Что внутри энергосберегающей лампочки
Разбилась энергосберегающая лампочка: что делать, насколько опасно для здоровья
Энергосберегающие лампочки практически полностью вытеснили «лампы Ильича» из обихода, их используют в качестве экономного источника света и на производстве, и в бытовых условиях. К сожалению, при всех плюсах данного типа ламп есть и минус – при случайном падении она разбивается точно также, как и обычная лампочка, а вот опасность несет гораздо большую.
Часто приходится слышать вопрос: если дома разбилась лампочка — это опасно? Безусловно, это опасно, но не до такой степени, что необходимо вызывать МЧС или паниковать. А вот если разбилось 20 лампочек одновременно – это уже серьезно!
Дело в том, что внутри энергосберегающей лампы находятся пары ртути или ртутная альмагама, вещества первого класса опасности: они находятся внутри трубки и покидают ее только при нарушении целостности лампы.
Многие путают ртутное наполнение лампы и внутреннее люминесцентное покрытие стеклянной трубки, которое в ходе эксплуатации или у нерабочей лампочки может отваливаться и находиться внутри. Такая ситуация абсолютно не опасна для здоровья, лампа становится источником испарения ртути только при разбиении!
Последствия
Пары ртути опасны для здоровья, поскольку могут вызвать хроническое отравление, которое проявляется дрожанием рук, гингивитом, нарушениями в работе ЦНС. При большой концентрации паров (массовом разбиении энергосберегающих лампочек) возможно острое отравление ртутью, которое проявляется слабостью, болью в животе, рвотой и кровоточивостью десен (см. симптомы отравления ртутью).
Ртуть в парообразном состоянии наиболее опасна для детей и беременных, поэтому важно знать, как действовать в такой ситуации. Сильный вред одна разбитая лампа не принесет, но это не значит, что меры предосторожности можно игнорировать.
Сколько ртути содержится в 1 лампочке?
В каждой энергосберегающей лампе находится от 1 до 400 мг (в лампах промышленного образца) ртути, реальная же угроза для здоровья создается при концентрации паров ртути от 0,25 мг/куб помещения. Для сравнения, в 1 ртутном градуснике содержится 2 г ртути. Лампочки отечественного и китайского производства содержат пары ртути, в лампах от европейских производителей в основном используется менее опасная альмагама ртути, т.е. сплав с другим металлом.
Понятно, что опасность одной разбитой энергосберегающей лампы сильно преувеличена в СМИ. Но четкие последовательные действия по устранению последствий «аварии» должны стать правилом, чтобы и дети, и окружающие понимали, что к лампам данного типа нужно относиться бережно и аккуратно.
Что опаснее – разбитый ртутный градусник или побитая энергосберегающая лампа
В данном случае больший вред приносит градусник, поскольку металлическая ртуть в виде мельчайших шариков может закатиться под плинтуса, в щели, под мебель и т.д., длительно отравляя воздух помещений (см. что делать если дома разбился градусник). В энергосберегающих лампах ртуть находится в виде пара, т.е. никаких шариков на полу искать не надо.
Что делать, когда лампочка лопнула или разбилась?
Утилизировать одежду и обувь, в которой проводилась уборка, нет необходимости, достаточно все постирать в отдельном тазике.
Если разбилась на ковре – это опасно?
Разбитая энергосберегающая лампа в данном случае более опасна мелкими кусочками стекла, которые могут застрять в ворсе. Все видимые куски стекла нужно собрать, как описано выше. Ковер аккуратно скрутить в трубочку и вынести в место, где нет людей (лес, пустырь), хорошенько вытрясти его или выбить. Можно для надежности оставить ковер на открытом воздухе на сутки.
Что нельзя делать?
Нельзя утилизировать вместе с бытовыми отходами и отработанные (перегоревшие), целые энергосберегающие лампы – их следует сдавать в специальные пункты приема.
Спасибо за советы. Лапочки хоть и не бьются дома каждый день, но все-таки иногда это случается. Соберем, конечно, но — выбросим именно «в мусорку». Почему? Потому что никаких т.н. «пунктов приема» не существует. Я лично этим летом обошла пол-Измайлово по указанным в инете адресам, чтобы сдать перегоревшие лампочки, и могу уверенно сказать — нет их, этих пунктов. В итоге, так как я сильно добивалась, в одном из РЭУ мне ответили: «ну оставьте вот здесь у нас на столе, мы сами потом выбросим». Да, лампочки вредны, особенно для детей и беременных, как вы пишете. Можно представить, сколько лампочек выбрасывается ежедневно по Москве — и выбрасывается именно «в мусорки», где они, конечно же, и давятся, и бьются. Причем, что характерно, почти все мусорки — находятся именно рядом с детскими площадками. Так что давайте, друзья, хотя бы друг перед другом не будем делать вид, что у нас в Москве с этим вопросом — все в порядке. И что уж говорить про остальные города и веси…
У нас вроде в ДЭЗе (или как он там теперь называется) объявление, что они принимают прям на входе в ДЭЗ висит.
Специальные пункты приема — смешно, их нет
Что делать, если разбилась энергосберегающая лампочка
Энергосберегающие лампочки (ЭСЛ) пользуются спросом, так как очень экономичны, долгий срок эксплуатации. Но не все пользователи знают, что свечение происходит благодаря содержащейся в ней паров ртути. И, если разбилась энергосберегающая лампочка, надо принять меры безопасности. Иначе наносится вред здоровью.
