Генератор альтернатор что это значит
Генератор (альтернатор) тока – виды и принцип действия
Главная страница » Генератор (альтернатор) тока – виды и принцип действия
Практика эксплуатации электрооборудования отмечается использованием двух видов генераторов. Один вид представлен генератором переменного тока, другой — генератором постоянного тока. Между тем, независимо от вида, генератор технически преобразует механическую мощность в электрический потенциал. Соответственно, генератор переменного тока генерирует переменные величины, а генератор постоянного тока предназначен под генерацию постоянных величин. Обе конструкции электрических генераторов производят энергию, используя единый фундаментальный принцип.
Генератор и закон электромагнетизма Фарадея
Согласно закону электромагнитной индукции Фарадея, в условиях, когда проводник движется внутри магнитного поля, образуется эффект пересечения магнитных силовых линий. По этой причине внутри проводника индуцируется ЭДС (электродвижущая сила).
Величина индуцированной электродвижущей силы проводника напрямую зависит от разницы скорости магнитного потока (магнитной силы), действующего на проводник. Электродвижущая сила приведет к протеканию тока, при условии замкнутой цепи проводника.
Следовательно, основными элементами, обеспечивающими работу генератора, являются проводники магнитного поля, которые передвигаются внутри текущего магнитного поля. Для лучшего понимания принципа действия генератора постоянного тока рассмотрим простейшую конструкцию.
Генератор постоянного тока – принцип работы
Картинка ниже показывает одну петлю проводника прямоугольной формы, которая помещается между двумя противоположно расположенными полюсами магнита.
Упрощённая схема устройства генерации электричества: N, S – магнитные полюса; N, N1 – ось вращения рамочного проводника; A, B, C, D – контур рамочного проводника
Условно предполагается, что прямоугольная петля проводника (ABCD) вращается внутри магнитного поля вокруг собственной оси N – N1.
Момент, когда вращением петля проводника перемещается от вертикального положения в положение горизонтальное, происходит «разрез» линии потока магнитного поля. Учитывая наличие двух сторон петли проводника (AB и CD), «обрезка» линий магнитного потока формирует ЭДС по обеим сторонам.
По мере прохождения цикла, естественным образом образуется циркуляция энергии. Направление тока, в данном случае, устанавливает правило правой руки Флеминга. Этот закон электродинамики гласит:
Если разложить ладонь правой руки большим, указательным, средним пальцами перпендикулярно относительно каждого из пальцев, направление большого пальца укажет движение проводника, указательного пальца — магнитного поля, среднего пальца — направление тока, текущего через проводник.
Наглядный пример применения правила Флеминга для правой руки, определяющего направление движения силовых полей. 1 – направление движения проводника, 2 – движение магнитного потока; 3 – движение энергии внутри проводника; 4, 5 – магнитные полюса
Теперь, когда учитывается применение правила Флеминга для правой руки, горизонтальное положение петли отметится протеканием энергии от зоны A к зоне B, тогда как на другой стороне контура энергетический потенциал фиксируется на участке от зоны C к зоне D.
При условии дальнейшего продолжения цикла (движения петли проводника), логичным видится возврат контура из горизонтального в вертикальное положение. Однако наверху теперь окажется сторона контура CD, тогда как сторона AB будет находиться внизу.
Тангенциальное движение сторон ротора
При таком положении контура, тангенциальное движение сторон петли отмечается параллельно линиям потока магнитного поля. Следовательно, «разрез» линий магнитного поля фиксироваться не будет. Такое состояние контура логически исключает появление тока в проводнике.
Продолжением цикла контур вновь переходит в горизонтальное положение. Однако теперь сторона AB петли контура окажется в зоне N полюса, а сторона CD в области полюса S. Выстраивается положение прямо противоположное предыдущему горизонтальному положению, как показано на картинке ниже.
