Гистерезис температуры что это
Гистерезис температуры что это
Доктор БОГДАНОВ (Avic)
Gutta cavat lapidem non vi, sed saepe cadendo
Подбор термостата осуществляется по температуре закрытия, а не открытия
1. Цифири на термосе ни о чем не говорят. Только кипячение установит истину.
3. Правильный термостат имеет очень узкую петлю гистерезиса, и, именно опираясь на неё, можно подобрать такой термостат. И только тогда достичь достаточно стабильной (колебания в узком диапазоне ) и нормальной рабочей температуры ОЖ.
Термодинамика ДВС и гистерезис термостата двигателя автомобиля
Теперь разберемся, откуда, собственно, берется энергия в автомобиле для его перемещения в пространстве. Конечно, это энергия сгорания бензина. Двигатели внутреннего сгорания (ДВС) переводят химическую энергию топлива в тепловую энергию, а затем с помощью кривошипно-шатунного механизма в механическую работу. При этом 1 литр бензина при сгорании выделяет около 9,5 кВт*ч тепловой энергии.
1) через конвекцию и тепловое излучение,
2) через систему отвода выхлопных газов и
3) через систему охлаждения двигателя, где как раз и нужен пресловутый термостат для регулирования объема охлаждающей жидкости.
Теперь, понимая, что оптимальная температура ДВС зависит от условий вождения и что она находится в очень узком диапазоне температур, перейдем к вопросу регуляции и поддержания необходимого температуры. Исходя из приведенной диаграммы, мы видим, что регулировать её мы может только двумя способами: регуляцией через систему охлаждения и путем рассеивания конвекцией и излучением. Для первого варианта хорошо подходит термостат, для второго же необходима регулируемая теплоизоляция моторного отсека.
1. Термостат не ускоряет прогрев двигателя.
Средняя же скорость (линия тренда) – это прямая, расположенная под определенным ß-углом, который показывает рост температуры во времени и зависит только от технологических особенностей двигателя (теплоемкости) и количества сгоревшего топлива. Отличия для разных двигателей незначительны, т.к. даже на ХХ ЭБУ у многих машин готовит одинаковую смесь. Для конкретного двигателя ß-угла есть константа.
2. Термоизоляция моторного отсека в т.ч. термоодеялом не ускоряет прогрев двигателя.
2. От +50С до +70С скорость прогрева чуть больше с утеплением.
3. От +70С до +100С скорость прогрева больше с утеплением.
Строго говоря, любая теплоизоляция моторного отсека (в т.ч. теплоодеяло) хорошо работает не в фазе нагрева ДВС, а в фазе остывания, когда она удлиняет остывание МО и двигателя в т.ч. И происходит это благодаря «перекрытию» канала рассеивания тепла конвекцией и излучением.
3. Выбитые цифры на корпусе термостата ни о чем не повествуют.
При этой заявленной температуре они должны были открываться, но на практике ни один термостат не соответствовал указанным значениям (+82,+84,+89С).
Для написания этой статьи было проверено 10 новых различных термостатов, и только один открылся точно при достижении указанной температуры!
Таким образом мы имеем соотношение 1:9, т.е один нормальный термостат на 9 с параметрами, которые не соответствуют заявленным изготовителем.
4. Термостаты со временем теряют свои свойства.
5. Главным и единственным критерием определения работоспособности термостата является «петля» гистерезиса.
1. Точка открытия А должна точно соответствовать маркировке (температуре открытия).
2. Точка В соответствует максимальной амплитуде открытия и должна быть стабильна во временя эксплуатации.
3. Гистерезис (разница в открытии и закрытии при заданной температуре) должен быть минимальным, т.е петля должна выглядеть на графике «тощей», а не «толстой».
4. Со временем эксплуатации авто α-угол не должен изменяться.
5. Отрезок А-С (начало открытия и момент полного закрытия) хорошего термостата минимален и не увеличивается со временем службы.
6. Значение точки С (полное закрытие) также должно быть нанесено на корпус термостата.
Как настроить терморегулятор?
Для этого вначале каждому пользователю стоит определится, какая температура воздуха будет для него комфортной. Тепловые ощущения каждого человека индивидуальны, как папиллярные линии кожи на пальцах его рук, и зависят от тепловых потерь помещения и его теплоинерционности.
