Глубина вакуума в чем измеряется
Вакуум: основные понятия, определения и типы вакуума
Вакуум понятие относительное. Учеными доказано, что абсолютного вакуума не существует. Есть несколько понятий вакуума и его интерпретаций.
Что такое вакуум
Ва́куум с латинского «vacuum» обозначает пустой, т.е. это пустое пространство. Но создать пустое пространство невозможно. Поэтому принято считать вакуумом объем, в котором почти нет никаких веществ. Количество молекул в вакууме находится в таком небольшом количестве, что может достигать нескольких десятков.
Из-за малого количество молекул, их внутренняя энергия или импульсы стремятся к нулю. Поэтому считается, что в вакууме практически отсутствуют различные процессы, такие как электрический ток, трение и прочее.
В физике ва́куум – это пространство с газом, давление которого ниже атмосферного давления. Другими словами, это разряжение.
Качество вакуума или его глубина измеряется давлением. А точнее, отношением длины свободного пробега частицы к линейным размерам емкости, в которой он создан. С увеличением степени разряжения уменьшается число столкновений молекул в пространстве. Длина свободного пробега частиц увеличивается и зависит только от размеров сосуда, со стенками которого они сталкиваются. Следовательно, вакуумом можно назвать состояние, когда частицы газа, находясь в определенном объеме, не соприкасаются друг с другом.
Основная единица измерения вакуумного давления – Па. Но паскаль достаточно большая величина для измерения разряжения, поэтому в физике часто используются другие величины, такие как бар, мм.рт.ст., торр, физическая атмосфера.
Соотношение единиц измерения вакуума в физике.
Что такое вакуум?
Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум.
Попытаемся разобраться, что же это такое.
Рассмотрим на примере, что такое вакуум и как его измеряют.
На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум.
Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.
Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом.
Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера.
«откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.
На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:
Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.
На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).
Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.
Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО «Насосы Ампика», у нас в офисе:
включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.
Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.
После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).
В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.
Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.
По-простому – это сила, распределённая по площади поверхности.
Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).
Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).
Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).
То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).
Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.
Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).
Как посчитать силу прижима какой-либо детали к поверхности?
Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.
Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.
Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.
Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.
1 атмосфера равна 1 кг/см2.
Площадь поверхности детали – 100 см2 (10см х10 см).
То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.
Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.
Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.
Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.
Теперь пару слов о механических вакуумметрах.
Эти устройства показывают остаточное давление в пределах 0,05…1 атм.
То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64.
Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.
Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?
Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.
Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.
Но так ли это на самом деле?
1 атм = 100000 Па = 1 кг/см2.
Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).
То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.
Как рассчитать за какое время вакуумный насос откачает вакуумную камеру?
В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем.
Ниже приведена формула для вычисления этого параметра.
В двух словах, это всё.
Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива.
Информация о вакуумных системах и компонентах: понятие вакуума, примеры использования
Общая информация: понятие вакуума и единицы измерения
Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2 ). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.
Уровни вакуума
В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:
Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.
— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.
Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.
Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.
Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.
Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.
Что такое вакуум и где мы его используем
Анна Веселко
В самом строгом смысле вакуум — это область пространства, в которой полностью отсутствует материя. Этот термин представляет собой абсолютную пустоту, и главная его проблема заключается в том, что он описывает идеальное состояние, которое не может существовать в реальном мире. Еще никто не нашел способа создать идеальный вакуум такого типа в земных условиях, и по этой причине термин также используется для описания пустых областей космоса. Но вакуум все же есть и в областях, находящихся чуть ближе к нашей повседневной жизни. Рассказываем, что это такое, простыми словами.
Ни один вакуум, производимый на Земле, даже близко не подходит к этому условию
Поскольку удалить все молекулы воздуха из контейнера практически невозможно, невозможно добиться и идеального вакуума
В промышленных и домашних масштабах (например, если вы решили убрать в вакуумные пакеты зимний пуховик) эффект достигается за счет вакуумных насосов или генераторов разных размеров, которые и удаляют воздух. Насос, состоящий из поршня в цилиндре, прикреплен к закрытой емкости, и с каждым ходом насоса часть газа из баллона удаляется. Чем дольше работает насос, тем лучше создается разрежение в емкости.
Уровень вакуума можно измерить несколькими типами манометров:
Манометр с трубкой Бурдона является компактным и наиболее широко используемым устройством — измерение основано на деформации изогнутой эластичной трубки при приложении вакуума к отверстию манометра.
Манометр с трубкой показывает разницу между двумя давлениями. В простейшем виде этот манометр представляет собой прозрачную U-образную трубку, наполовину заполненную ртутью. Когда оба конца трубки находятся под атмосферным давлением, уровень ртути в каждом колене одинаков. Приложение вакуума к одной стороне заставляет ртуть в ней подниматься и опускаться с другой стороны — разница в высоте между двумя уровнями и показывает уровень вакуума.
Что такое вакуум и с чем его едят?
Рассмотрим для наглядности на примере, что такое вакуум и как его измеряют.
На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погода, от высоты над уровнем моря и так далее, но это мы не будем принимать во внимание, так как оно ни как не будет влиять на понятие вакуум в нашем случае. Итак, мы имеем давление на поверхности земли равное 1 атмосфере, все, что ниже 1 атмосферы и будет техническим вакуумом.
Возьмем какой нибудь сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнем откачивать из сосуда воздух, то в нем возникнет разряжение, которое и будет называться вакуумом.
Так как в сосуде всего одна атмосфера, то теоритически максимальный вакуум мы можем получить ноль атмосфер. Почему теоритически? Потому, что абсолютно все молекулы из сосуда выловить невозможно.
Поэтому в любом сосуде, в котором откачали воздух (газ) всегда остается какое то минимальное его количество. И это количество называется остаточным давлением, т.е. давление которое осталось в сосуде после откачки из него газов.
Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но все равно не до нуля.
Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчета.
За единицу принимается атмосферное давление, т.е. все, что ниже атмосферного давления технический вакуум. Шкала вакууметра от 1,0 атм. до 0 атм.
Так шкалы могут быть в других единицах измерения, к примеру кПа, mBar и так далее, но все это аналогично шкалам в атмосферах. Но мы рекомендуем приобретать вакууметры все атки со шкалой кПа (Па), так как это соответствует международнйо системе измерения СИ.
На картинке показаны вакууметры с различными шкалами, но с одинаковым вакуумом.
Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.
И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что «вы сами ничего не знаете», «а у соседа так» и т.д. и.т.п.)
На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).
Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.
Теперь несколько слов о том, как многие клиенты измеряют вакуум:
включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.
Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.
После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).
В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.
Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.
По-простому – это сила, распределённая по площади поверхности.
Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).
Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).
Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).
То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).
Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.
Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).
Как посчитать силу прижима какой-либо детали к поверхности?
Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.
Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.
Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.
Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.
1 атмосфера равна 1 кг/см2.
Площадь поверхности детали – 100 см2 (10см х10 см).
То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.
Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.
Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.
Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.
Теперь пару слов о механических вакуумметрах.
Эти устройства показывают остаточное давление в пределах 0,05…1 атм.
То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр.
Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.
Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?
Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.
Вакуум у двухступенчатого насоса 0,2 Па, а у одноступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.
Но так ли это на самом деле?
1 атм = 100000 Па = 1 кг/см2.
Значит разница в прижиме плёнки при вакууме 0,2 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).
То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.