Что делать, когда лампочка лопнула или разбилась
Если случилось, что лопнула или разбилась энергосберегающая лампа дома, то не следует паниковать, а принять меры:
Проветривание не надо путать со сквозняком. Сквозняк недопустим!
Сколько ртути содержится в 1 лампочке
Концентрация ртути внутри энергосберегающей лампочки зависит от ее вида, мощности. Каждый производитель указывает показатель на индивидуальной упаковке от лампы.
Для примера рассматриваются следующие варианты ламп:
Учитывается тот факт, что опасное содержание ртути в воздухе для организма – 0,25 мг/куб. Так что, одна разбитая лампочка, особой серьезности на здоровье не окажет. Но не нужно избегать мер осторожности, профилактики.
Что нельзя делать
Есть перечень действий, которые не нужно совершать, если треснула или разбилась энергосберегающая лампочка:
Можно ли выбрасывать энергосберегающие лампы
По статистике каждый год прекращают свою работу до 70 миллионов ЭСЛ. Половина из них выбрасывается в урны с домашними отходами, а вторая половина сдается в специализированные пункты по утилизации. Неправильно утилизированные отходы попадают скопом на свалки, где из них в воздух выделяются отравляющие вещества, которые попадают в организм.
Угроза ртутных паров в том, что имеет накопительное воздействие в организме. При достижении опасного уровня содержания в организме, человек получает токсическое воздействие на нервную систему, печень, легкие и другие органы.
Для избежания подобных ситуаций: перегоревшие или разбитые лампы подлежат сдаче в специализированные пункты сбора. Либо в отведенные контейнеры для ртутьсодержащих предметов.
Проблема в некоторых населенных пунктах в том, что у них нет не специальных контейнеров, не близлежащих приемных пунктов. Для таких случаев необходимо призывать волонтеров, которые периодически будут производить прием ламп.
Существует почти 50 предприятий, которые занимаются переработкой подобных ламп. На них, первоначально, происходит разделение частей, элементов, а затем начинается переработка. В результате получается стекло, ртуть, алюминий. Такая переработка не только экономически выгодна, но и предотвращает загрязнение окружающей среды.
Рекомендуем посмотреть видео:
Меры по ликвидации опасности
Чтобы минимизировать последствия распространения ртути после разбитой энергосберегающей лампочки, надо принять ряд мер:
В заключение
Разбиться может любая лампочка. Но особое внимание уделяется ртутьсодержащим лампам. Так как такая ситуация может повлиять на здоровье человека. Если человек не будет заниматься специальной утилизацией таких ламп, то ему следует воздержаться от покупки такого вида, а купить другие модели, которые утилизируются в обычный бак для мусора.
Пригодилась информация? Оставьте комментарий, поделитесь статьей в соцсетях.
Разбилась энергосберегающая лампа
Энергосберегающие лампы сегодня можно встретить в каждой квартире. Многие в погоне за экономией, полностью отказываются от простых ламп накаливанию и устанавливают только энергосберегающие. Однако не все знают, что же находится внутри этих ламп и чем они опасны. А внутри них находится ртуть, причем в газообразном состоянии. В герметичном виде лампа безопасна для здоровья и эксплуатации. Но как только вы ее случайно разобьете, вся ртуть окажется в воздухе, внутри вашей квартиры.
Чем опасно повреждение энергосберегающей лампы?
В качественных зарубежных лампах ртуть обычно содержится в специальном связанном состоянии, в виде так называемой амальгамы. И когда лампа разбивается, ртуть при соприкосновении с воздухом не должна распространяться в пространстве.
Китайские же аналоги при повреждении представляют реальную опасность. Одна лампочка может содержать до пяти миллиграмм ртути. Для сравнения — в градуснике например, содержится до 2 грамм.
Однако в лампе ртуть находится в газообразном состоянии и распространение ее в воздухе происходит гораздо быстрее.
Минимально безопасная в сутки доза ртути для одного человека — 0,0003мг/м3.
Таким образом, если у вас в комнате площадью 20-30м2 разбилась энергосберегающая лампочка, в которой содержится 5мг ртути, концентрация этого опасного вещества в помещении, превысит в сотни раз допустимую величину!
Типы ламп со ртутью
Вот какие разновидности ламп содержат ртуть:
При длительном вдыхании паров ртути может произойти поражение нервной системы, при больших дозах отравления не исключены смертельные случаи. Наиболее опасный случай, когда лампочка разгерметизировалась, но не разбилась, а вы посчитали ее просто перегоревшей и выбросили в мусорное ведро.
В результате ваше тело, постепенно, в течение длительного времени будет накапливать ртуть, пары которой будут присутствовать в воздухе вашей квартиры.
Поэтому все перегревшие, разбитые, не рабочие энергосберегающие лампы, нужно сразу выбрасывать в специально предназначенные контейнеры, а не хранить их дома.
Порядок действий
Что же делать если вы разбили энергосберегающую лампу?
Наденьте влажную марлевую повязку и воспользуйтесь резиновыми перчатками, бумажными полотенцами, старой губкой, т.е всем тем, что не жалко потом выбросить вместе со стеклом. Не убирайте осколки с помощью пылесоса.
Если осколки упали на палас или ковер, то его нужно вынести на улицу, постелить под ковром клеенку и после этого выбить. Клеенка с осколками конечно же выбрасывается, а ковер потребуется продолжительное время проветривать.
Демеркуризация
Теперь необходимо нейтрализовать результаты воздействия ртути на то место, где была разбита лампа — этот процесс по научному называется демеркуризацией. Для этого из имеющихся под рукой в домашнем хозяйстве средств необходимо изготовить обеззараживающий состав. Использовать можно то, что есть в вашем доме: марганцовка, обычная пищевая сода, белизна и йод.
Если у вас разбилась не одна, а несколько ламп одновременно, например упаковка при неосторожном обращении или падении с высоты, тут уже необходимо обратиться к специалистам и не стесняться позвонить по телефону МЧС. Как уже рассматривалось выше, битые и негодные энергосберегающие лампы нельзя выбрасывать в обычные бытовые мусорки. В крупных городах на сегодняшний день, уже достаточно специальных контейнеров для утилизации таких отходов. Что же делать если поблизости с тем местом где вы живете, такого контейнера нет? В этом случае можно посоветовать обратиться за помощью к какому-нибудь крупному, поблизости расположенному предприятию. Обычно экологический надзор обязывает такие конторы в обязательном порядке заключать договора на утилизацию ртуть содержащих ламп и иметь на своей территории специализированные контейнеры. Попросите их возможностью воспользоваться данным контейнером.
Разбилась энергосберегающая лампочка — что делать
Энергосберегающие лампы представляют собой эффективные осветительные приборы, которые активно используются в домах. Большую часть времени они не доставляют хлопот, однако некоторые аварийные ситуации могут потребовать немедленных мер. Рекомендуется знать заранее, что делать, если разбилась энергосберегающая лампочка, чтобы правильно оценивать уровень опасности.
Описание энергосберегающей лампочки
Энергосберегающая лампа – электрический прибор, работающий через нагрев от электродов инертного газа и паров ртути в герметичной колбе.
Напряжение от пускорегулирующего аппарата вызывает движение электронов и возникает ультрафиолетовое излучение. Люминофоровое покрытие колбы превращает его в видимый белый свет.
Опасна ли разбитая лампочка
Принцип работы энергосберегающих лампочек основан на нагревании ртути. Ее пары относятся к 1 классу опасности и могут оказывать неблагоприятное воздействие на человека и окружающую среду.
Ртуть вызывает средние и тяжелые последствия для здоровья. Распространение из разбитой лампы происходит очень быстро, а первая симптоматика проявляется на нервной системе.
К симптомам отравления ртутью относятся:
Тяжелое отравление выражается сильными головными болями, которые накатывают раз за разом. Также может возникнуть бредовое состояние и нарушение функций мозга. Большое содержание вредных веществ в организме вызывает поражение внутренних органов, дыхательных путей.
Наиболее уязвимы к воздействию ртутных паров дети и беременные женщины. Одна разбитая лампа вряд ли станет причиной летального исхода, однако значительное ухудшение состояния может появиться.
Есть ли ртуть в энергосберегающих лампах
Ртуть в современных энергосберегающих лампах действительно присутствует. Ее точное количество зависит от модели устройства и специфики технологии. В стандартных бытовых лампочках обычно содержится не более 5 мг вредного вещества. В приборах отечественной сборки присутствует сам элемент, а в европейских лампочках используют сплав на основе ртути.
Будет полезно ознакомиться: Что там внутри энергосберегающей лампы
Само вещество в твердом и жидком состоянии безопасно для человека. Однако оно имеет очень низкую температуру кипения и легко превращается в пар, проникающий в организм. Это воздействие уже опасно.
В люминесцентных лампах-трубках может быть до 65 мг активного вещества, а в уличных ДРТ до 600 мг.
Как ликвидировать опасность
Ликвидация опасности от разбитой лампы включает в себя механическую уборку, демеркуризацию и утилизацию отходов. Рассмотрим этапы подробнее.
Механическая уборка
Все работы по механической очистке обязан проводить взрослый ответственный человек, остальные должны покинуть территорию, включая питомцев. Перед уборкой важно закрыть двери в другие помещения и широко открыть окна.
Далее следует собрать все части прибора. Убирая осколки лампы, ни в коем случае нельзя касаться их голыми руками. Все работы проводятся в толстых перчатках, а сбор остатков делают губкой, картоном или тряпкой. Пылесос использовать нельзя, иначе от него придется избавиться.
Все части прибора помещаются в плотный пакет с герметичной застежкой. Поверхность протирается влажной тряпкой или полотенцем, которое также помещается в плотный пакет для утилизации.
Попадание веществ на элементы декора является поводом также поместить их в герметичные пакеты для дальнейшего исследования. Специалисты смогут оценить степень загрязнения и составят заключение о пригодности предмета для дальнейшего использования.
Демеркуризация
По завершении механической уборки немедленно приступайте к очистке помещения, демеркуризации – удалению всех остатков ртути и нейтрализации впитавшихся в поверхности соединений. Требуется тщательная уборка с использованием специальных растворов.