Самым доходчивым примером может послужить настройка терморегулятора электромеханического типа. После выбора температуры с помощью вращающегося колеса, клавиш и шкалы в работу вступает терморегулятор со своим датчиком. Последний отслеживает уровень температуры воздуха или пола и передает эту величину в виде сигнала на регулятор. А он, в свою очередь, по мере необходимости включает или выключает нагревательный прибор либо кабель. Цель — поддержание заданной температуры или ее допустимого диапазона.
Именно электромеханический (непрограммируемый) терморегулятор целесообразен, когда отапливаемое помещение имеет небольшой объем и затраты на энергоносители для него невелики. Поэтому экономический эффект от программирования режимов будет малозаметным. Электромеханические регуляторы — это простые, энергонезависимые устройства, самые доступные по стоимости. С другой стороны, они вносят большую инерционность в процесс регулирования. Для них достижение заданной температуры помещения занимает больше времени, чем у цифровых.
На самом деле все типы терморегуляторов оперируют с температурой уставки. При ее достижении нагревательный прибор отключается от цепи питания и включается только после падения этой величины на размер гистерезиса. Он четко определяет момент подачи питания на нагревательный прибор и ее снятия. Уставка терморегулятора зависит преимущественно от области его применения. Для теплых полов, конвекторов и инфракрасных нагревателей она лежит в диапазоне (0…60), промышленного применения и электрических котлов (-55…+125), систем оттаивания снега (-20…+10) º С. Отдельные технические решения касаются высокотемпературных процессов.
Гистерезис определяют как разность температур между включением и выключением обогревателя. Гистерезис может быть фиксированным или с возможностью изменения (регулируемым). В последнем случае минимально возможный гистерезис позволяет терморегулятору наиболее точно поддерживать температуру. Но при этом циклы включения / выключения нагревателя будут чередоваться очень часто. Если же гистерезис близок к максимальному значению — точность поддержания температуры снижается. Зато подача / отключение напряжения на теплый пол, конвектор или другой прибор будет происходить значительно реже. Это продлит срок эксплуатации терморегулятора и управляемого им обогревателя. Размер гистерезиса может быть 0,015 º С для терморегулятора в инкубатор, от 1 º С и более для систем микроклимата комфортного или производственного назначения, электрических котлов. Элементы программирования имеют терморегуляторы электрических котлов, где есть возможность настроить гистерезис в определенных границах.
Для терморегуляторов, работающих в режиме Охлаждение, нагрузка будет включаться при достижении температуры уставки и выключаться — при повышении ее на размер гистерезиса.
Дополнительные настройки для цифровых терморегуляторов
Для всех терморегуляторов этого типа доступна поправка, призванная скорректировать показания температуры на экране. Вторая группа поправок характерна только для регуляторов со встроенным датчиком температуры. В этом случае на точность показаний терморегулятора влияет его внутренний нагрев. Степень последнего существенно зависит от подсоединенной нагрузки. Поэтому нужно настроить терморегулятор путем внесения значения ее мощности в память устройства.
Важно помнить следующее. Если при калибровке кратковременно отключится питание терморегулятора с последующим восстановлением, то отображенная на экране температура воздуха отличается от реальной на 10 – 12 º С (в большую сторону). Повторная корректировка произойдет через 50 минут.
Терморегуляторы цифрового типа, управляемые с помощью модуля WI-FI или клавишами имеют блокировку кнопок. Это предотвращает несанкционированную смену настроек режимов работы детьми (в домашних условиях) или при установке устройств управления в местах общего доступа (административные здания и т. д.). Причем настроить терморегулятор на поддержание этой защиты можно с помощью обычных или сенсорных кнопок или дистанционным методом — через компьютер или мобильные гаджеты с доступом в интернет.
При помощи некоторых моделей терморегуляторов можно настроить время (30 минут – 99 часов) задержки включения (подачи питания) отопительной системы или прибора. Какое то время в квартире / доме будут отсутствовать жильцы. Зная ориентировочно период своего возвращения, можно заранее прогреть комнаты для создания комфортных условий.
В приборах управления системами оттаивания снега и наледи имеются функции принудительного и последующего подогрева. Принудительный реализуется при ручном управлении системой оттайки. А последующий прогрев (постпрогрев) требуется для полного удаления осадков со всей площади поверхности, которую датчик осадков не контролирует.
Программируемые терморегуляторы
Отдельно стоит рассмотреть терморегуляторы-программаторы с возможностью введения расписания работы систем обогрева. В таких регуляторах реализовано программирование на неделю вперед. Т.е. каждый пользователь подбирает своему отоплению индивидуальный график эксплуатации, в полной мере соответствующий распорядку жизни человека и его семьи. При этом учитывается порядок чередования рабочих и выходных дней. Возможные режимы «Таймер», «Ручной» и «Отъезд».
Не менее полезными будут настройки проветривания помещения, когда терморегулятор самостоятельно определяет наличие открытого окна или двери и делает получасовой перерыв в работе системы отопления.
В программаторе terneo pro можно активировать предпрогрев для своевременного обеспечения комфорта в помещении. Регулятор анализирует среднюю продолжительность нагрева от экономной до комфортной температуры и откорректирует необходимое время подключения нагрузки.
Для оптимизации расходов на электроэнергию потребителю надо настроить сохранение в памяти терморегулятор графиков статистики энергопотребления (суточных, недельных, месячных или за год). Для части регуляторов доступен более упрощенный вариант — счетчик времени его работы с нагрузкой.
Скрытые параметры комнатных терморегуляторов.
Что такое гистерезис в температурах и давлениях?
(в переводе с греческого — отстающий) — свойство систем (физических, логических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией.
Многие устройства по регулировке и контролю температуры систем отопления имеют настройку не только температуры, но и обязательную настройку гистерезиса, которая позволяет уменьшить количество переключения в единицу времени между двумя положениями: Вкл / Выкл. Гистерезис также позволяет повысить точность регулировки температуры уменьшением гистерезиса.
На сегодняшний день в основном существует только дуальный гистерезис, имеющий только два положения.
К примеру, мы рассмотрим два варианта:
1. Температурный гистерезис – для логики темростатов
2. Гистерезис давления – реле включения / отключения насосов
Как известно у них имеется только два варианта: Вкл / Выкл.
Данное понятие можно разделить на две составляющее:
1. Обозначить этим термином само явление, что существует гистерезис. Например, что данная система обладает гистерезисом.
2. Обозначить значение гистерезиса. Например, сказать, что гистерезис равен 2 градусам.
Гистерезисом называется или величина, при котором сигнал меняется на противоположный сигнал. Или сам эффект при котором, действие переключения на противоположный сигнал осуществляется с некоторой задержкой по величине влияния. (Например, при достижение нормы температуры и превышение этой нормы сигнал изменится не сразу, а по достижению той самой величины гистерезиса).
График температурного гистерезиса
Пример для термостата
Термостат настроен на 25 градусов с гистерезисом 2 градуса.
Предположим что температура помещения 20 градусов. Когда температура достигнет 27 градусов термостат переходит в положение отключения. После этого температура помещения будет падать. Когда температура достигнет 23 градусов, то термостат переходит в положение включения. Цикл замыкается.
Пример для реле давления
Реле настроено на два порога: Порог включения 1,2 Bar, порог отключения 3 Bar
Гистерезис при этом будет равен 0,9 Bar. (3-1,2)/2=0,9
Когда давление составляет 1 Bar, реле замыкает контакт. Когда давление достигает 3 Bar, реле размыкает контакт. Когда давление достигает 1,2 Bar, реле вновь замыкает контакт. Цикл повторяется.
Вот собственно так и нужно понимать логику гистерезиса.
Если бы давление включение и отключения имели одно значение, то гистерезиса бы не было. То есть если порог включения равен порогу отключения, то в такой системе отсутствует гистерезис.
А поскольку комнатные термостаты обладают разными порогами включения и отключения, то такая система обладает гистерезисом. Гистерезис в свою очередь позволяет реже производить переключение между двумя положениями: Вкл / Выкл. Но чем больше гистерезис, тем выше скачкообразное изменение температуры.
Существуют другие графики гистерезисов. Например, магнитный гистерезис
Термореле с регулировкой температуры можно приобрести в магазине или же сделать самому Сегодня, в быт современного человека активно внедряются устройства, позволяющие автоматизировать работу систем отопления и вентиляции, горячего водоснабжения. К таким устройствам относят и термореле. Какие виды термореле для контроля над температурой существуют на сегодня, где можно использовать терморегуляторы и как самостоятельно сделать устройство – читайте ниже.
Особенности физического явления
Мы же остановимся именно на гистерезисе в электронной технике, связанным с магнитными процессами в различных веществах. Он показывает, как себя ведет тот или другой материал в электромагнитном поле, а это тем самым позволяет строить графики зависимости и снимать какие-то показания сред, в которых находятся эти самые материалы. Например, этот эффект используется в работе терморегулятора.
Рассматривая более подробно понятие гистерезиса и эффект с ним связанный, можно заметить такую особенность. Вещество, обладающее такой особенностью, способно переходить в насыщение. То есть, это то состояние, при котором оно больше не способно накапливать в себе энергию. А при рассмотрении процесса на примере ферромагнитных материалов энергия выражается намагниченностью, которая возникает благодаря имеющейся магнитной связи между молекулами вещества. А они создают магнитные моменты – диполи, которые в обычном состоянии направлены хаотически.
Намагниченность в данном случае – это принятие магнитными моментами определенного направления. Если же они направлены хаотически, то ферромагнетик считается размагниченным. Но когда диполи направлены в одну сторону, то материал намагничен. По степени намагниченности сердечника катушки можно судить о величине магнитного поля, создаваемого током, протекающим по ней.
Мастерам на все руки будет интересна статья о том, как самостоятельно подключить ходовые огни.
Скрытые параметры комнатных терморегуляторов.
Человек ощущает себя комфортно в довольно таки узком диапазоне температур. 22 градуса может казаться жарко, а 21 градус — прохладно. Но мало какие терморегуляторы могут обеспечить такую точность. Рассмотрим ключевые параметры имеющихся в продаже комнатных терморегуляторов.
Казалось бы, на терморегуляторе устанавливается значение температуры — о чем ещё можно говорить?
Но для того чтобы не возникал дребезг (бесконечное дергание в виде кратковременных включений/выключений) должен быть гистерезис.
Но есть еще несколько скрытых параметров.
Технические параметры терморегуляторов рассматривал в статье «Какие бывают терморегуляторы».
Здесь остановлюсь на неочевидных параметрах логики работы комнатных терморегуляторов, таких как:
Физический процесс при гистерезисе
Чтобы подробно понять процесс гистерезиса, необходимо досконально изучить следующие понятия:
Что касается материалов, в которых лучше всего наблюдается эффект гистерезиса, то таковыми являются именно ферромагнетики. Это смесь химических элементов, которая способна намагничиваться за счет направленности магнитных диполей, поэтому обычно в составе имеются такие металлы, как:
Чтобы увидеть гистерезис, на катушку с сердечником из ферромагнетика необходимо подать переменное напряжение. При этом от величины его график намагничивания сильно зависеть не будет, потому как эффект зависит напрямую от свойства самого материала и величины магнитной связи между элементами вещества.
Основополагающим моментом при рассмотрении понятия гистерезиса в электронике является как раз магнитная индукция В, созданная вокруг катушки при подаче напряжения. Она определяется по стандартной формуле, как произведение магнитной диэлектрической проницаемости вещества к сумме напряженности и намагниченности поля.
Чтобы понять общий принцип эффекта гистерезиса, необходимо воспользоваться графиком. На нем видна петля намагничивания из состояния полной размагниченности. Участок можно обозначить цифрами 0-1. При достаточной величине напряжения и длительности воздействия магнитного поля на материал график доходит до крайней своей точки по указанной траектории. Процесс осуществляется не по прямой, а по кривой с определенным изгибом, который характеризует свойства материала. Чем больше в веществе магнитных связей между молекулами, тем быстрее он выходит в насыщение.
После снятия напряжения с катушки напряженность магнитного поля падает до нуля. Это участок на графике 1-2. При этом материал за счет направленности магнитных моментов остается намагниченным. Но величина намагниченности несколько ниже, чем при насыщении. Если такой эффект наблюдается в веществе, то оно относится к ферромагнетикам, способным накапливать в себе магнитное поле за счет сильных магнитных связей между молекулами вещества.
Со сменой полярности напряжения, подводимого к катушке, процесс размагничивания продолжается по той же кривой до состояния насыщения. Только в этом случае магнитные моменты диполей будут направлены в обратную сторону. С частотой сети процесс будет периодически повторяться, описывая график, получивший название – петля магнитного гистерезиса.
При многократном намагничивании ферромагнетика меньшей, чем при насыщении напряженностью, то можно получить семейство кривых, из которых можно построить общий график, характеризующий состояние вещества от полного размагниченного до полного намагниченного.
