Гипотеза чистоты гамет утверждает что

Гипотеза чистоты гамет утверждает что

Гипотеза чистоты гамет утверждает что. Mendelian inheritance 3 1. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-Mendelian inheritance 3 1. картинка Гипотеза чистоты гамет утверждает что. картинка Mendelian inheritance 3 1. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

Закон расщепления признаков

Определение

Закон расщепления, или второй закон Менделя : при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет утверждает что. 250px MajorEventsInMeiosis. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-250px MajorEventsInMeiosis. картинка Гипотеза чистоты гамет утверждает что. картинка 250px MajorEventsInMeiosis. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

На схеме показан мейоз клетки с диплоидным набором 2n=4 (две пары гомологичных хромосом). Отцовские и материнские хромосомы обозначены разным цветом.

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:

Источник

Закон чистоты гамет

Вы будете перенаправлены на Автор24

Формулировка закона чистоты гамет

Закон чистоты гамет – это правило, согласно которому в гамету дочерней особи попадает только один аллель, принадлежащий родительской особи.

Также этот закон формулируют следующим образом.

Гетерозиготная особь обладает рецессивным и доминантным аллелями. Потомкам передается доминантный аллель, но рецессивный становится при этом неотъемлемой частью генотипа, хотя внешне не проявляется.

Предшествием данному закону явилось предположение Г. Менделя (основоположника генетики) о том, что наследственные факторы при образовании гибридов первого поколения не смешиваются, а остаются в неизменном виде. При этом в теле гибрида первого поколения при скрещивании родителей, различающихся по ряду альтернативных признаков, присутствуют оба фактора, как доминантный, так и рецессивный.

Доминантный признак – это признак, проявляющийся в фенотипе гибридов первого поколения. Обычно этот признак обозначается заглавной буквой.

Рецессивный признак – это признак, подавляемый в фенотипе гибридов первого поколения, но присутствующий в их генотипе. Признак обозначается строчной буквой.

Содержание закона чистоты гамет

Между поколениями связь осуществляется через половые клетки или гаметы. Следовательно, целесообразно предположить тот факт, что каждая гамета несет только один признак из пары. В этом случае при оплодотворении или слиянии двух гамет, каждая из которых содержит ген, отвечающий за развитие рецессивного признака, происходит фенотипическая реализация рецессивного признака. Если сливаются гаметы, несущие в себе гены, отвечающие за развитие рецессивного признака, то происходит фенотипическое проявление рецессивного признака.

При этом, следует сделать вывод о том, что появление у гибридов второго поколения рецессивного признака от одного из родителей может произойти только при соблюдении двух условий:

Готовые работы на аналогичную тему

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил генетической чистотой гамет. Почему этот закон может быть реализован на практике? Известно, что каждая клетка организма несет постоянный диплоидный набор хромосом и две гомологичные хромосомы содержат одинаковые аллели одного гена. В связи с этим образование генетически «чистых» гамет будет происходить следующим образом:

Расщепление признаков в потомстве может происходить только при соблюдении нескольких условий: скрещивание должно быть многократным, чтобы получить большое количество потомков. Генотип родителей должен быть исключительно гетерозиготным. Гаметы должны свободно скрещиваться между собой. Зиготы должны иметь способность выживать в равной степени.

В ходе оплодотворения случайным образом могут встретится одинаковые или разные гаметы, несущие те или иные аллели. По статистике при наличии большого количества гамет в потомстве четверть генотипов будет гомозиготной доминантной, а половина гетерозиготной, а еще одна четверть станет гомозиготной рецессивной. В итоге установится соотношение 1АА:2Аа:1аа.

Если рассматривать полученное расщепление с точки зрения фенотипа, то можно отметить, что будет наблюдаться соотношение 3:1 по доминантному и рецессивному признаку соответственно. Такое расщепление происходит на постоянной основе при соблюдении всех вышеописанных условий.

Таким образом, можно сделать вывод о том, что цитологической основой расщепления признаков потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образование гаплоидных гамет в ходе двух последовательных мейотических делений.

Следует отметить тот факт, что Мендель основал гибридологический метод для того, чтобы судить о генетическом строении предков и анализировать проявление признаков у их потомков. С помощью проведенных исследований он сформулировал три основных закона наследственности, подтверждающих гипотезу чистоты гамет.

Если первые два закона описаны выше, то третьему следует уделить особенное внимание. При скрещивании диплоидных организмов, которые имеют по две пары аллелей, во втором поколении будет наблюдаться независимое комбинирование исходных признаков родительских особей. При этом дигетерозиготная особь дает следующие гаметы: Ав, АВ, Ва, ав. Эти половые клетки могут давать диплоидных особей с различными комбинациями.

Третий закон Менделя действует, когда гены, отвечающие за развитие признаков, находятся в разных хромосомах. При формировании гамет в мейозе парные хромосомы расходятся случайным образом и потомство получает характеристики с новым генетическим сочетанием, которое не было похоже на родительской особи.

Реализация третьего закона возможна только при наличии несцепленных хромосом, когда исследуемые характеристики находятся в разных хромосомных парах.

Примером действия независимого наследования являются экспериментальные исследования Менделем белых и розовых цветов, а также желтых и зеленых горошин. Согласно этому закону, фенотипическое расщепление признаков произойдет следующим образом: 9:3:3:1.

Подводя итог всему вышесказанному, можно сделать вывод о том, что закон чистоты гамет стал своего рода «прорывом» в генетической науке, поскольку именно благодаря ему Грегор Мендель смог дать обширное обоснование многочисленным закономерностям наследования признаков теми или иными организмами (как растительными, так и животными). Закон чистоты гамет можно считать новой ступенью в развитии генетической науки.

Источник

Гипотеза чистоты гамет. Законы наследования признаков Менделя

Гипотеза чистоты гамет была выдвинута чешским ученым Грегором Менделем, который изучал закономерности наследования в живых организмах. Суть гипотезы заключается в следующем.

Суть гипотезы

Гетерозиготная особь несет в себе два аллельных гена: рецессивный и доминантный. Фенотип проявляется доминантным геном, но рецессивный ген при этом не теряется и не изменяется при передаче потомству.

Гипотеза чистоты гамет утверждает что. mendel. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-mendel. картинка Гипотеза чистоты гамет утверждает что. картинка mendel. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Клетки в организме, за исключением гамет, имеют парные хромосомы (диплоидный набор), в гомологичных участках которых находятся аллельные гены, определяющие свойства потомства. Половые клетки, размножаясь путем мейоза, получают гаплоидный набор хромосом. Лишь одна из парных хромосом, с определенным аллельным геном, попадет в новообразованную половую клетку. Так гаметы сохраняют «чистоту», имея одну аллель, обусловливающую будущие характеристики потомства.

Гибридологический метод исследования

Мендель основал гибридологический метод исследования (основной метод генетики), который дает возможность судить о генетическом строении предков, за счет анализа потомства. С помощью проведенных исследований, ученый смог сформировать три закона наследования признаков, которые подтверждают гипотезу чистоты гамет.

Гипотеза чистоты гамет утверждает что. gipoteza. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-gipoteza. картинка Гипотеза чистоты гамет утверждает что. картинка gipoteza. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. Гипотеза чистоты гамет

Закон 1. Единообразие гибридов первого поколения

В результате скрещивания гомозиготных организмов, аллели которых кодируют разные свойства признака, всё потомство будет иметь один фенотип.

Мендель многократно проводил исследования: использовал в опытах семена гороха (желтые и зеленые семена давали в потомстве только зеленые окрас), пурпурные и белые цветы (проросшие растения дали без исключений пурпурный цвет). Это натолкнуло Менделя на мысль о доминировании одних признаков над другими. Так появилось разделение аллелей на доминантные и рецессивные.

Закон 2. Расщепления признаков во втором поколении

При скрещивании гетерозигот первого поколения, во втором наблюдается закономерное расщепление и проявление фенотипа в соотношении 3:1. Потомство гетерозиготных родителей получит три варианта генотипа (Аа, АА, аа) и два фенотипа. Такое распределение идет за счет наличия доминантной аллели, которая проявляется и в гомо-, и в гетерозиготном состоянии. Термин расщепление означает распределение между потомством генетической информации родителей, наследование или доминантных, или рецессивных признаков.

Основные условия необходимые для действия второго закона:

Второй закон подтверждает гипотезу чистоты гамет: каждая гамета несет один аллельный признак, аллельные гены гетерозигот не влияют друг на друга, не изменяются, количество новообразованных половых клеток в гетерозиготном организме с доминантными и рецессивными признаками почти равное. При слиянии мужских и женских половых клеток, аллели свободно сочетаются в новом организме.

Современные генетические исследования подтвердили предположения Г. Менделя, теперь его учение превратилось из гипотезы в закон чистоты гамет.

Закон 3. Независимое наследование признаков

Результатом скрещивания диплоидных организмов, несущих по две пары аллелей, будет наличие во втором поколении независимого комбинирования исходных характеристик.

Так дигетерозигота дает такие сочетания в гаплоидных половых клетках: Ав, АВ, Ва, ав. Они могут образовывать диплоидные клетки с разными комбинациями. Закон действует, когда гены, кодирующие признаки, находятся в разных хромосомах. Во время формирования гамет при мейотическом делении парные хромосомы распределяются случайным образом, а при слиянии материнских и отцовских половых клеток может получится потомство с новым сочетанием кодированных характеристик, отличающихся от родительских.

Реализация третьего закона возможна только при наличии несцепленных хромосом, когда исследуемые характеристики находятся в разных хромосомных парах.

Примером действия независимого наследования являются экспериментальные исследования Менделем белых и розовых цветов, а также желтых и зеленых горошин.

Во время исследования первый закон сработал и все представители первого поколения обладали единым фенотипом: розовые цветы с желтыми горошинами. При скрещивании гибридов первого поколения были получены следующие результаты: 9 имели розовые цветы и желтые горошины, 3 – белые цветы, желтые горошины, 3 – розовые цветы, зеленые горошины, 1 – с белыми цветами и зелеными горошинами.

Схематическое изображение третьего закона при помощи решетки Пеннета.

Источник

Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.

Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.

Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.

Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.

Если в результате скрещивания в поколении наблюдалось расщепление в соотношении 1:1, то исходный организм содержит гены в гетерозиготном состоянии.

Наследование групп крови (система АВ0)

Наследование признаков, сцепленных с полом

У большинства организмов пол определяется во время оплодотворения и зависит от набора хромосом. Такой способ называют хромосомным определением пола. У организмов с таким типом определения пола есть аутосомы и половые хромосомы — Y и Х.

У млекопитающих (в т.ч. у человека) женский пол обладает набором половых хромосом ХХ, мужской пол — ХY. Женский пол называют гомогаметным (образует один тип гамет); а мужской — гетерогаметным (образует два типа гамет). У птиц и бабочек гомогаметным полом являются самцы (ХХ), а гетерогаметным — самки (ХY).

В ЕГЭ включены задачи только на признаки, сцепленные с Х-хромосомой. В основном они касаются двух признаков человека: свертываемость крови (Х Н — норма; X h — гемофилия), цветовое зрение (Х D — норма, X d — дальтонизм). Гораздо реже встречаются задачи на наследование признаков, сцепленных с полом, у птиц. У человека женский пол может быть гомозиготным или гетерозиготным

по отношению к этим генам. Рассмотрим возможные генетические наборы у женщины на примере гемофилии (аналогичная картина наблюдается при дальтонизме):

Х Н Х Н — здорова; Х Н X h — здорова, но является носительницей; Х h Х h — больна. Мужской пол по этим генам является гомозиготным, т.к. Y-хромосома не имеет аллелей этих генов: Х Н Y — здоров; X h Y — болен. Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины являются их носителями.

