Гадолиний что это такое
Гадолиний
Гадолиний / Gadolinium (Gd), 64
Гадоли́ний (лат. Gadolinium), Gd — химический элемент III группы периодической системы, атомный номер 64, атомная масса 157,25, относится к лантаноидам.
Содержание
История
Гадолиний открыт в 1880 году Жаном де Мариньяком, который спектроскопически доказал присутствие в смеси оксидов редкоземельных элементов нового элемента. Назван по имени финского химика Ю. Гадолина.
Нахождение в природе
Кларк гадолиния в земной коре (по Тэйлору) 8 г/т, содержание в воде океанов 2,4·10 −6 мг/л.
Месторождения
Получение
Гадолиний получают восстановлением фторида или хлорида гадолиния (GdF3, GdCl3) кальцием. Соединения гадолиния получают разделением оксидов редкоземельных металлов на фракции.
Изотопы
Физические свойства
Химические свойства
Применение
Магнитные носители информации
Ряд сплавов гадолиния и особенно сплав с кобальтом и железом позволяет создавать носители информации с колоссальной плотностью записи. Это обусловлено тем, что в этих сплавах образуются особые структуры — ЦМД — цилиндрические магнитные домены, причём размеры доменов менее 1 мкм, что позволяет создавать носители памяти для современной компьютерной техники с плотностью записи 1—9 миллиардов бит, что равно примерно 0,1—1 ГБ на 1 квадратный сантиметр площади носителя.
Контрастирование при МРТ
Лазерные материалы
Гадолиний применяется для выращивания методом Чохральского (вытягивание из расплава) монокристаллов гадолиний-галлиевого граната (ГГГ) и особенно гадолиний-галлий-скандиевого граната (ГСГГ), и др. Особые свойства ГСГГ позволяют на его основе изготавливать лазерные системы с предельно высоким КПД и сверхвысокими параметрами лазерного излучения. В принципе ГСГГ на сегодняшний день является первым в достаточной степени изученным и имеющим отработанную технологию производства лазерным материалом — обладающим высоким КПД преобразования и пригодным для создания лазерных систем для инерциального термоядерного синтеза. Ванадат гадолиния с ионами неодима и тулия применяется для производства твердотельных лазеров, применяемых для лучевой обработки металлов и камня, а также и в медицине.
Ядерная энергетика
В атомной технике гадолиний нашел применение для защиты от тепловых нейтронов, так как этот элемент обладает наивысшей способностью к захвату нейтронов из всех стабильных элементов. Его сечение равно 49000 барн. Но из всех изотопов гадолиния наивысшей способностью к захвату нейтронов обладает его изотоп гадолиний-157, сечение захвата 254000 барн.
В этой связи гадолиний очень интересен для управления ядерным реактором и для конструирования защиты от нейтронов. На основе окиси гадолиния изготавливаются эмали, керамика и краски используемые в атомной технике. Для регулирования атомного реактора применяется так же борат гадолиния. Растворимые соединения гадолиния могут быть использованы для стабилизации растворов, получаемых при переработке ТВЭЛов растворением в кислотах для последующего разделения. Стабилизирующее действие солей гадолиния проявляется в способности «глушить» ядерные реакции в таких растворах, и позволяет осуществлять ряд технологических операций, связанных с концентрированием таких растворов, а значит с уменьшением критического объема и образованием критических масс.
Оксид гадолиния используется для варки стекла, поглощающего тепловые нейтроны. Самый распространенный состав такого стекла: оксид бора-33 %,оксид кадмия-35 %, оксид гадолиния-32 %.
Получение сверхнизких температур
В небольшом объеме гадолиний применяется для получения сверхнизких температур в научных исследованиях, так например сульфат гадолиния при размагничивании вблизи к Абсолютному нулю температур позволяет снизить температуру до 0,0001 К. Наряду с сульфатом гадолиния для получения сверхнизких температур используют так же и хлорид гадолиния.
Сверхпроводники
В качестве одного из базовых компонентов, входит в состав сверхпроводящей керамики с общей формулой RE-123, где RE обозначает редкоземельные металлы. Полная формула высокотемпературной сверхпроводящей керамики на основе гадолиния — GdBa2Cu3O7-δ, сокращенно — GdBCO. Температура сверхпроводящего перехода около 94 К. Является одним из наиболее передовых ВТСП-материалов.
Производство катодов электронных пушек
Гексаборид гадолиния применяется для изготовления катодов мощных электронных пушек и рентгеновских установок, ввиду самой маленькой работы выхода из всех боридов редких земель, и его работа в 2,05 эВ сравнима с работой выхода щелочных металлов (калий, рубидий, цезий).
Ультрафиолетовый лазер
Использование ионов гадолиния для возбуждения лазерного излучения позволяет создать лазер работающий в ближнем ультрафиолетовом диапазоне с длиной волны 0,31 мк (310нм).
Производство металлогидридов для хранения водорода
Сплав гадолиний-железо применяется как очень емкий аккумулятор водорода, и может быть применен для водородного автомобиля.
Использование гадолиния в медицине
Гадолиний-153 используется в качестве источника излучения в медицине для диагностики остеопороза. Хлорид гадолиния применяется для блокады клеток Купфера при лечении печени.
Хранение радиоактивных отходов
Сплав гадолиния и никеля применяется для изготовления контейнеров для захоронения радиоактивных отходов.
Гигантский магнетокалорический эффект
Сплав гадолиния, германия, кремния и небольшого количества железа (1 %) применяется для производства магнитных холодильников (на основе гигантского магнетокалорического эффекта). Чистый гадолиний имеет максимальное значение магнетокалорического эффекта в точке Кюри(
290 K) порядка 4.9 К при адиабатическом намагничивании полем 20 кЭ (по данным кафедры магнетизма ТвГУ).
Также особый интерес в последние годы привлекает к себе сплав гадолиний — тербий (монокристаллический) для производства магнитных холодильников.
Термоэлектрические материалы
Теллурид гадолиния может работать в мощном потоке нейтронов как очень хороший термоэлектрический материал (термо-э.д.с 220—250 мкВ/К). Селенид гадолиния имеет отличные термоэлектрические свойства и весьма перспективный и применяемый материал в производстве радиоизотопных источников энергии.
Легирование титановых сплавов
Некоторое количество гадолиния постоянно расходуется для производства специальных титановых сплавов (повышает предел прочности и текучести при легировании уже около 5 % гадолинием).
Радиоизотопные источники энергии
Гадолиний-148, испытывающий альфа-распад (период полураспада 93 года), является безопасным и в то же время исключительно мощным источником тепла для радиоизотопных термоэлектрогенераторов.
Биологическая роль
См. также
Ссылки
Примечания
Периодическая система химических элементов Д. И. Менделеева | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||||||||||||||||||||||||
1 | H | He | ||||||||||||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||||||
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Fl | Uup | Lv | Uus | Uuo | ||||||||||
|