Гистерезис в разных материалах
Гистерезис – это комплексное понятие, характеризующее способность вещества накапливать энергию магнитного поля или другой величины за счет имеющихся магнитных связей между молекулами вещества или особенностей работы системы. Но таким эффектом могут обладать не только сплавы железа, кобальта и никеля. Титанат бария даст несколько иной результат, если его поместить в поле с определенной напряженностью.
Так как он является сегнетоэлектриком, то в нем наблюдается диэлектрический гистерезис. Обратная петля гистерезиса образуется при противоположной полярности подводимого к среде напряжения, а величина противоположного поля, действующего на материал, получило название коэрцитивная сила.
При этом величина поля может предшествовать разным напряженностям, что связано с особенностями фактического состояния диполей – магнитных моментов после прошлого намагничивания. Также на процесс влияют различные примеси, содержащиеся в составе материала. Чем их больше, тем труднее сдвинуть стенки диполей, поэтому остается так называемая остаточная намагниченность.
Определение понятия
У слова «Гистерезис» греческие корни, оно переводится как запаздывающий или отстающий. Этот термин используется в разных сферах науки и техники. В общем смысле понятие гистерезис отличает различное поведение системы при противоположных воздействиях.
Это можно сказать и более простыми словами. Допустим есть какая-то система, на которую можно влиять в нескольких направлениях. Если при воздействии на неё в прямом направлении, после прекращения система не возвращается в исходное состояние, а устанавливается в промежуточном — тогда чтобы вернуть в исходное состояние нужно воздействовать уже в другом направлении с какой-то силой. В этом случае система обладает гистерезисом.
Иногда это явление используется в полезных целях, например, для создания элементов, которые срабатывают при определённых пороговых значениях воздействующих сил и для регуляторов. В других случаях гистерезис несёт пагубное влияние, рассмотрим это на практике.
Что влияет на петлю гистерезиса?
Казалось бы, гистерезис – это больше внутренний эффект, который не виден на поверхности материала, но он сильно зависит не только от типа самого материала, но и от качества и вида его механической обработки. Например, железо переходит в насыщение при напряженности равной 1 э, а сплав магнико достигает своей критической точки только при 580 э. Чем больше дефектов на поверхности материала, тем требуется больше напряженность магнитного поля, чтобы вывести его в насыщение.
В результате намагничивания и размагничивания в материале выделяется тепловая энергия, которая равна площади петли гистерезиса. Также к потерям в ферромагнетике можно отнести действие вихревых токов и магнитной вязкости вещества. Это обычно наблюдается при изменении частоты магнитного поля в большую сторону.
В зависимости от характера поведения ферромагнетика в среде с магнитным полем, различают статический и динамический гистерезис. Первый наблюдается при номинальной частоте напряжения, но с ее ростом площадь графика увеличивается, что приводит и к росту потерь.
Другие свойства
Кроме магнитного гистерезиса, также различают гальвономагнитный и магнитострикционный эффекты. В этих процессах наблюдается изменение электрического сопротивления за счет механической деформации материала. Сегнетоэлектрики под действием деформационных сил способны вырабатывать электрический ток, что объясняется пьезоэлектрическим гистерезисом. Также существует понятие электрооптического и двойного диэлектрического гистерезиса. Последний процесс имеет обычно наибольший интерес, так как сопровождается двойным графиком в зонах, приближающихся к точкам насыщения.
Гистерезис в отоплении
Гистерезис определение относится не только к ферромагнетикам, применяемым в электронике. Такой процесс может происходить и в термодинамике. Например, при организации отопления от газового или электрического котла. Регулирующим компонентом в системе является терморегулятор. Но только контролируемой величиной является температура воды в системе.
При ее снижении до заданного уровня котел включается, начиная подогрев до заданной величины. После чего выключается и процесс повторяется в цикле. Если снять показания температуры при нагреве и остывании системы при каждом цикле включения и выключения отопления, то получиться график в виде петли гистерезиса, который и получил название гистерезис котла.
В таких системах гистерезис выражается в температуре. Например, если он составляет 4°С, а температура теплоносителя установлена 18°С, то котел выключится, когда она достигнет значения 22°С. Таким образом, можно настроить любой приемлемый температурный режим в помещениях. А терморегулятор является, по сути, датчиком температуры или термостатом, который включает или выключает отопления при достижении нижнего и верхнего порога, соответственно.