Схематичный упрощённый пример, наглядно показывающий направление силовых потоков при горизонтальном расположении рамочного проводника. 1 – направление магнитного потока; 2 – движение энергии в зоне A – B; 3 – движение энергии в зоне C — D
Здесь тангенциальное движение сторон петли перпендикулярно линиям потока, поэтому скорость «обрезки» магнитного потока максимальна.
Тогда, исходя из правила правой руки Флеминга, указанное положение формирует ток, который течёт от зоны B к зоне A одной стороны контура и от зоны D к зоне C другой стороны контура.
Теперь, если цикл вращения рамки вокруг собственной оси продолжается, каждый раз, когда сторона АВ попадает в область полюса S, энергия течёт от зоны A к зоне B. Когда же эта сторона контура приходит в область полюса N, ток течёт от зоны B к зоне A. Аналогично процесс выглядит для противоположной стороны рамки.
Если обобщить это явление с учётом разных путей, напрашивается логичный вывод. Когда любая сторона петли попадает в область N полюса, энергия течёт через эту часть контура в одном направлении и продолжает своё движение в области S полюса, но уже в другом направлении.
В результате полного вращения, рамка контура по всему периметру находится под током, который можно снять для питания нагрузки.
Съём тока с генератора для питания нагрузки
Картинка ниже демонстрирует, как на первой половине оборота контура ток течёт через проводник (AB), снимается на щётку (1) и подаётся к нагрузке (LM) от которой следует далее к щётке (2) генератора.
Следующая половина оборота контура меняет направление индуцированного тока на противоположное. В то же время положение сегментов a и b также меняется на противоположное.
Эта смена способствует вхождению щётки (2) в контакт с сегментом b. Следовательно, ток от сопротивления нагрузки течёт через щётку (2) и далее к проводнику CD. Волна от тока через цепь нагрузки показана на рисунке. Этот ток является однонаправленным.
Это базовый принцип работы генератора постоянного тока на основе модели с одним контуром. Положение щеток генератора постоянного тока фиксируется следующим образом:
Смена сегментов a и b и переход от одной щетки к другой происходит, когда плоскость вращающегося контура находится под прямым углом к плоскости магнитных линий. Если контур располагается в этом положении, индуцированная электродвижущая сила равна нулю.
Генераторы (альтернаторы) переменного тока
Конструкция генератора (альтернатора) переменного тока содержит магнитные полюсы, размещенные на вращающейся части машины, именуемой ротором, как показано на картинке ниже. Ротор вращается внутри статора. Магнитные полюсы проецируются на корпус ротора.
Структурная схема синхронного альтернатора: 1 – магнитное поле ротора; 2 – проводник статора; a-a’, b-b’, c-c’ – секции статора; 3, 4 – области действия демпферных обмоток, N, S — магниты
Арматурные проводники размещены на статоре. В проводниках якоря индуцируется переменное трехфазное напряжение, представленное секциями (aa’, bb’, cc’), что составляет в целом генерацию трехфазной электрической мощности.
Большая часть современных электростанций используют подобную конструкцию генераторов трехфазного тока. Для народного хозяйства генератор переменного тока (синхронный генератор) является важным инструментом, а для сферы энергетиков это оборудование высокой значимости.
Генератор переменного тока часто называют синхронным генератором. Такая интерпретация обусловлена очевидными факторами. Магнитные полюсы генератора переменного тока сделаны под вращение на синхронной скорости, которая рассчитывается формулой:
Ns = 120 f / P
где: f — частота переменного тока, P — количество магнитных полюсов.
Большинство практических конструкций генераторов переменного тока имеют стационарно сидящую обмотку якоря и вращающееся магнитное поле. Этим машина отличается от генератора постоянного тока, где расположение элементов конструкции в точности наоборот.
Стандартная модификация генератора переменного тока рассчитана на поддержку очень высоких мощностей, порядка нескольких сотен мегаватт. И этот фактор – ещё одно отличие для сравнения с генераторами постоянного тока.
