимерных материалов микрофлоры (грибков, мха, бактерий и др.). Некоторые из пластмасс действуют на микроорганизмы губительно, другие же, наоборот, оказывают на них стимулирующее воздействие, способствуя интенсивному размножению. Насколько опасно это их свойство, можно судить по времени сохранности на поверхности полов из полимерных материалов возбудителей: дифтерии — 150 дней, брюшного тифа и дизентерии — более 120 дней.

B связи c этим в лечебных учреждениях и общественных зданиях используются только такие полимерные материалы, которые обладают бактерицидными свойствами, например, полы на основе поливинилацетатной эмульсии.

He менее опасна и способность полимерных строительных материалов накапливать на своей поверхности заряды статического электричества. Данная проблема является чрезвычайно актуальной, учитывая вероятность сочетанного воздействия на организм электризуемости полимеров и других негативных факторов.

В частности, установлено, что электризуемость полимеров оказывает стимулирующее воздействие на развитие патогенной микрофлоры, a также способствует более легкому проникновению летучих токсичных веществ, получивших электрический заряд, в организм.

Особенно высокой степенью электризации (более 65 B/кв. см.) отличаются поверхности линолеумов на полихлорвиниловой основе и другие полы на пластмассовой основе.

Антистатический агент, т.e. химическое соединение, нейтрализующее заряды статического электричества, образует на поверхности полимерного материала резиноподобную пленку. Для этих целей используют различные нитро соединения (амины, амиды и др.), полигликоли и их производные, сульфокислоты, фосфорсодержащие кислоты и др. Выбор антистатического агента определяется назначением и видом полимерного материала. B последнее время при подготовке и укладке полимерных облицовочных материалов снятие электростатических зарядов c их поверхности осуществляют и c помощью нейтрализаторов статического электричества — НЭС/A и др.

Выделение газообразных токсичных веществ в результате горения полимерных строительных материалов еще одна весьма серьезная опасность, связанная c их использованием. Достаточно указать, что термическое разложение при горении 1 кг полимера дает столько газообразных токсичных веществ, что их достаточно для отравления воздуха в помещении объемом 2000 м. У человека, находящегося в таком помещении, через 10—15 минут возникает тяжелое отравление или даже гибель.

Продуктами горения полимерных материалов являются такие токсичные вещества, как формальдегид, хлористый водород, оксид углерода и др. При горении пенопластов выделяется весьма опасный газ — фосген (в первую мировую войну он применялся как отравляющее вещество удушающего действия), при термическом разложении пенополистирола — цианистый водород, газообразный стирол и другие не менее опасные продукты.

Известно, что во время пожара в московской гостинице «Россия» в конце 70-х гг. основной причиной смертельного исхода для многих проживающих там людей были не термические ожоги, a отравление токсичными газами при горении облицовочных полимерных и лакокрасочных материалов.

Из изложенного выше следует, что в обычных условиях ликвидация отходов полимерных материалов путем их простого сжигания совершенно неприемлема. При сгорании полимерных материалов, помимо упомянутых выше фосгена, хлористого и цианистого водорода, формальдегида, оксида углерода и газообразного стирола, образуются и такие высокотоксичные вещества, как цианистоводородная (синильная) кислота (губительная для всего живого уже при концентрации более 0,3 мг/л), галогеноводороды хлора, оксиды азота и др.

Альтернативным вариантом простого сжигания считается термическая переработка полимерных материалов в специальных камерах для получения из них вторичных материалов.

Крайне опасно сжигать всевозможные пленки, синтетические материалы (поролон, используемый для набивки матрацев, диванов, кресел, изготовления ковриков, пенопласт) при сгорании которых выделяются цианиды (CN), являющиеся причиной множества смертельных случаев во время бытовых пожаров. B кострах в большинстве случаев из-за недостатка кислорода цианиды не разрушаются, попадая в окружающую среду. При низких температурах горения (ниже 600 градусов) полиуретановые пены (полиуретан (-OCNH(CH2)6NHCOO (CH2)4O-)n) не выделяют цианидов, но образуют плотный, желтого цвета удушающий дым, содержащий изоцианаты, включая сильнейший аллерген и раздражитель диизоцианат толуола (CONCH3(CH2)6NCO).

B 1984 г. в Бхопале (Индия) в результате утечки метилизоцианата на заводе американской транснациональной компании «Юнион Карбайд» произошла самая крупная в истории химической промышленности авария, унесшая 3 тысячи жизней и приведшая к отравлению более 200 тысяч человек. Метилизоцианат оказывает влияние на кожу, глаза, желудочно-кишечный тракт.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *