Геоид и квазигеоид в чем их различие
Геодезия
Для студентов аспирантов и преподавателей
Разделы
Геоид и квазигеоид
Понятие фигуры Земли неоднозначно и может трактоваться по-разному в зависимости от того, какие требования предъявляются к точности решения тех или иных задач, требующих знания формы и размеров Земли. В одних случаях Землю можно принять за шар, в других, например, при решении многих задач геодезии и картографии — за двухосный эллипсоид вращения с малым полярным сжатием и т. п.
Выше отмечалось, что при решении задач высшей геодезии под фигурой Земли в настоящее время понимают фигуру, ограниченную физической поверхностью Земли, т. е. поверхностью ее твердой оболочки на суше и невозмущенной поверхностью морей и океанов. Суша составляет около 7з земной поверхности. Возвышается она над уровнем моря в среднем на 900 м, т. е. на очень малую величину по сравнению со средним радиусом Земли <R — = 6371 км). Более 70% земной поверхности покрыто морями и океанами. Поэтому за фигуру Земли в первом приближении можно принять фигуру, ограниченную невозмущенной поверхностью морей и океанов и продолженную под материками так, чтобы отвесные линии во всех ее точках были перпендикулярны к ней. Такую фигуру Земли по предложению немецкого физика Листинга называют геоидом. Изучением геоида геодезисты занимаются более ста лет. В настоящее время на акватории Мирового океана геоид с высокой точностью (до 0,1—0,3 м по высоте) изучают методом спутниковой альтиметрии, измеряя расстояния от спутника до подспутниковых точек на поверхности морей и океанов. Эти измерения показали, что невозмущенная морская поверхность не везде совпадает с уровенной поверхностью потенциала силы тяжести: в отдельных районах отклонения по высоте достигают ± (1,5—2) м. Поэтому при теоретически строгом подходе под геоидом понимают фигуру Земли, ограниченную уровенной поверхностью потенциала силы тяжести, проходящей через начало отсчета высот, совпадающее с некоторым средним уровнем Мирового океана.
При изучении фигуры геоида на суше метод спутниковой альтиметрии не работает, а другие методы космической геодезии дают недостаточную точность определения его поверхности. Для того чтобы изучить фигуру геоида по наземным измерениям с высокой точностью, необходимо силу тяжести измерять непосредственно на его поверхности, что не осуществимо. Следовательно, как доказал известный советский ученый М. С. Молоденский, изучить фигуру геоида с высокой точностью по наземным измерениям невозможно. По результатам комплекса наземных астрономо-геодезических и гравиметрических измерений теоретически безупречно может быть определена другая вспомогательная поверхность, получившая название поверхности квазигеоида, которая незначительно отклоняется от поверхности геоида: в равнинной местности на 2— 4 см, а в горах — не более 2 м. На морях и океанах поверхности геоида и квазигеоида полностью совпадают.
Фигуру Земли, ограниченную поверхностью квазигеоида, называют квазигеоидом. Определив из обработки наземных измерений параметры квазигеоида и измерив относительно него высоты точек земной поверхности, можно теоретически строго изучить фигуру реальной Земли, ограниченную ее твердой оболочкой на суше и невозмущенной поверхностью морей и океанов. Теория М. С. Молоденского изучения фигуры и гравитационного поля Земли получила признание среди геодезистов всего мира и подробно рассматривается в курсах геодезической гравиметрии и теории фигуры Земли.
Уровенные поверхности. Понятие о геоиде и квазигеоиде
В настоящее время под фигурой (формой) Земли понимают фигуру, ограниченную физической поверхностью Земли, т.е. поверхностью ее твердой оболочки на суше и поверхностью морей и океанов в их спокойном состоянии.
До недавнего времени за фигуру Земли принималась сложная фигура, которая называлась геоидом (землеподобная). Понятие геоида тесно связано с понятием уровенная поверхность.
Уровенная поверхность – это замкнутая поверхность, которая в каждой своей точке перпендикулярна отвесной линии, т.е. она перпендикулярна к направлению силы тяжести. |
Уровенных поверхностей, которые огибают Землю, можно представить бесчисленное множество. За основную уровенную поверхность принимается та из них, которая совпадает с поверхностью воды в океанах и открытых морях в спокойном состоянии, т.е. при отсутствии приливов, отливов, течений, волнений и т.д. Практически за основную уровенную поверхность принимают средний уровень океана, определенный по результатам многолетних наблюдений за уровнем воды.
Если основную уровенную поверхность продолжить под континентами так, что в любой ее точке отвесные линии будут перпендикулярны к ее поверхности, то образуется замкнутая волнистая поверхность без складок и ребер, которая охватывает все тело Земли. Тело, ограниченное такой поверхностью, и называется геоидом (рис. 3).
Поскольку отвесные линии это линии направления силы тяжести, то, следовательно, направления отвесных линий зависят от распределения масс в теле Земли. А, следовательно, от распределения масс будет зависеть и фигура геоида. Но, так как невозможно установить истинное распределения масс в теле Земли, то, следовательно, невозможно точно установить поверхность геоида.
Поэтому в 1949 году советским ученым М.С. Молоденским было предложено определять не фигуру геоида, а фигуру реальной поверхности Земли на основе геодезических, астрономических и гравиметрических измерений. Для изучения физической поверхности Земли им была предложена вспомогательная поверхность, называемая квазигеоидом, которая в пределах морей и океанов совпадает с поверхность геоида, а в пределах суши отличается от поверхности геоида от нескольких сантиметров на равнинной местности, до двух метров в горной.
Понятие о геоиде, квазигеоиде, земном эллипсоиде
Геоид, квазигеоид и общий земной эллипсоид – это три модели Земли. Дадим их определения с точки зрения современных представлений о фигуре Земли.
Под фигурой Земли в настоящее время понимают фигуру, ограниченную физической поверхностью Земли, т.е. поверхностью ее твердой оболочки на суше и невозмущенной поверхностью морей и океанов.
Суша составляет третью часть от земной поверхности и в среднем она возвышается над водой примерно на 900 метров, что незначительно по сравнению с радиусом Земли (6371км). Поэтому за фигуру Земли в первом приближении принят геоид.
Дадим два определение геоид:
1. Строгое: геоид – это уровенная поверхность поля силы тяжести Земли, проходящая через начало счета высот.
2.Нестрогое: геоид – это фигура, ограниченная невозмущенной поверхностью морей и океанов и продолженная под материками так, чтобы отвесные линии во всех ее точках были перпендикулярны к ней.
Более ста лет, т. е. с первой половины прошлого века геодезисты и геофизики изучали фигуру геоида и считали это основной научной задачей высшей геодезии. В середине прошлого столетия советским ученым Молоденским было доказано, что фигура геоида, строго говоря, неопределима. Он предложил основной задачей высшей геодезии считать изучение фигуры реальной Земли и ее гравитационного поля. Молоденский создал теорию, которая позволяет точное определение фигуры Земли на основании выполненных на земной поверхности измерений, без привлечения каких – либо гипотез об ее внутреннем строении.
В теории Молоденского в качестве вспомогательной вводится поверхность квазигеоида, совпадающая с геоидом на океанах и морях и весьма мало отступающая от поверхности геоида на суше ( менее 2м).
В отличие от геоида поверхность квазигеоида может быть строго определена по результатам наземных наблюдений.
С понятием земного эллипсоида мы уже столкнулись при рассмотрении главной научной задачи высшей геодезии. Напомню, что поверхность земного эллипсоида является той математически и геометрически простой поверхностью, на которой могут быть решены геодезические задачи по координированию точек земной поверхности и которая достаточной близка к поверхности Земли. Земной эллипсоид представляет собой эллипсоид вращения с малым полярным сжатием. Его поверхность может быть получена вращением полуэллипса РЕР1 вокруг его малой оси РР1 (рис 1.2).
|
Рис. 1.2. К понятию земного эллипсоида:— большая полуось; b— малая полуось.
Поверхность земного эллипсоида в геодезии принимают за отсчетную, определяя относительно нее высоты точек поверхности изучаемой фигуры Земли.
(1.1)
или большой полуосью и эксцентриситетом
меридианного эллипса:
(1.2)
Эллипсоид, имеющий наибольшую близость к фигуре Земли в целом, называется общим земным эллипсоидом.
Параметры общего земного эллипсоида определяются под условиями:
1) центр эллипсоида должен совпадать с центром масс Земли, а его малая ось с осью вращения Земли 1 ;
2) объем эллипсоида должен быть равен объему геоида (квазигеоида);
3) cумма квадратов отклонений по высоте поверхности эллипсоида от поверхности геоида (квазигеоида) должна быть минимальной.
Параметры земного эллипсоида могут быть получены с помощью так называемых градусных измерений, заключающихся в проложении рядов триангуляции по направлениям меридианов и параллелей на разных широтах с определением на конечных пунктах астрономических широт, долгот и азимутов сторон, а также по результатам спутниковых наблюдений.
В течение полутора веков ученые разных стран занимались определением параметров земного эллипсоида, используя доступные им результаты градусных измерений. Итогом этих определений служит появление ряда эллипсоидов, наиболее известные из которых представлены в таблице 1.1.
Параметры наиболее известных земных эллипсоидов
Ученый | Государство | Год | | |
Деламбр Бессель Кларк Хейфорд Красовский | Франция Германия Великобритания США СССР | 6 375 653 6 377 397 6 378 206 6 378 388 6 378 245 | 1/334.0 1/299.2 1/294.98 1/297 1/298.3 | |
Эллипсоиды, полученные по результатам спутниковых наблюдений | 1984 (WGS84) | 6 378 137 6 378 137 | 1/298.257 1/298.257220 |
1 имеется в виду среднее положение центра масс и оси вращения в теле Земли.
1.3. Основные разделы высшей геодезии; связь дисциплины с другими
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Системы высот в геодезии
Понятие высоты, несмотря на кажущуюся очевидность, является одним из наиболее сложных и тонких понятий геодезии. Это связано с двойственным смыслом высоты: с одной стороны, это расстояние между точками в пространстве, т.е. чисто геометрическое понятие; с другой стороны, в физическом понимании, это величина, определяющая энергетический уровень той или иной точки в поле силы тяжести.
Если две точки лежат на одной отвесной линии, геометрическую высоту можно измерить непосредственно как расстояние между ними; так измеряют высоты различных предметов (высота геодезического сигнала, инструмента над центром, высота человека, дерева, дома и т.д.). Очевидно, что геодезическую высоту, т.е. высоту в геометрическом смысле, так измерить нельзя: в точке поверхности Земли неизвестны ни направление нормали к эллипсоиду, вдоль которой нужно измерять высоту, ни положение отсчетной точки на эллипсоиде, которая к тому же физически недоступна, поскольку эллипсоид проходит, как правило, внутри Земли.
Физическое понятие высоты связано с работой в поле силы тяжести. Так, если точки лежат на одной уровенной поверхности, например, на поверхности какого-либо водоема, где отсутствуют течения, естественно, считать, что высоты этих точек одинаковы. Если же вода течет от одной точки к другой, говорят, что высота первой точки больше. В этом случае мерой высоты выступает работа, которую совершает сила тяжести при перемещении водной часы, т.е. разность потенциалов между указанными точками. Поскольку потенциал на уровенной поверхности постоянен, разность потенциалов любых точек, лежащих на двух различных уровенных поверхностях, всегда постоянна. Поэтому разность потенциалов является мерой высоты или высотой в физическом понимании. Как известно, разность потенциалов можно получить в результате геометрического нивелирования и измерений силы тяжести.
Еще одной причиной, по которой высоту рассматривают и изучают отдельно от плановых координат, является различие в методах получения этих величин: до недавнего времени плановые координаты находили из обработки линейных и угловых измерений, выполненных на поверхности Земли, а высоты преимущественно из геометрического нивелирования, сопровождаемого измерениями силы тяжести. Определение высоты по измерениям расстояний и вертикальных углов затруднено из-за влияния вертикальной рефракции, из-за чего вертикальные углы измеряют со значительно меньшей точностью, чем горизонтальные.
Спутниковые методы позволяют определить прямоугольна координаты точек поверхности Земли, по которым, используя зависимости математических формул, можно найти геодезические координаты. Однако так можно найти только высоту в геометрическом понимании, поскольку прямоугольные координаты не содержат информации о поле силы тяжести. Кроме того, из-за тропосферных влияний и методических особенностей высота и в этом случае определяется с несколько меньшей точностью, чем плановые координаты.
Что такое высота и где ее начало
Для определения положения точки, находящейся на физической поверхности Земли относительно исходной уровенной поверхности, помимо плоских координат, необходима третья координата — высота Н.
Высота – это измерение объекта или его местоположения, отмеряемое в вертикальном направлении. Высота в любой точки земной поверхности отсчитывается от разных поверхностей, таких как геоид, квазигеоид или референц-эллипсоид.