Нужный раствор можно купить в специализированном магазине или же приготовить самостоятельно.
Варианты самодельных нейтрализаторов:
Составы недорогие и готовятся быстро, что удобно для обработки больших площадей.
Протрите раствором все поверхности в комнате, где разбилась лампа. Особенное внимание уделите щелям, скрытым полостям и труднодоступным участкам. Все работы проводить исключительно в плотных резиновых перчатках.
После нанесения желательно оставить раствор на поверхностях на несколько часов. Для полного удаления вредных веществ может потребоваться повторение обработки 3-4 дня.
Можно обратиться за услугой демеркуризации к специальным компаниям, которые используют специализированные средства и методы. После процедуры сотрудники проведут замеры содержания паров ртути в воздухе и дадут оценку попавшим под воздействие вещества предметам интерьера.
Утилизация
Остается удалить пакет с отходами лампы из квартиры. Выбрасывать подобный мусор в обычный бак нельзя, требуется найти специализированный сборник для опасного мусора. В крупных мегаполисах подобные баки найти несложно, однако жителям небольших городов сложнее.
Для консультации позвоните в МЧС или санэпидемстанцию. Специалисты скоординируют и порекомендуют оптимальный вариант утилизации. Можно связаться с местными крупными предприятиями, у которых должны быть баки для утилизации вредных отходов.
Чего делать нельзя
При устранении последствий разбитой энергосберегающей лампы важно избегать следующих действий:
Части разбитой энергосберегающей лампы представляют собой опасные отходы, которые должны утилизироваться по всем правилам.
Энергосберегающие лампы. Теоретическая часть
Оглавление
Вступление
реклама
Волевым решением Партии и Правительства россияне получили кота в мешке по кличке «Энергосберегающие лампы». Отчасти можно понять первопричины этого шага – населения меньше не становится, а производственные мощности выработки и подачи энергии конечному пользователю получили жесткие ограничения.
Вначале запретили столь любимую лампочку 100 Вт с обещанием в дальнейшем извести все, кроме карманных фонариков. Энергосберегающие осветители, в качестве которых чаще всего выступают люминесцентные лампы, обеспечивают весьма солидную экономию энергии, но какой ценой? Кроме того, часто слышна мантра о выгодной дешевизне этих устройств освещения, мотивируемая большим сроком работы. «Восемь-десять-двадцать тысяч часов», чего только не увидишь на упаковке продуктов. Но рано или поздно даже у самых бережливых истощатся запасы ламп накаливания, не настало ли время разобраться с дареным «котом»?
Компактные люминесцентные лампы
Итак, «виновник торжества», знакомьтесь:
Устройство состоит из люминесцентной лампы, выполненной в виде свернутой трубки и электронного балласта, упакованного в корпусе между непосредственно лампой и цоколем E27. Свет возникает благодаря тлеющему разряду, который вызывает ионизацию и свечение паров ртути. Преобразователь обеспечивает необходимое напряжение для поддержания рабочего режима. Всё, этого пока достаточно, незачем заваливать себя излишней информацией.
Особенности люминесцентных ламп
реклама
У данного вида продукции, как и у любого другого, есть свои положительные и отрицательные свойства. В качестве первого можно упомянуть меньшую потребляемую мощность и более «спокойное» отношение к снижению напряжения питания. А вот недостатки …
Обсудим основные нюансы работы люминесцентных ламп. В данном разделе будет использовано много собственных наблюдений и размышлений над различной и подчас противоречивой информацией, поэтому рассуждения могут содержать ошибки.
Вредность для глаз
Медицинских исследований по данному вопросу я найти не смог, хотя ряд врачей высказывались о возможных негативных последствиях подобного вида освещения. Можно поискать и привести эти цитаты, но важнее то, что исследований не ведется. Или все же, кто-то занимается данным вопросом, но не собирается извещать широкие массы? Ладно, опустим этот нюанс, дабы не портить себе настроение.
При переходе на люминесцентные лампы некоторые люди стали жаловаться на головную боль, повышенную утомляемость и усложнение работы с мелкими предметами. Например, переход с CRT на LCD мониторы не у всех пользователей прошел гладко. В то время повышенная утомляемость списывалась на эфемерную «особенность технологии LCD мониторов»: повышенную четкость и несвойственную для CRT мониторов стабильность картинки. Мотивировка понятна – люди всё время проводят за мониторами и телевизорами, привыкают к их мерцанию, а тут ничего не «плавает», картинка стоит четко. Почему я об этом вспомнил? А вы не задумывались, что за подсветка используется в LCD дисплеях? Судя по их спектру, а он аналогичен КЛЛ, Ra на уровне 6х, и это на современных мониторах.
Второй нюанс. Усложнение восприятия мелких деталей – при использовании люминесцентных ламп и необходимости разглядеть что-то мелкое приходится сильно увеличивать освещенность рабочего места, по сравнению с лампами накаливания. Как мне кажется, проблема кроется в особенности работы мозга по управлению размерами зрачка – данная функция работает по «синей» составляющей. В любой люминесцентной лампе (не только КЛЛ) присутствуют пары ртути, которые дают пик в синей области спектра для длины волны 436 нм, что соответствует наибольшей чувствительности синих колбочек глаза. В результате использование КЛЛ означает излишне суженный зрачок.