Для обеспечения такой высокой мощности, вес и размеры естественным образом требуют увеличения. Но для достижения высокой эффективности разумно заменять мощные обмотки якоря менее мощными.
Снижение мощности обмоток способствует снижению веса, уменьшая центробежную силу, необходимую для поворота ротора и допускающей более высокие пределы скорости.
Конструкции генераторов переменного тока наделяются, главным образом, двумя типами роторов:
Ротор выступающих полюсов
Первый тип обычно используется на машинах с медленной скоростью, имеющих большие диаметры и относительно небольшие осевые длины.
В этом случае полюса выполнены из толстых слоистых стальных секций, склеенных вместе и прикрепленных к ротору механическим соединением.
Структурная схема ротора с выступающими полюсами: 1 – обмотка возбуждения; 2 – тело полюса; 3 – башмак полюса; 4 – отверстие для насадки на вал; 5 – демпферная арматура (обмотка)
Как упоминалось ранее, генератор переменного тока в основном отвечает за генерацию очень высокой электрической мощности.
Чтобы добиться высоких мощностей, механический ввод вращающего момента также должен быть очень высоким. Это высокое значение крутящего момента приводит к эффекту генерации на синхронной машине.
Между тем генерацию необходимо ограничивать заданными пределами. Поэтому торможение демпферными обмотками предусмотрено на магнитных полюсах, как показано на рисунке.
Демпферные обмотки генератора переменного тока в основном представляют собой медные штыри, закороченные с двух концов, которые помещаются в отверстия, выполненные на оси полюса.
Когда генератор переменного тока работает с постоянной скоростью, относительная скорость демпфирующей обмотки относительно основного поля будет равна нулю.
Но как только генератор отходит от синхронной скорости, возникает относительное движение между обмоткой демпфера и основным полем, которое всегда вращается с синхронной скоростью.
Эта относительная разность вызывает формирование дополнительного тока в обмотках, который неизбежно приводит к изменению крутящего момента полюсов таким образом, чтобы генератор продолжал работать на синхронной скорости.
Характерной особенностью структуры магнитных полюсов для таких конструкций являются:
Генераторы, наделённые роторами с выступающими полюсами, обычно используются на скоростях 100 — 400 об/мин. Такие конструкции генераторов переменного тока применяются на электростанциях с гидравлическими турбинами или дизельными двигателями.
Цилиндрический ротор генератора
Цилиндрический ротор обычно используется на высокоскоростных генераторах, вращение которых обеспечивает паровая турбина (турбогенераторы). Машины производятся для эксплуатации в диапазоне мощностей 10 — 1500 мегавольт-ампер.
Структурная схема ротора цилиндрической формы, применяемого в альтернаторе: 1 – отверстие посадки на вал; 2 – магнитный полюс; 3 – катушка магнитного полюса; 4 – слот для катушки магнитного поля
Генератор с цилиндрическим ротором имеет равномерную длину в любом направлении, цилиндрическую форму под ротор, чем обеспечивается равномерная «резка» потока по всем направлениям.
Цилиндрический ротор представляет собой гладкий сплошной стальной цилиндр с определённым числом прорезей (слотов), расположенных вдоль внешней периферии. Прорези (слоты) сделаны под размещение полюсных катушек.
Генераторы с цилиндрическими роторами обычно выпускаются как машины 2-полюсного типа, поддерживающие скорость вращения до 3000 об/мин. Кроме того, выпускаются четырёхполюсные генераторы, скорость которых ограничивается частотой 1500 об/мин. Машины с цилиндрическим ротором обеспечивают лучший баланс и более тихую работу наряду с меньшими потерями.
Видео по теме: как собрать полностью разобранный контактор?