Типичные задания ЕГЭ по генетике. Определение числа типов гамет

Задачи на моно- и дигибридное скрещивание

Доминантные гены неизвестны

Задача: Скрестили два сорта флоксов: один имеет красные блюдцевидные цветки, второй — красные воронковидные цветки. В потомстве было получено 3/8 красных блюдцевидных, 3/8 красных воронковидных, 1/8 белых блюдцевидных и 1/8 белых воронковидных. Определите доминантные гены и генотипы родительских форм, а также их потомков.

Решение: Проанализируем расщепление по каждому признаку в отдельности. Среди потомков растения с красными цветами составляют 6/8, с белыми цветами — 2/8, т.е. 3:1. Поэтому А — красный цвет, а — белый цвет, а родительские формы — гетерозиготны по этому признаку (т.к. есть расщепление в потомстве).

По форме цветка также наблюдается расщепление: половина потомства имеет блюдцеобразные цветки, половина — воронковидные. На основании этих данных однозначно определить доминантный признак не представляется возможным. Поэтому примем, что В — блюдцевидные цветки, в — воронковидные цветки.

РАаВв (красные цветки, блюдцевидная форма)Аавв (красные цветки, воронковидная форма)
ГАВ, Ав, аВ, авАв, ав
F1
ГаметыАВАваВав
АвААВвААввАаВвАавв
авАаВвАаввааВваавв

Ответы

4. 1/4 высоких, 2/4 средних и 1/4 низких (неполное доминирование).

5. 3/4 черных и 1/4 белых.

6. АА — черные, аа — белые, Аа — серые. Неполное доминирование.

7. Бык: АаВв, корова — аавв. Потомство: АаВв (черные безрогие), Аавв (черные рогатые), ааВв (белые рогатые), аавв (белые безрогие).

8. А — красные глаза, а — белые глаза; В — дефектные крылья, в — нормальные. Исходные формы — ААвв и ааВВ, потомство АаВв.
Результаты скрещивания:
а) АаВв х ААвв

o F2 ААВв красные глаза, дефектные крылья

o АаВв красные глаза, дефектные крылья

o ААвв красные глаза, нормальные крылья

o Аавв красные глаза, нормальные крылья

o F2 АаВВ красные глаза, дефектные крылья

o АаВв красные глаза, дефектные крылья

o ааВв белые глаза, дефектные крылья

o ааВВ белые глаза, дефектные крылья

9. А — карие глаза, а — голубые; В — темные волосы, в — светлые. Отец ааВв, мать — Аавв.

АаВв — карие глаза, темные волосы
Аавв — карие глаза, светлые волосы
ааВв — голубые глаза, темные волосы
аавв — голубые глаза, светлые волосы

10. А — правша, а — левша; В — положительный резус, в — отрицательный. Отец ААВв, мать — аавв. Дети: 50% АаВв (правша, положительный резус) и 50% Аавв (правша, отрицательный резус).

13. Ребенок с первой группой крови может родиться только в том случае, если его мать гетерозиготна. В этом случае вероятность рождения составляет 50%.

16. А — красные плоды, а — белые; В — короткочерешковые, в — длинночерешковые.
Родители: Аавв и ааВв. Потомство: АаВв (красные плоды, короткочерешковые), Аавв (красные плоды, длинночерешковые), ааВв (белые плоды, короткочерешковые), аавв (белые плоды, длинночерешковые).
Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны?

18. А — белая окраска, а — желтая; В — овальные плоды, в — круглые. Исходные растения: АаВв и Аавв. Потомство:
А_Вв — 3/8 с белыми овальными плодами,
А_вв — 3/8 с белы ми шаровидными плодами,
ааВв — 1/8 с желтыми овальными плодами,
аавв — 1/8 с желтыми шаровидными плодами.

Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.

Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.

Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.

Если в результате скрещивания в поколении наблюдалось расщепление в соотношении 1:1, то исходный организм содержит гены в гетерозиготном состоянии.