Рубрики Это интересно
Перед тем как обратиться непосредственно к вопросу о том, что такое гистерезис температуры, отметим, что hysteresis в переводе с греческого языка означает отстающий, запаздывающий. Это свойство некоторых систем, например, физических, биологических, экономических, инженерных и других, которое состоит в том, что реакция на внешние воздействия зависит не только от текущего состояния, но и определено предысторией состояний системы. Наиболее часто с гистерезисом имеют дело в физике. Его рассматривают в таких формах как:
В инженерных технологиях явление гистерезиса рассматривается как свойство физических систем. Таких как, например, термостаты котлов отопления, хронотермостаты, регулирующие температуру теплых полов и др. Температурный гистерезис заложен в логику термостата. Приведем пример. Считаем, что система имеет гистерезис. Гистерезис температуры равен 2 градусам. Тогда гистерезисом может называться величина при которой сигнал изменяется на противоположный или сам эффект перехода на противоположный сигнал, при котором влияние перехода осуществляется с некоторой задержкой. (Так, в момент, когда заданная температура достигнута и превышена, сигнал сменится на противоположный не сразу, а по достижении величины гистерезиса). Допустим, что заданная температура термостата С, при этом гистерезис температуры С. Если температура в помещении С термостат включается. Когда температура в помещении достигнет С термостат перейдет в выключенное состояние. Температура в помещении станет уменьшаться, когда она достигнет значения С термостат включится.
Гистерезис (диапазон) терморегулятора.
Что такое гистерезис понятно — разница между точкой включения и точкой выключения.
То-есть в логике работы терморегулятора задается две температуры: установленная температура, и температура, вычисленная из установленной арифметическими действиями с гистерезисом.
Терморегулятор поддерживает не установленную температуру, а диапазон температур, шириной в гистерезис.
Существуют и терморегуляторы с явным заданием точки включения и точки выключения. Это обычно дешёвые терморегуляторы в форм-факторе не для комнатной установки:
Гистерезис заявлен в руководстве по эксплуатации, и даже в разделе product info для терморегуляторов на AliExpress можно прочитать этот параметр.
Обычно он не бывает меньше 0.5, а часто вообще равен 1.
Гистерезис в 1 градус — это много.
Ещё стоит обратить внимание на то — чем является установленная на терморегуляторе температура.
Это может быть как точка включения — нижняя граница диапазона, так и точка выключения — верхняя граница диапазона.
—> —>Статистика —>
В случае использования пультов управления для нормальной работы отопительной системы необходимо задавать температуру системы на входе в котел (обратка), на выходе из котла (подача) и гистерезис (уставку гистерезиса) по каждому каналу.
Гистерезис (уставка гистерезиса) – это разница между температурой отключения и последующего включения, задается по каждому каналу в диапазоне от 1 до 9°С. Этот параметр мы рекомендуем выставить в пределах:
Как сделать термореле своими руками
Подходящее по способу действия термореле можно заказать в интернет-магазине, а можно собрать своими руками. Чаще всего, самодельные регуляторы температуры воздуха рассчитываются на питание от аккумулятора на 12 В. Можно запитать термореле и к электропроводке через силовой кабель.
Для того чтобы смастерить терморегулятор, необходимо заранее подготовить корпус прибора и другие инструменты для работы
Для того, чтобы собрать надежный терморегулятор с датчиком следует:
Для питания терморегулятора можно взять катушку от старого электромеханического электросчетчика. Для получения необходимого напряжения в 12 В, нужно будет намотать на катушку 540 витков. Для этого лучше всего использовать медный провод диаметром не менее 0,4 мм.
Автоматизация на естественной тяге.
Практически все современные котлы можно оснастить регулятором тяги который при помощи металлической цепочки будет изменять положение заслонки, поддерживая заданную температуру теплоносителя. Для этого на котле должен быть специальный разъем с внутренней резьбой в наружной части рубашки. Для термостатического регулятора Regulus RT-3 размер составляет ¾.
Принцип работы термостатического регулятора Regulus RT-3.
При уменьшении температуры ниже заданного значения, срабатывает термостат, головка поворачивается, цепь на рычаге натягивается, поднимая заслонку. Когда температура повысилась до заданного значения, головка поворачивается в обратную сторону и заслонка опускается, тем самым ограничивая доступ воздуха в топку. Таким образом котел работает в заданном Вами диапазоне температур.
Регулятор Regulus RT-3 состоит из погружаемой гильзы (термостата), пластиковой головки на которую нанесены 2 шкалы: для вертикального и горизонтального положения регулятора, рычага и цепочки.
Чтобы установить регулятор тяги, выполните следующие действия:
Автоматизировав котел посредством регулятора тяги, Вы получите более «плавную» работу котла. Расход топлива можно уменьшить до 15%. Еще следует отметить энергонезависимость и невысокую цену данного приспособления.
Автоматизация «на турбине»
Практически все модели дорогих и экономичных котлов уже автоматизированы, т.е. оснащены вентилятором и командо-контроллером. Модели бюджетные либо базовые (без дополнительных опций) продаются без автоматики. Можно эксплуатировать котел в «базовой» комплектации, а можно за дополнительные деньги автоматизировать. Нужно ли Вам это, читайте ниже.
Для полного сжигания топлива необходимо определенное количество кислорода. Если кислорода недостаточно, топливо не перегорает полностью, соответственно получаем перерасход, загрязнение колосников и газоходов. Топка котла рассчитана на объем топлива и объем воздуха необходимого для горения. Если топлива загрузили больше, влажность дров высокая, то воздуха для сгорания необходимо больше. Также чем больше воздуха, тем меньше конденсата в котле и дымоходе. Увеличивать топку не выход, поэтому использование вентилятора, как источника принудительной тяги позволяет значительно увеличивать количество поступаемого в топку воздуха.
Оснащая котел вентилятором, получаем следующие преимущества:
Выгода в том, что используя вентилятор, мы увеличиваем КПД котла. Но поставив вентилятор, не означает, что котел автоматизирован. Ток на вентилятор пропускают через регулятор температуры (командо-контроллер, блок управления).
Управление работой вентилятора осуществляется через него.
Рассмотрим основные функции, которые выполняет регулятор температуры:
У разных производителей функции регулятора температуры могут добавляться, например функция регулировки работы насоса контура ГВС, механизм подачи топлива и т. д.
Принцип действия.
Регулятор температуры – это электронный блок с проводами. Оснащен вилкой для подключения к сети переменного тока. Один из проводов имеет медный наконечник – это так называемая термопара- термостатический передатчик температуры. Наконечник должен быть всегда в соприкосновении с теплоносителем. Это нужно для передачи текущего значения температуры. Следующий провод подключается к насосу, а провод с разъемом к вентилятору. Электронный блок оборудован экраном и кнопками. С помощью кнопок выставляется требуемые значения температуры выключения вентилятора и температуры включения насоса, скорость оборотов вентилятора и другие параметры. Все данные отображаются на экране.
При достижении установленной температуры котла, регулятор температуры выключает вентилятор. При понижении температуры котла ниже установленной на значение гистерезиса котла, регулятор температуры снова включает вентилятор.
Гистерезис температуры котла – это значение, которое показывает разницу между установленной температурой котла и температурой котла, при охлаждении до которой регулятор температуры снова включит вентилятор.
При достижении температуры котла равной установленной Температуре включения насоса, регулятор температуры включает насос центрального отопления. При понижении температуры котла до температуры, ниже установленной Температуры включения насоса на значение Гистерезиса температуры включения насоса, регулятор температуры осуществляет выключение насоса центрального отопления.
Гистерезис температуры включения насоса – это значение, которое показывает разницу между установленной температурой включения насоса центрального отопления и температурой котла, при охлаждении до которой, регулятор температуры выключит насос центрального отопления.
Значение гистерезиса обычно задается заводскими настройками производителя и равно 3-5°С.
Таким образом, пока котел не затух, температура теплоносителя поддерживается в пределах заданного значения.
Использование вентилятора с регулятором температуры позволяет поддерживать постоянную температуру в доме и экономить до 35% топлива.
Единственный недостаток зависимость от электроэнергии.
Внимание! Приобретая автоматику обязательно проконсультируетесь с продавцом, предусмотрен ли монтаж на выбранную Вами модель котла.
Погрешность (точность измерения) терморегулятора.
При преобразовании измеренной температуры в цифровое значение происходит отбрасывание знаков после запятой с понижением точности.
Точность более 0,1 очевидно что не нужна.
Часто в комнатных терморегуляторах выбрана точность 0,5.
Но точность 1 кажется слишком грубой.
Тем не менее встречаются терморегуляторы, у которых не отображаются вообще знаки после запятой.
Ещё заметил что у некоторых терморегуляторов точность значения температуры, участвующего в вычислениях, и точность отображаемого значения различаются.