На видео ниже демонстрируется сборка магнитного пускателя (вторая часть видео) после полной разборки (первая часть видео). Такая практика поможет сэкономить на покупке новых приборов коммутации, вышедших из строя, не способных запускать тот же альтернатор (генератор) или иные системы:
КРАТКИЙ БРИФИНГ
Выбор генератора всегда был не самым простым вопросом и не так уж редко даже те, кто не понаслышке был знаком с такого рода оборудованием сталкивался с проблемами при выборе и уж что говорить о неподготовленном потребителе.
Существует множество аспектов при выборе генератора для лома или же для промышленного применения, все эти аспекты необходимо знать и в равной степени уделять им внимание для формирования верного выбора агрегата, чтобы он мог полностью удовлетворить Вас своей работой.
Сегодня мы будет говорить о том, чтобы верно подобрать генератор исходя от того, какой тип альтернатора на него установлен, для того, чтобы выбранный Вами бензиновый генератор обеспечивал Вас стабильным напряжением и не имел сбоев в своей работе. На первый взгляд вопрос очень сложный, но все не так страшно как кажется, выбор будет колебаться между всего двумя видами генераторов, синхронный, то есть щеточный, или асинхронный, бесщеточный альтернатор. Сегодня чаще всего покупаются модели именно с синхронным альтернатором, и почему Вы поймете далее. Надеемся, что сможем как можно лучше посвятить Вас в этот вопрос данной статьей.
Все об альтернаторе
Для начала стоит сказать немного о самом названии, в самом начале, когда технология, служащая для выработки электрического тока так и называлась, альтернатор, позже его стали называть генератор, весь, и альтернатор и двигатель и другие его части в сборе, это название проще и отражает саму суть работы такого агрегата – преобразование одного вида энергии в другой.
Что же касается самого альтернатора, то можно с полной уверенностью сказать что именно он является самой важной частью в любом генераторе, ведь именно от отвечает за самую важную работу этого агрегата, а именно преобразование кинетической работы, продуцируемой вращением вала двигателя в электрический ток переменного типа. Состоит альтернатор из подвижной и неподвижной части, как и любой электродвигатель, из статора и ротора.
Вращение в альтернаторе производится за счет электродвижущей силы, а для возникновения оной необходимо возбудить магнитное поле на обмотке. В этом плане между альтернаторами разнице нет, разница лишь в том, в какой способ электромагнитное поле передается на а обмотку статора, а именно на синхронные и асинхронные. В конструктивном плане разница в том, что синхронный альтернатор имеет обмотку на роторе, в то время как асинхронный не имеет ее и способы передачи соответственно у них разные.
Если не углубляться в теорию и рассмотреть строение альтернаторов, то коротко говоря у синхронного альтернатора более сложное строение за счет наличия и щеток, и обмоток на роторе и статоре, а асинхронный по конструкции более простой по конструкции. Считается, что последний менее надежен и менее вынослив, но это еще не делает его хуже, чем первый, все зависит от того, в каких условиях применяется генератор, есть множество факторов, которые могут поменять их местами или уровнять.
Достоинства синхронного альтернатора
Есть разница между тем, какой обмоткой будет обладать Ваш альтернатор, если же Вы хотите купить дизельный генератор для редких включений, и Вы не намерены подавать на него слишком большую нагрузку, то есть смысл сэкономить деньги и купить алюминиевый тип, если же работать генератор будет часто и должен будет выдерживать достаточно высокую нагрузку, то стоит подумать о медной обмотке. Альтернатор с медной обмоткой будет давать максимально качественный ток на выходе. Важная часть синхронного альтернатора – это щетки, именно они отвечают за снятие тока со статора на ротор. Главное преимущество такого альтернатора – это возможность выдерживать пиковые нагрузки и кратковременные перепады и выдавать качественное электричество на выходе, что и делает его столь востребованным. Также стоит отметить, что только с таким генератором будет совместима система AVR. Синхронный генератор будет более правильным выбором для работы в бытовых условиях, для запитки дома или другого объекта с чувствительной к перепадам технике. Стоит отметить и высокую стоимость такого оборудования, такой генератор будет стоить дороже генератора с асинхронным альтернатором.