Источник

Закон (гипотеза) «чистоты» гамет

Гипотеза чистоты гамет утверждает что. dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. картинка Гипотеза чистоты гамет утверждает что. картинка dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. Гипотеза чистоты гамет утверждает что. dark vk.71a586ff1b2903f7f61b0a284beb079f. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-dark vk.71a586ff1b2903f7f61b0a284beb079f. картинка Гипотеза чистоты гамет утверждает что. картинка dark vk.71a586ff1b2903f7f61b0a284beb079f. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. Гипотеза чистоты гамет утверждает что. dark twitter.51e15b08a51bdf794f88684782916cc0. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-dark twitter.51e15b08a51bdf794f88684782916cc0. картинка Гипотеза чистоты гамет утверждает что. картинка dark twitter.51e15b08a51bdf794f88684782916cc0. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. Гипотеза чистоты гамет утверждает что. dark odnoklas.810a90026299a2be30475bf15c20af5b. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-dark odnoklas.810a90026299a2be30475bf15c20af5b. картинка Гипотеза чистоты гамет утверждает что. картинка dark odnoklas.810a90026299a2be30475bf15c20af5b. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Гипотеза чистоты гамет утверждает что. caret left.c509a6ae019403bf80f96bff00cd87cd. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-caret left.c509a6ae019403bf80f96bff00cd87cd. картинка Гипотеза чистоты гамет утверждает что. картинка caret left.c509a6ae019403bf80f96bff00cd87cd. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Гипотеза чистоты гамет утверждает что. caret right.6696d877b5de329b9afe170140b9f935. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-caret right.6696d877b5de329b9afe170140b9f935. картинка Гипотеза чистоты гамет утверждает что. картинка caret right.6696d877b5de329b9afe170140b9f935. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Правило чистоты гамет сформулировал английский генетик У. Бэтсон.

При анализе признаков гибридов первого и второго поколений Мендель установил, что рецессивный ген не исчезает и не смешивается с доминантным. В F2 проявляются оба гена, что возможно только в том случае, если гибриды F1 образуют два типа гамет: одни несут доминантный ген, другие — рецессивный. Это явление и получило название гипотезы чистоты гамет: каждая гамета несет только один ген из каждой аллельной пары. Гипотеза чистоты гамет была доказана после изучения процессов, происходящих в мейозе.

Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.

49) Второй закон Менделя – закон расщепления признаков у гибридов второго поколения. Третий закон Менделя – закон независимого комбинирования признаков. Статистический характер законов Менделя и условия их проявления.

2 закон Менделя –закон расщепление гибридов: при скрещивании первого поколения между собой, во втором поколении появляются особи, как с доминантными, так и с рецессивными признаками; происходит расщепление по фенотипу 3:1, по генотипу 1:2:1. Закон показал, что хотя у гетерозигот проявляется лишь доминантные признаки, однако рецессивный ген не утрачен, не изменился.

Гипотеза чистоты гамет утверждает что. 640 1. Гипотеза чистоты гамет утверждает что фото. Гипотеза чистоты гамет утверждает что-640 1. картинка Гипотеза чистоты гамет утверждает что. картинка 640 1. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

3-й законнезависимого комбинирования признака – при скрещивании особей, анализируемых по двум и более парам альтернативных признаков, то во втором поколении наблюдается независимое комбинирование признаков; появляются гибриды с признаками не характерными для родительских и прародительских особей. В результате дигибридного скрещивания поколение единообразное. Во втором поколении расщепление (3+1) n n-анализируемые признаки (9:3:3:1).

На характер наследования в ряду поколений сложных признаков определенное влияние оказывает тип взаимодействия неаллельных генов. Различные комбинации их аллелей могут обеспечивать появление нового признака или его варианта, исчезновение признака, изменение характера его проявления у потомков. Существенную роль в этом играет также характер наследования взаимодействующих генов по отношению друг к другу. Они могут наследоваться независимо или сцеплено, и от этого зависит, с какой частотой в потомстве будут появляться комбинации аллелей, обеспечивающие тот или иной тип их взаимодействия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

РааВвАавв
ГаВ, авАв, ав
F1