Схожий дефект присутствует при фокусировке зрения, но для этого уже применяется желто-красная составляющая. Человеческий мозг за многие тысячелетия развития адаптировался под непрерывный и заранее известный спектр солнечного света. Искусственное освещение чаще всего используется в вечернее время суток со свойственной ему желто-зеленой гаммой и крайне низким уровнем синих составляющих. Спектр КЛЛ не соответствует этой характеристике, вот мозг и «ошибается».
Мерцание
Люминесцентные лампы бывают с электромагнитным балластом (дроссель + стартер) и с полностью электронной схемой без крупных электромагнитных элементов.
«Дроссельные» решения обладают повышенным уровнем пульсации светового потока. Фактически, от мерцания с частотой сети спасает только послесвечение люминофора, но для ламп небольшого диаметра (Т5 и меньше) надежда на люминофор несостоятельна, уровень мерцания доходит до 70%.
Подобный вид освещения чаще всего применяют в производственных помещениях и для борьбы с мерцанием используют фазосдвигающие элементы между группами светильников или более простой прием – лампы подключают на все три фазы. В результате, хотя конкретная лампа и пульсирует с частотой сети, но из-за взаимного наложения светового потока групп на различных фазах сети 220 вольт общая освещенность рабочего места характеризуется пониженным уровнем мерцания светового потока. Если бы это не было серьезной проблемой, никто бы не стал усложнять себе жизнь коммутацией трех фаз или установкой специальных схем.
Люминесцентные лампы с электронным балластом лишены столь высокого уровня мерцания, как у «дроссельного» варианта, но он все же присутствует. Причем величина пульсаций светового потока зависит, по большому счету, от номинала сглаживающего конденсатора в выпрямителе электронного балласта. А вы знаете, как в «китайской» продукции любят все «упрощать», особенно невидимое покупателю.
реклама
Кроме повышенной утомляемости мерцание приводит к эффекту стробоскопа, когда движущийся (вращающийся) предмет начинает выглядеть не так, как в действительности. Проблема усугубляется тем, что дефект свойственен восприятию и неподвижных объектов, поскольку сам глаз находится в постоянном движении. Кстати, отсюда же эффект объемного зрения, который получается при взгляде только одним глазом.
Система «глаз-мозг» работает по очень сложным алгоритмам и далеко не все особенности ее функционирования детально изучены, уместно будет вспомнить о «странной» особенности четче замечать изменение, движение объектов периферийной частью зрения. Поэтому изменение яркости сказывается самым причудливым способом – мозг может и не сообщать о мерцании источника света, но его обработка изображения идет иначе и сложнее, что приводит к повышенной утомляемости.
реклама
Довольно странно задаваться вопросом об уровне шума устройства, в котором нет крупных электромагнитных элементов. Но, увы, встречается и такое.
Например, в отзывах на КЛЛ «OSRAM Mini Twist E27 24W/827, Made in P.R.C.» упоминается, что она начала издавать едва различимый шум (возможно, «фон») через небольшое время работы. То есть, изначально проблемы не существовало, но затем лампа зашумела. Не хотел бы вешать ярлыки, но при переборе тестовых ламп на какой-то модели OSRAM услышал небольшой, совсем небольшой, акустический шум типа «фон» (с частотой, кратной сети 220 В). Уровень еле-еле заметный, который можно услышать только в тихой комнате при пристальном вслушивании.
С другой стороны, существуют отзывы, что величина шума может быть довольно большой, к сожалению, не могу привести точную марку лампы. Причем, заметность дефекта такая, что начинает мешать. Согласитесь, должна быть веская причина, чтобы пойти на обмен только что купленного товара. Наверное, такой дефект возможен, но я его не исследовал и что-то конкретное сообщить не смогу.
Кроме OSRAM мне попадались упоминания о лампах IKEA с электронным балластом, которые начинали шуметь (гудеть) в начале работы, но после их прогрева данный дефект пропадал.
Впрочем, есть еще один источник звука в КЛЛ – в новых лампах «без ртути» вместо паров ртути используется амальгама (соединение с ртутью), которое выполнено в виде небольшого шарика. В выключенном состоянии этот шарик может кататься в специальной зоне около нити накаливания и издавать шум.
реклама
Спираль или «U»
Считается, что колба в «U» варианте более ажурна и менее перекрывает световой поток, чем «спиралевидная». Однако, по мере увеличения количества «U» секций степень перекрытия возрастает, а «спираль» может изготавливаться с довольно разряженной намоткой и превосходство «U» конструкции не является бесспорным.
С другой стороны, «U» исполнение выглядит неряшливо, особенно для тех, кто привык к округлым формам ламп накаливания. В этом отношении у «спиралевидных» КЛЛ больше шансов удовлетворить покупателя внешним видом.
реклама
Третий нюанс – КЛЛ с колбой из «U» секций, в основном светит в стороны, мощность светового потока через верхнюю часть довольно низка.
И, наконец, четвертая проблема – КЛЛ формата «U» банально длиннее «спиралевидного» исполнения и у них меньше шансов уместиться в существующий светильник.
КЛЛ и светильник
Пользователи отмечают случаи изменения цвета свечения ламп при установке их в закрытые или плохо продуваемые светильники. В ванную комнату ставить КЛЛ с ее электронным балластом без полностью закрытого светильника было бы слишком самонадеянно, потому работа КЛЛ в таких условиях должна считаться нормальным режимом и предусматриваться при проектировании конструкции лампы. На данный момент все лампы накаливания пока еще не запрещены, но это только «пока». Правительство обещало извести все лампы накаливания, за исключением тех, что используются в карманных фонариках. Что же остается, сидеть в ванной при лучине? … или ввернуть КЛЛ?
реклама
Фактически, современные КЛЛ нормально работают только в «тепличных» условиях, повышение температуры резко снижает их эксплуатационные свойства и продолжительность нормального функционирования. Лично мое мнение – в этом виноват сам производитель, попытки «чрезмерной», извините, «экономии» приводят к некачественным решениям. Например, микросхемы для КЛЛ разработаны и выпускаются уже очень давно, но «почему-то» в обычных лампах используется схема автогенератора на двух транзисторах, которая не обеспечивает стабилизации режимов и не способна нормально управлять колбой.
Стоит отметить, что разница в затратах при добавлении микросхемы меньше одного доллара, а при той серийности, с которой выпускают КЛЛ, расходы могут быть даже отрицательными (то есть, произойдет экономия средств) из-за отказа от насыщаемого трансформатора и схемы запуска. Просто все «лепят» автогенератор и считают это нормальным, вот и всё. Ну а то, что срок службы лампы снижается в несколько раз – это уже «не их» проблемы. Извините, отвлекся.
При выборе светильника обращайте внимание на его «продуваемость». Если конструкции не будет обеспечен хороший продув за счет естественного движения нагретого потока вверх, то лампы будут дополнительно подогреваться теплым воздухом, что снизит ресурс их работы. Особенно неприятна повышенная температура при размещении лампы цоколем вверх, как обычно и бывает с лампами формата Е27. В таком случае блок балласта (и так теплый) дополнительно подогревается нагретым воздухом от светящейся колбы. Повышенная температура меняет рабочие режимы электронного балласта, что влияет как на уровень света, так и на то, сколько времени эта КЛЛ вообще будет светить. Повторюсь – в большей степени в этом виноват сам производитель, «сэкономив» последний «чатл» явно в ущерб качеству.
Люминофор
реклама
«Галофосфатные» люминофоры несущественно задерживают излучение ртути и выполняют лишь небольшую коррекцию цвета излучения, а потому обладают повышенной светоотдачей и низким качеством свечения. Для них типичное значение коэффициента цветопередачи Ra в районе 6х-7х, что ограничивает их область применения техническими помещениями. По требованиям постановления №602 КЛЛ с таким люминофором запрещено применять в жилых помещениях.
«Трехполосный» люминофор характеризуется несколькими областями свечения (судя по названию, их три) в сине-зеленой и красной частях спектра свечения лампы. Различные производители могут по-разному называть подобный вид люминофора, например «Tri-Phosphor», но он остается всё тем же «трехполосным» люминофором. В последующей части статьи приведены КЛЛ нескольких производителей и просмотр спектра покажет их «удивительное» однообразие. Будут и исключения, но и они не вызовут радостных эмоций.
Единообразие спектра свечения вызывается одинаковым люминофором. Разработка и изготовления уникальных сортов весьма наукоемкая деятельность, поэтому чаще всего производители ламп просто закупают готовую суспензию. Отчасти это хорошо, значит «хоть что-то» будет изначально спроектировано правильно или хотя бы «непровально». А от тех производителей, которые занимаются собственной подборкой состава, можно ждать всяких неожиданностей … и вряд ли они будут приятными.
Как правило, «трехполосный» люминофор означает индекс цветопередачи 8х.
Лично мое наблюдение и оно может быть неверным – при низкой цветовой температуре (2700К) интенсивность синего цвета небольшая, поэтому в «стандартном» люминофоре вообще не используются составляющие для выделения синего цвета, а уход в «красную» часть цветовой температуры компенсируют повышенным количеством «зеленой» полосы. Как следствие, такие лампы должны обладать слабо выраженным зеленым оттенком, что я и наблюдаю на большинстве ламп 2700К на своем стенде. Кроме «визуального», зеленый оттенок отмечается на диаграммах CIE 1931, приведенных в статье.
В данном тестировании участвуют не только КЛЛ со «стандартным» люминофором, но и лампы, в которые производитель внес какие-то коррективы. Как следствие, цветовая температура в них меньше отходит от нормальных значений, что заметно и «на глаз», по отсутствию зеленого оттенка.
Ртуть
На ряде упаковок люминесцентных ламп появился необычный значок.
Различие в свойствах проявляется только в выключенном (холодном) состоянии – обычная ртуть находится в жидком и газообразном виде, а амальгама представляет собой твердый шарик или застывшие капли небольшого размера. Разрушение выключенной лампы не приведет к загрязнению ртутью, но разбив включенную лампочку, вы получите равноценный вред.
Кстати, о вреде. В обычной КЛЛ находится примерно 5 мг ртути. Для сравнения, в медицинском ртутном градуснике ее около двух граммов. Кроме того, в колбе газ с разряжением, поэтому при небольшой трещине, без полного механического разрушения колбы, массовой утечки паров ртути не произойдет. Косвенно, это подтверждается одним случайным наблюдением. Конструкция КЛЛ «GamBiT», модель RF 049, крайне неудачная по механической прочности колбы. К сожалению, должен отметить, что не только у данной торговой марки есть подобное ущербное исполнение.
Прошу обратить внимание на тонкий соединительный перешеек между двумя «U» трубками и отсутствие крепежных элементов у верха трубок, что создает большую длину рычага и пропорциональное увеличение усилия на разрушение. Небольшой нажим между трубками и соединение дает трещину, что у меня и произошло. Понятно, что это уже проблема потребителя, не являющаяся гарантийным случаем, но забота производителя «умиряет». Из участвующих в тестировании ламп схожей конструкцией обладают устройства торговой марки «Экономка».
Однако посмотрите, верхушки секций соединены стеклянной перемычкой, да и соединительный перешеек шире и толще. Впрочем, я снова несколько отвлекся, извините.
При работе с лампами проявлялась повышенная осторожность, но стенд довольно компактный и начальное закручивание часто приходилось делать за колбу. В результате одна лампа дала трещину. Никаких «особенных» звуков не последовало, и о разгерметизации я догадался только при подаче напряжения питания через несколько минут. Лампа ярко горела нитями накала и пыталась светить одной «U» секцией, что означает проникновение внутрь колбы окружающего воздуха с сохранением компонентов газовой среды лампы.
Мне кажется, проблема «ртути» несколько преувеличена. Для получения хоть какого-то вреда пришлось бы разбить все купленные лампы, а это больше тридцати штук. Вредоносность ртути очевидна и крайне опасна, но не будем забывать о количестве ртути в объекте рассмотрения. Если нет механического разрушения колбы, то достаточно лишь завернуть КЛЛ в пластиковый пакет и тщательно проветрить комнату.
Лампы с амальгамой более безопасны, в них ртуть переходит в опасное состояние только при работающей лампе, но вряд ли стоит только на этом факте основывать свой выбор люминесцентной лампы. Хотя, при выборе двух одинаковых КЛЛ, одна из которых получила эмблему «без ртути», хочется взять именно ее – кому охота получить ненужные проблемы с ртутью, если их можно избежать.
Однако вынужден отметить недостаток тестирования в данной статье – не сравнивалась работа обычных и ламп с амальгамой при включении. Надеюсь, подобное сравнение будет добавлено во вторую часть, которая выйдет после стендового тестирования. По опыту работы с участниками исследования могу отметить, что существенной разницы замечено не было. В модельном ряду «Космос» есть модели «с» и «без» ртути с одинаковой цветовой температурой 4200 и 6500 К, никаких отличий в их работе не наблюдается.
Возможно, вы обращали внимание на значок с зелеными листьями и надписью «ECO» на коробке КЛЛ?
У разных производителей эмблема может немного отличаться, но, как правило, зеленые листочки присутствуют всегда. Какие ассоциации обычно возникают при взгляде на этот рисунок? Экологичный продукт, производитель заботится о природе? Эх, если бы так.
Ультрафиолет
Люминесцентные лампы излучают часть мощности в УФ-части спектра, но эта энергия не велика, порядка 10-15 процентов. Причем, самая опасная часть УФ-спектра (жесткий, коротковолновый ультрафиолет) задерживается стеклом колбы и это происходит вовсе не от того, что производители заботятся о безопасности пользователей, просто обычное стекло стоит дешевле. Для УФ-светильников используют кварцевое стекло, которое не задерживает излучение в этой части спектра, но при этом тяжелее обрабатывается и значительно дороже обычного известкового стекла.
Поэтому даже в «самых дешевых» КЛЛ проблемы с ультрафиолетом не возникает, уровень и характер излучения не приводит к серьезным последствиям. По крайней мере, оно не вреднее простого загара под солнцем. Кстати, если посидеть часок под светом мощных КЛЛ на небольшом расстоянии, то можно неплохо поправить цвет лица. Как мне кажется, проблема ультрафиолета явно преувеличена.
Кроме всего перечисленного, УФ оказывает отрицательное влияние на саму лампу – под действием излучения меняется цвет и деградирует пластик корпуса КЛЛ, детали электронной схемы (конденсаторы, дроссель). В качественной продукции на это обращают внимание и предпринимают контрмеры, например, тщательно покрывают концы трубок светонепроницаемым покрытием. Что до продукции класса «и так купят», то зачастую на эти «глупости» никто не желает тратить усилия, что соответственно сказывается на сроке службы таких КЛЛ.
Посторонний запах
Довольно странно, но КЛЛ могут издавать неприятные и резкие запахи. Конечно, от фирменной продукции получить подобный «сюрприз» менее вероятно. Чаще всего источником раздражающего запаха является наполнитель вокруг выхода световой трубки из корпуса лампы. Причина – использование неправильного состава или нарушение технологического процесса изготовления герметизирующего материала. Решение обычное – открыть окно и ждать, пока запах не пройдет. Однако отмечаются случаи, когда вонь не проходит и через несколько дней.
Лично я ничего не могу сказать по этому поводу, среди тестируемых ламп подобной проблемы не выявилось.
Старение
Прожив многие годы под лампами накаливания, мы привыкли, что их яркость практически не меняется со временем, ну разве что из-за мух и пыли. С КЛЛ все иначе, они стареют от времени и особенно от повышенной температуры. Падает эффективность люминофора, меняются характеристики электронного балласта, что прямо сказывается на уровне освещенности. Например, если в начале работы КЛЛ была эквивалентна лампе накаливания 75 Вт, то через год эта цифра способна снизиться до 60 и меньше ватт.
Измерение степени старения свойств КЛЛ входит в состав тестирования, поэтому обсуждение данного вопроса будет очень коротким – посмотрим цифры.
Электрика
Довольно неожиданно, но КЛЛ оказались очень чувствительны к качеству соединительных элементов и патронов. Отчасти это понятно, контактирующие элементы разрабатывались под лампы накаливания с их большим током потребления, и переход на КЛЛ мог привести к неустойчивому соединению. Дело в том, что у любого элемента, обеспечивающего механическую коммутацию электрического сигнала, например, реле, есть две характеристики – «максимальный» и «минимальный» ток.
Первое понятно, оно определяется площадью и формой контакта, а второй параметр встречается реже и менее известен. Он закладывается при проектировании типа покрытия контактирующих поверхностей. Если ничего специально не предпринимать, то на поверхности контактов образуется окисная пленка, которая увеличивает сопротивление во включенном состоянии вплоть до «неустойчивого соединения». В дальнейшем на этом месте образуется «нагар», что приводит к усилению дефекта.
Некачественное соединение приводит к броскам тока заряда сглаживающего конденсатора электронного балласта КЛЛ, что снижает ресурс его работы, и скачкообразно изменяет режим работы всей КЛЛ, а это уже может привести к худшим последствиям – сгоранию электроники или разрушению цепей накала в колбе. И это не просто слова, я сам столкнулся с проявлением данного дефекта. У меня в одной комнате висит лампа с пятью рожками под лампы типа Е14 («миньон»). В одном из них сгорела люминесцентная лампа, отметил «бывает» и забыл. Но через месяц, в этом же патроне, пришла в негодность совсем новая лампа. Это показалось странным, но разбираться не было никакого желания, и лампа была просто заменена.
Что ж, обезжирил контактирующие поверхности, а потом еще и отшлифовал мелкой шкуркой. После профилактики дефект не проявлял себя, на данный момент лампа в этом рожке отработала уже больше года. Попробую предположить, что виною был тонкий слой жира на поверхности контакта, что приводило к неустойчивому соединению. Если бы на этом месте стояла лампа накаливания, то всё бы функционировало в нормальном режиме – довольно большой ток лампы пробил слой окисла и установилось надежное соединение.
Проблема выявилась именно с КЛЛ, в ней ток потребления значительно меньше, а сам ток непостоянен во времени. Отдельно хочется подчеркнуть – обращайте повышенное внимание на качество соединительных элементов и патронов при использовании ламп с низким током потребления, особенно при подозрительно низком сроке работы этих ламп. Не всё определяется качеством КЛЛ, источник проблемы может находиться и вне ее.
Выключатели с подсветкой
Данный вопрос тесно связан с предыдущим, хотя и происходит в иной области. В некоторых выключателях встроена подсветка, облегчающая его нахождение в темное время суток. Идея хорошая, только схемная реализация ориентирована на лампы накаливания – индикаторный элемент (с ограничителем тока) включается параллельно выключателю и зажигается при выключенном светильнике. С лампами накаливания все работает хорошо, а вот КЛЛ, да и трубчатые люминесцентные лампы с электронным балластом, от этого небольшого тока начинают заряжать накопительный конденсатор и периодически «вспыхивать». Частота мерцания около герца (раз в секунду), яркость незначительная … пока на улице день.
Кстати, не все КЛЛ производят этот дефект, помогает схема предварительного прогрева катодов, которая блокирует свечение в первую секунду горения. Если КЛЛ не «моргает» при работе от выключателя с подсветкой, то это не значит, что она не выполняет периодические включения – их просто не видно.
Насколько деструктивна подсветка в выключателе для самой КЛЛ? Я не могу сказать ничего конкретного про электронику, слишком много неопределенных параметров, а вот по поводу колбы все проще – периодический режим включения «вспыхивающей» лампы равносилен включению на непрогретый катод в обычном режиме. И там, и там «уносится» некоторое количество эмиссионного покрытия катода с нити накала. А теперь сопоставим энергию, которая приходит на лампу в режиме мерцания и при обычном включении. Дело, ведь, не столько в самом факте «включения», сколько в энергии, разрушающей покрытие. Лично мое мнение, колба от такого «вспыхивания» не стареет, электроника – вопрос темный. Короче говоря, это очередная «страшилка», чтобы скрыть низкое качество самих КЛЛ за надуманными причинами.
Бороться с мерцанием можно только одним способом – шунтировать КЛЛ элементом, снижающим напряжение на ней в выключенном состоянии. Это может быть или резистор 1-2 Вт номиналом 47-100 кОм или конденсатор, рассчитанный на напряжение сети 220 вольт (например, из входного фильтра блоков питания АТХ) номиналом 0.1-0.47 мкФ.
Применение конденсатора более эффективно – в отличие от резистора на нем не рассеивается тепло (активная мощность).