Недостатки синхронного альтернатора
Главным недостатком синхронного альтернатора можно назвать то, что он требует достаточно тщательного технического обслуживания. Щетки необходимо периодически заменять, график замены напрямую зависит от того, какие щетки установлены на альтернатор, угольные изнашиваются быстрее, медно-графитовые изнашиваются дольше. Помимо того, что у щеточного узла есть такой расходный материал как щетки, требующие периодической замены, сам альтернатор греется из-за трения щеток о ротор, и поэтому требует наличия охлаждения и тут есть побочный эффект.
Для охлаждения двигателя применяется вентилятор, который всасывает воздух и охлаждает обмотку, а вместе с воздухом он тянет и пыль, грязь и даже влагу. Более дорогие модели имеют достаточно высокий класс защиты для того, чтобы оградить альтернатор от влаги и пыли, но полностью защититься невозможно.
Преимущества асинхронного альтернатора
Преимущество асинхронного альтернатора заключается в том, что он имеет более простую конструкцию, а с этим и стоимость его меньше. Для движения подвижной части не требуется щетки для снятия электричества, достаточно магнитного поля и конденсаторов. Стоит отметить высокую степень защиты и отсутствие необходимости в сервисном обслуживании. Так как такой альтернатор нагревается намного меньше синхронного, отпадает необходимость в охлаждении, благодаря чему его конструкция более уплотненная, что позволило предотвратить попадание пыли, грязи и влаги внутрь альтернатора. Это делает его долговечным и надежным. Вес и физические размеры асинхронного альтернатора также намного меньше, чем у синхронного, так что и сам инверторный генератор компактнее. Также ощутимым преимуществом такого генератора будет в том, что его альтернатору не страшны короткие замыкания, что делает его хорошим вариантом для работы со сварочным оборудованием.
Недостатки асинхронного альтернатора
Помимо положительных сторон у него также есть и отрицательные стороны, которые заключаются в том, что выходящее напряжение не самого высокого качества, оно может скакать, а так как этот тип альтернатора несовместим с работой AVR, это может существенно отразится на его работе в бытовых условиях, например для запитки дома. Стоит отметить, что низкий уровень качества тока и скачки напряжения на выходе у асинхронного генератора вызвано тем, что он плохо переносит стартовые пиковые нагрузки от аппретуры, подключаемой к нему, и это может вызвать плачевные последствия для техники, очень чувствительной к перепадам напряжения, например компьютеры, телефоны и другая электроника.
Помните, что не все асинхронные генераторы имеют очень большие скачки напряжения на выходе, хороший проверенный бренд всегда будет устанавливать на свой генератор только самый надежный двигатель, который будет поддерживать постоянное число оборотов при скачках нагрузки, обеспечивая минимальные отклонения от нормы в работе генератора.
Подведение итогов, какой альтернатор выбрать: синхронный или асинхронный
При выборе между синхронным и асинхронным альтернатором стоит отталкиваться от того, в каких условиях будет применяться генератор и какие цели будут перед ним стоять и уже от этого отталкиваться при выборе.
Для того чтобы обеспечить свой дом или дачу стабильным электричеством, без перепадов и резких скачков, то стоит конечно же купить генератор синхронный, или щеточный, так как он будет давать на выходе ровное напряжение и качественный ток, что очень важно при подключении чувствительной аппретуры. Также такой генератор пригоден для работы с медицинским оборудованием, лабораторным или офисным оборудованием. Для всех этих целей старайтесь покупать модели с функцией AVR.
Если же главная цель генератора – это строительные работы на открытом воздухе, где большая загрязненность, пыль и влага, то стоит купить генератор с асинхронным альтернатором, который имеет большую устойчивость ко всем этим факторам. К тому же он пригоден для работы со сварочным оборудованием, так как исключен риск короткого замыкания при работе такого оборудования.