Геоид, квазигеоид и эллипсоид вращения
Геоид — это образованная основной уровенной поверхностью замкнутая фигура принимаемая за обобщенную поверхность Земли. Поверхность геоида является одной из уровенных поверхностей потенциала силы тяжести. Эта поверхность, мысленно продолженная под материками, образует замкнутую фигуру, которую принимают за сглаженную фигуру Земли. Часто под геоидом понимают уровенную поверхность, проходящую через некоторую фиксированную точку земной поверхности у берега моря. Понятие о геоиде сложилось в результате длительного развития представлений о фигуре Земли как планеты, а самый термин «геоид» предложен И. Листингом в 1873 г. От геоида отсчитывают абсолютные высоты. По современным данным, средняя величина отступления геоида от наиболее удачно подобранного эллипсоида составляет около ±50 м, а максимальное отступление не превышает ±100 м. Высота геоида в сумме с ортометрической высотой определяет высоту Н соответственной точки над земным эллипсоидом. Поскольку распределение плотности внутри Земли с необходимой точностью неизвестно, высоту Н в геодезической гравиметрии и геодезии, согласно предложению М. С. Молоденского, определяют как сумму нормальной высоты и высоты квазигеоида. Для точного определения поверхности геоида какой-либо точки необходимо выполнить комплекс измерений, непосредственно на поверхности геоида. Что практически не возможно, либо в соответствующей точке на физической поверхности Земли с учетом распределения масс в этом месте, что также не предоставляется возможным. По этой причине было предложено вместо поверхности геоида использовать квазигеоид.
Квазигеоид — это поверхность близкая к поверхности геоида, определяемая только по результатам измерений на земной поверхности без привлечения данных по распределению масс. Поверхность квазигеоида определена значениями потенциала силы тяжести на земной поверхности, и для изучения квазигеоида результаты измерений не нужно редуцировать внутрь притягивающей массы. Квазигеоид отступает от геоида в высоких горах на 2–4 м, на низменных равнинах — на 0,02-0,12 м, на морях и океанах поверхности геоида и квазигеоида совпадают.
Фигуру квазигеоида определяют методом астрономо-гравиметрического нивелирования или через предварительное определение возмущающего потенциала по материалам наземных гравиметрических съёмок и наблюдений за движением искусственных спутников Земли. Последние данные необходимы в связи с недостаточной гравиметрической изученностью некоторых областей Земли Поверхность геоида, из-за ее сложности, математически никак не выражается, поэтому на ней нельзя решать геодезические задачи. Для решения таких задач взамен поверхности геоида принимают поверхность эллипсоида вращения.
Эллипсоида вращения — это близкая по форме к геоиду поверхность, но математически правильная, на которую можно перенести результаты измерений, выполненных на физической поверхности Земли. Эллипсоид вращения, размеры которого подбираются при условии наилучшего соответствия фигуре квазигеоида для Земли в целом (общеземной эллипсоид) или отдельных её частей (референц-эллипсоид). Для России принят референц-эллипсоид Крассовского форма и размеры которого были вычислены советским геодезистом А. А. Изотовым, и который в 1940 году назван именем Ф. Н. Красовского.
Высота точки местности в географии, топографии и геодезии может измеряться от разных уровней отсчёта:
1. Абсолютная высота отсчитывается от уровня моря или геоида (линия НА и линия НВ);
2. Относительная высота (превышение) отсчитывается от какого-либо условного уровня (линия НС);
3. Геодезическая (эллипсоидальная) высота — высота относительно эллипсоида вращения.
Абсолютная и относительная высоты
В нашей стране с 1946 г. счет абсолютных высот ведется от нуля Кронштадтского футштока соответствующего среднему уровню Балтийского моря в спокойном его состоянии (Балтийская система высот). Вся нивелирная сеть на территорию России опирается на один исходный пункт, не имеет внешнего контроля и уравнивается как свободная система. В середине 1980-х в связи с предстоящим строительством гидротехнического комплекса защиты Ленинграда (ныне Санкт-Петербурга) от наводнений были созданы дублеры в Кронштадте и г. Ломоносове (на основе репера № 6521 и маяка Шепелевский)
Высоты, отсчитанные от иной уровенной поверхности, называются относительными на рисунке изображены линией НС. При съемке небольших участков, при обмерных работах, а также на стройплощадке часто применяют относительную или условную систему отсчета высот.
Что такое превышение
Численное значение высоты точки называется отметкой точки. Разность высот двух точек, называется превышением. Превышение h точки В над точкой А, равное разности высот точек А и В, определяется как h = НВ – НА. Зная высоту точки А, для определения высоты точки В на местности измеряют превышение hAB. Высоту точки В вычисляют по формуле HВ = HA + hAB. Измерение превышений и последующее вычисление высот точек называется нивелированием.
Геодезическая высота
Геодезической (эллипсоида́льной) высотой некоторой точки физической поверхности земли называется отрезок нормали к эллипсоиду от его поверхности до данной точки. Вместе с геодезическими широтой и долготой (B и L соответственно) она определяет положение точки относительно заданного эллипсоида. Физически эллипсоида не существует, следовательно геодезическая высота не может быть непосредственно измерена наземными методами. Определить её возможно с помощью спутниковых измерений, а также посредством обработки рядов триангуляции, астрономо-геодезического нивелирования.
Как видно из определения геодезическая высота зависит от расположения и параметров выбранного эллипсоида, поэтому геодезическую высоту разделяют на две части. Одна из них характеризует физическую поверхность Земли относительно уровенной поверхности (информацию о ней получают в большей степени нивелированием), вторая, более гладкая, характеризует отличие отсчётного эллипсоида от геоида. Первую часть называют гипсометрической, а вторую — гладкой или геоидальной частью. Уровенная поверхность имеет несравненно более плавную форму в сравнении с физической, следовательно геоидальная часть меняется гораздо медленнее гипсометрической.
Системы геодезических высот
Ортометрическая высота точки — это расстояние (H) вдоль отвесной линии от точки до поверхности геоида. Ортометрическая высота для практических целей является «высотой над уровнем моря». Чтобы вычислить значение ортометрической высоты, нужно знать плотность пород вдоль силовой линии или измерять силу тяжести внутри Земли. Поэтому ортометрическую высоту нельзя найти по измерениям только на поверхности Земли. Альтернативой ортометрической высоте являются нормальная высота. Ортометрические высоты по Гельмерту используют многие европейские страны, Турция и страны Американского континента. Поскольку гравитация не является постоянной на больших площадях, ортометрическая высота также не является постоянной. Так на территории США гравитация на 0,1% сильнее на севере Соединенных Штатов, чем на юге, поэтому ровная поверхность, имеющая ортометрическую высоту в 1000 метров в Монтане, будет иметь высоту в 1001 метр в Техасе.
Нормальные высоты — это высоты от поверхности квазигеоида, один из нескольких типов высоты. Нормальная высота точки вычисляется из геопотенциальных чисел путем деления геопотенциального числа точки, т. е. ее разности геопотенциалов с уровнем моря, на среднюю нормальную гравитацию, вычисленную вдоль отвеса точки. (Точнее, вдоль эллипсоидной нормали, усредняя по диапазону высот от 0-эллипсоид-H*; процедура, таким образом, рекурсивна. Нормальные высоты, таким образом, зависят от выбранного опорного эллипсоида. Система нормальных высот принята в России, странах СНГ и некоторых европейских странах (Швеция, Германия, Франция и др.). Нормальные значения гравитации можно вычислить через плотность земной коры вокруг отвеса. Нормальные высоты занимают видное место в теории гравитационного поля Земли, разработанной школой М. С. Молоденского. Эталонная поверхность, с которой измеряются нормальные высоты, называется квазигеоидом, представляющим собой «средний уровень моря», аналогичный геоиду и близкий к нему, но лишенный физической интерпретации эквипотенциальной поверхности. В геодезии (топографии) нормальную высоту называют абсолютной, а разность нормальных высот — относительной высотой. Численное значение абсолютной высоты принято называть отметкой.
Геопотенциальное число ― это та работа, которую нужно совершить, чтобы подняться от уровня моря до точки Р поверхности Земли.
Динамическая высота — это геопотенциальное число, переведенное в линейную меру, получить его можно разделив геопотенциальное число на любое постоянное значение С силы тяжести. Выбирая в качестве С разные значения постоянной, можно построить разные системы динамических высот. Динамические вы соты были введены К.Ф.Гауссом, который предложил рассматривать высоты как геопотенциальные числа, т.е. принять С = 1. Динамическая высота постоянна, если следовать одному и тому же гравитационному потенциалу, когда они перемещаются с места на место. Из-за изменения силы тяжести поверхности, имеющие постоянную разницу в динамической высоте, могут быть ближе или дальше друг от друга в различных местах. Динамические высоты обычно выбираются так, чтобы они имели сопряжения с геоидом. Когда оптическое выравнивание выполнено, путь близко соответствует следующему значению динамической высоты по горизонтали, но не ортометрической высоте для вертикальных изменений, измеренных на выравнивающем стержне. Таким образом, небольшие поправки должны быть применены к полевым измерениям, чтобы получить либо динамическую высоту, либо ортометрическую высоту, обычно используемую в технике. Паспорта данных Национальной Геодезической службы США дают как динамические, так и ортометрические значения. Динамическая высота может быть вычислена с использованием нормальной силы тяжести на 45-градусной широте и геопотенциального числа местоположений.