Так же у нас на сайте Вы сможете найти большой выбор Бензиновый генератор AGT или Бензиновый генератор Iron Angel
У синхронного генератора (IP23) на якоре имеются обмотки, на которые подается электрический ток. Изменяя его величину, можно влиять на магнитное поле, а следовательно, и на напряжение на выходе статорных обмоток. Роль регулятора прекрасно исполняет простейшая электрическая схема с обратной связью по току и напряжению. Благодаря этому способность синхронного альтернатора «проглатывать» кратковременные перегрузки высока и ограничена лишь омическим (активным) сопротивлением его обмоток, т.е. легче переносят пусковые нагрузки.
Однако у такой схемы есть и недостатки. Прежде всего, ток приходится подавать на вращающийся ротор, для чего традиционно используют щеточный узел. Работая с довольно большими (особенно во время перегрузок) токами, щетки перегреваются и частично «выгорают». Это приводит к плохому их прилеганию к коллектору, к повышению омического сопротивления и к дальнейшему перегреву узла. Кроме того, подвижный контакт неизбежно искрит, а значит, становиться источником радиопомех. И самый основной недостаток низкая степень защиты от внешних воздействий таких как: пыль, грязь, вода, т.к. синхронный генератор охлаждается «протягивая» через себя воздух, соответственно все что находится в воздухе может попадать в генератор.
Если генератор щёточный, чтобы избежать преждевременного износа, рекомендуется время от времени контролировать состояние щеточного узла и при необходимости очищать либо менять щетки. Кстати, после их заменены, желательно дать им время «приработаться» к коллектору, а уж за тем нагружать станцию «по полной программе».
Многие современные синхронные генераторы снабжены безщеточными системами возбуждения тока на катушках ротора (их еще называют brash-less). Они лишены вышеуказанных недостатков связанных с щёточным узлом, а потому предпочтительнее.
для трёхфазных синхронных генераторов допустимый перекос фаз 33%
коэффициент нелинейных искажений 13-25% (в зависимости от производителя)
Асинхронный генератор (IP54) вообще не имеет обмоток на роторе. Для возбуждения ЭДС в его выходной цепи используют остаточную намагниченность якоря. Конструктивно такой альтернатор намного проще, надежнее и долговечнее. Кроме того, поскольку обмотки ротора охлаждать не нужно (их просто нет), корпус асинхронного генератора полностью закрыт, что позволяет исключить попадание пыли и влаги. Асинхронные альтернаторы не восприимчивы к коротким замыканиям, поэтому лучше подходят для питания сварочных аппаратов.
К сожалению у асинхронников тоже есть недостатки, например способность «проглатывать» пусковые перегрузки у них ниже, чем у синхронных генераторов. Но этот недостаток решается путем оснащения станций системой «стартового усиления». (см. выше). Как правило все профессиональные асинхронные генераторы оснащены системой стартового усиления.
для трёхфазных асинхронных генераторов допустимый перекос фаз 60-70%
коэффициент нелинейных искажений 2-10% (в зависимости от производителя)
Зачем нужны непонятные три фазы, когда и с одной-то не разберешься? Но в том то и дело, что без них никуда. Начнем с того, что трех фазная схема подключения позволяет передавать энергию трех однофазных источников всего по трем проводам (в случае однофазной схемы потребовалось бы выделить по два провода на каждый такой источник).
А вот при подключении к трехфазникам однофазных потребителей возникает проблема, именуемая перекосом фаз.
Что такое перекос фаз?
При подключении нагрузки на одну фазу трехфазного альтернатора используется только одна обмотка статора, в то время как в нормальном режиме задействованы все три, соответственно, реально снять получиться не более чем 33% трехфазной мощности для синхронных IP23, или порядка 70-80% для асинхронных IP54 и синхронных IP54 (High Protection). Если попробовать нагрузить агрегат сильнее, статорная обмотка окажется перегруженной и может «сгореть».
Кратко подытожить выбор типа генератора можно так: