Что влияет на усвоение кальция
Как происходит усвоение и распределение кальция в организме?
Кальций (Са) — важнейший строительный компонент костной структуры человеческого тела. Са относят к макроэлементам благодаря его распространенности в организме человека. Он участвует в регуляции минерального обмена, выполняет ключевую роль в поддержании крепости костей, красоты ногтей, волос и кожи. Однако его функции этим не ограничиваются. Са является посредником во многих физиологических процессах, образует различные комплексы с ферментами, гормонами, белками, аминокислотами и другими структурными элементами.
Роль кальция в организме
Природные источники
Суточная норма
Как происходит процесс усвоения
Распределение в организме
Какие дополнительные элементы требуются для правильного распределения кальция
Помимо витамина D3 необходимы и другие компоненты, обеспечивающие лучшее усвоение Са. Решающую роль для правильного распределения Са в организме несет в себе витамин K2 — менахинон. Именно он активирует остеокальцин, включающий минерал в состав костной ткани, и другие белки, препятствующие отложению Ca в сосудах, суставах и мягких тканях. K2 направляет Са в области, где он действительно необходим. Несмотря на то, что D3 регулирует поглощение Са, он не способен предотвратить отложение минерала в артериях без участия витамина K2. Достаточное потребление менахинона служит фактором повышения минерализации кости, а также сокращает риск отложения кальция в сосудах 7,8
Способы устранения дефицита
Whiteline помогает восполнить дефицит Ca в организме
Whiteline состоит из комбинации кальция и витаминов D3 и К2. Их совместное применение аккуратно помогает восполнить дефицит кальция и недостаток витаминов с учетом их поступления с пищей и синтеза в организме. Whiteline: Ca+D3+K2 помогает поддерживать естественную красоту ногтей, волос, проявляя заботу о здоровье зубной и костной ткани. K2 способствует снижению риска отложения кальция в сосудах и других мягких тканях.
Источники
Волкова Л.Ю. Алиментарные факторы формирования костной ткани у детей и подростков. Пути профилактики возможных нарушений / Л.Ю. Волкова // Вопросы современной педиатрии. — 2015. — № 1. — С.124-131.
Николаева В.В. Роль витамина D в развитии стоматологических заболеваний (обзор литературы) / В.В. Николаева, Л.В. Терещенко, В.В. Волобуев // Colloquium-Journal. — 2019. — №. 10(34). — С. 26-28. DOI: 10.24411/2520-6990-2019-10273
Особенности обмена кальция при беременности в зависимости от насыщенности организма витамином D / Е.С. Шелепова [и др.] // Гинекология. — 2016. — Т. 18, № 2. — С. 8-10.
Ершова О.Б. Кальций и витамин D: всё ли мы о них знаем / О.Б. Ершова, К.Ю. Белова, А.В. Назарова // Русский медицинский журнал. — 2011. — № 12. — С. 719-725.
Громова О.А. Роль кальция и витамина D в профилактике остеопороза / О.А. Громова, Е.М. Гупало // Вопросы гинекологии, акушерства и перинатологии. — 2008. — Т.7, № 4. — С. 73-82.
Громова О.А. Нейрохимия макро и микроэлементов. Новые подходы к фармакотерапии / О.А. Громова, А.В. Кудрин А.В. — М. : Алев-В, 2001. — 272 с.
Панкратова Ю.В. Витамин К-зависимые белки: остеокальцин, матриксный Gla-белок и их внекостные эффекты / Ю.В. Панкратова, Е.А. Пигарова, Л.К. Дзеранова // Ожирение и метаболизм. — 2013. — № 2. — С. 11-18.
Хисматуллин Д.Р. Влияние микро- и макроэлементов в продуктах питания на здоровье человека / Д.Р. Хисматуллин, В.М. Чигвинцев, Д.А. Кирьянов // Вестник Пермского университета. Сер. Биология. — 2020. — № 1. — С. 54-62. DOI: 10.17072/1994-9952-2020-1-54-62
Белых Н.А. Ожирение и микронутриентный дисбаланс у детей / Н.А. Белых, Е.Э. Блохова // Наука молодых. — 2019. — Т.7, № 3. — С. 429-438.
Ожирение у детей и подростков — современный взгляд на проблему / Е.В. Павловская [и др.] // Вопросы детской диетологии. — 2008. — Т.6, № 4. — С. 27-36.
Потребление кальция и композиционный состав у афро-американских детей и подростков с риском избыточного веса и ожирения / Ф.A. Тылавский и др. // Food and nutrition sciences. — 2018. — Т. 9, № 4. — Стр. 950-964. https://doi.org/10.3390/nu2090950
МР 2.3.1.2432–08 Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации (2008). Роспотребнадзор. Утверждены Г. Г. Онищенко
Феске С. Ca-опосредованные сигнальные пути в активации лимфоцитов и заболеваниях. Nat Rev Immunol. 2007 Sep;7(9):690-702. doi: 10.1038/nri2152. Epub 2007 Aug 17. PMID: 17703229
Кениг Д, Мьюзер К, Дикхут Х, Берг А, Дейберт П. Эффект добавок, обогащенных щелочными минералами, на кислотный баланс у людей. Nutr J. 2009 Jun 10;8:23. doi: 10.1186/1475-2891-8-23. PMID: 19515242; PMCID: PMC2702352
БАД. НЕ ЯВЛЯЕТСЯ ЛЕКАРСТВЕННЫМ СРЕДСТВОМ
Московская область, город Подольск,
село Покров, ул. Сосновая, д. 1
+7 (495) 730-75-45
© 2021 ООО «НПО Петровакс Фарм»
Задать вопрос
Внимание! Обращение на сайт не является заменой консультации у врача.
Кальциопенические состояния и их коррекция
Кальций (Са) — один из важнейших элементов в организме человека, особенности его метаболизма обусловливают физиологический гомеостаз и нормальное функционирование практически всех систем организма [1]. Наибольшее значение содержание и состояние метаболизм
Кальций (Са) — один из важнейших элементов в организме человека, особенности его метаболизма обусловливают физиологический гомеостаз и нормальное функционирование практически всех систем организма [1]. Наибольшее значение содержание и состояние метаболизма кальция имеет в детстве, пожилом возрасте, а также в период беременности [2].
Общие сведения о кальции. Кальций является самым распространенным элементом в теле человека, поэтому его относят к «макроэлементам». Организм взрослого в норме содержит примерно 25 000 ммоль (примерно 1000 г) кальция, из них 99% входят в состав скелета. Общее содержание минеральных веществ в человеческом организме — около 5% от массы тела, а на долю Са приходится почти треть от их общего количества [3].
По химическим свойствам Са относится к элементам, образующим прочные соединения с белками, фосфолипидами, органическими кислотами и другими веществами.
Функции Са. Кальций выполняет многочисленные функции в минеральном обмене, но этим его свойства не ограничиваются. Принято выделять следующие наиболее важные функции: участие в формировании и поддержании структуры костной ткани и зубов; активизация ферментных систем, обеспечивающих гемокоагуляцию и мышечное сокращение; участие в регуляции трансмембранного потенциала клетки, нервной и нервно-мышечной проводимости; поддержание сердечной деятельности; регуляция продукции и высвобождения гормонов и нейропептидов (нейромедиаторов); регуляция сосудистого тонуса; контроль всех этапов каскада свертывания крови; участие в важнейших метаболических процессах (гликогенолиз, глюконеогенез, липолиз и т. д.); функционирование в качестве «информационной» молекулы для многих ферментативных реакций; стимуляция секреторного и инкреторного процессов пищеварительных и эндокринных желез; pегуляция тонуса симпатической и парасимпатической нервной системы; биологическая сигнализация об активации всех стадий клеточного цикла и транскрипции генов; регуляция процессов внутриклеточного метаболизма; обеспечение стабильности клеточных мембран; препятствование высвобождению медиаторов аллергического воспаления; выполнение пластической роли при формировании тканевых и клеточных структур; способствование клеточной адгезии; участие в формировании кратковременной памяти и обучающих навыков; активация апоптоза и транскрипционного аппарата клеток (кофактор эндонуклеаз, участвующих в деградации ДНК при апоптозе); важна роль кальция в иммунологической активности (активация лимфоцитов, в частности, бластная трансформация в ответ на стимуляцию митогенами) [1, 2, 3].
Абсорбция кальция. Всасывается из верхних отделов тонкого кишечника, чему способствуют витамин D, аскорбиновая кислота, лактоза и кислая среда.
Всасыванию Са препятствуют избыток щавелевой кислоты, фитиновой кислоты, жиров, пищевых волокон и фосфатов. Один из важнейших механизмов поддержания уровня Са в крови — его экскреция с мочой, зависящая от фильтрации минерала и реабсорбции в почках [1].
Регуляция метаболизма кальция. Гипокальциемия, независимо от вызвавших ее причин, сопровождается снижением экскреции Са. Предполагается, что уменьшение выведения Са с мочой может происходить за счет увеличения накопления минералов в костной ткани или других тканях организма.
На регуляцию содержания Са в крови оказывают влияние: гормоны (в первую очередь, паратиреоидный гормон (ПТГ) и кальцитриол); сывороточные белки; содержание фосфатов (РО 3- 4) в сыворотке крови (реципрокные взаимоотношения).
Кальций депонируется в трабекулах костей; динамическое равновесие кальция поддерживается ПТГ и тиреокальцитонином. Pегуляция кальциевого гомеостаза является одной из наиболее сложных интегративных реакций организма человека, в осуществлении которой ведущая роль принадлежит нервной системе и железам внутренней секреции [1, 3].
Кальций и центральная нервная система (ЦНС). Гомеостаз Са имеет прямое отношение к ЦНС. Наряду с другими микро- и макроэлементами Са играет значительную роль в нейрофизиологических процессах. Еще в 1928 г. А. А. Богомолец подчеркивал исключительную важность Са в регуляции тонуса симпатической и парасимпатической нервной системы [1].
В нервной системе Са имеет значение в модуляции активности рецепторов к нейромедиаторам и нейропептидам. Повышенное высвобождение Ca способствует ишемическому повреждению нейронов вследствие вазоконстрикции и инициации каскада апоптоза [1, 3, 4]. Конкурентные взаимоотношения между различными микроэлементами (Zn, Hg, Cu, Cd) и кальцием могут определять самые разнообразные биологические эффекты и, в конечном счете, — течение неврологических процессов [4].
При рассмотрении Са на клеточном уровне необходимо выделять его участие в регуляции ионной проницаемости мембраны нейрона, генерации возбуждения.
При гипокальциемии различного генеза могут отмечаться симптомы, имеющие отношение к сфере неврологии: отклонения в поведении; онеменение и парестезии; судороги; спазмы мышц; положительные симптомы Хвостека или Труссо (гипопаратиреоз) и т. д. Нарушениям обмена Са нередко сопутствуют фебрильные судороги, пароксизмы гипоксического, метаболического или эндокринного генеза, нейрофиброматоз (1-го типа), гидроцефалия, краниостеноз и ряд других видов патологии ЦНС [1, 4]. У детей первых лет жизни ярким примером кальциопенической соматоневрологической патологии является классический (витамин D-дефицитный) рахит [2].
Существуют данные, свидетельствующие о том, что действие Са зависит от типа нервной деятельности и ее функционального состояния. На необходимость коррекции нарушений содержания Са в организме детей грудного и раннего возраста при неврологических заболеваниях указывает Е. М. Мазурина (2005) [2].
Следует помнить, что избыточное накопление в организме Са может привести к нейротоксичности, угрозе патологической кальцификации стенок сосудов и тканей организма [3, 4].
Потребность в кальции. Ha первом году жизни она составляет (по разным данным) от 350 мг до 1000 мг/сут, на втором — 370–1000 мг/сут, на третьем — 300–1000 мг/сут. У детей более старшего возраста и взрослых она возрастает до 1000–1500 мг/сут [1, 2]. Внимания заслуживает то обстоятельство, что в разных странах мира рекомендации по суточной потребности в Са2+ значительно отличаются. По-видимому, это объясняется особенностями разных регионов (климато-географическими, экологическими и др.).
Алиментарное поступление Са имеет огромное значение в любом возрасте. J. C. Leblanc et al. (2005) изучены паттерны диетического потребления 18 элементов во Франции, a R. B. Ervin et al. (2004) — отдельных минеральных веществ в США [5, 6]. Применительно к Са они признаны неудовлетоворительными в обеих странах.
Нормы содержания кальция в организме. Считается, что около 70% Са экскретируется с калом, 10% — c мочой, а ретенция элемента составляет 15–25% (в зависимости от темпов роста).
Сывороточное содержание Са (в норме) равняется 9–11 мг%, причем 50–60% — в ионизированной форме. У здоровых детей независимо от возраста в сыворотке крови содержится 4,9–5,5 мг% (1,22–1,37 ммоль/л) ионизированного Ca, исходя их данных, полученных с использованием ион-селективных электродов. Экскреция Са с калом (при следовании обычной диете) составляет менее 140 ммоль/сутки (560 мг/сутки). Определяется прямая зависимость содержания Са в кале от особенностей диеты.
Содержание Са в моче также находится в прямой зависимости от количества алиментарно потребляемого элемента. В частности, при нормальной диете суточная экскреция равняется 2,5–7,5 ммоль/сут (100–300 мг/сут, 5–15 мЭкв/сут). При потреблении Са на уровне менее 200 мг/сут — 0,33–4,5 ммоль/сут (13–180 мг/сут), 200–600 мг/сут — 1,25–5,0 ммоль/сут (50–200 мг/сут), 1000 мг/сут — 7,5 ммоль/сут (до 300 мг/сут) [1, 2].
Снижение содержания кальция в физиологических средах организма. Наиболее значимо снижение Са в сыворотке крови. В этой физиологической жидкости Са представлен тремя следующими формами: связанный с белками (недиффундирующий — 30–55%); хелатированный (диффундирующий, но неионизированный — около 15%); ионизированный Са (около 30–55%) [3].
Физиологическое снижение содержания Са в крови может отмечаться при повышенной утилизации углеводов или назначении инсулина. Патологическое снижение содержания Са свойственно следующим клиническим ситуациям: гипопаратиреоидизм (следствие хирургического вмешательства в области паращитовидных желез); псевдогипопаратиреоидизм; дефицит витамина D; стеаторея (сочетанные нарушения абсорбции витамина D, Ca и РО 3- 4); нефрит (снижение неионизированной фракции Са, переносимой белками сыворотки, по-видимому вследствие потери Са с мочой); болезни почек с ретенцией фосфатов; острый панкреатит; внутривенное введение солей Mg, оксалатов или цитратов; остеопороз у пожилых людей (нижняя граница нормы); неонатальная гипокальциемия (первый день жизни — вследствие низкой массы тела при рождении, острой интранатальной асфиксии, наличия у матери сахарного диабета, гиперпаратиреоза или нелеченой целиакии; недоразвития плаценты, гестоза, оперативных родов посредством кесарева сечения, при заменных переливаниях крови; 5–10 день — вследствие гиперфосфатемии, вызванной потреблением коровьего молока или малоадаптированных смесей на его основе); гипомагниемия; длительный прием антиконвульсантов (обычно при эпилепсии); состояние после удаления щитовидной железы; болезнь Педжета — при лечении кальцитонином. Особое внимание в отечественной и зарубежной литературе различных лет уделяется кальциопеническим состояниям при остеопорозе и сходных с ним видах костной патологии [1].
Снижение содержания Са в кале обнаруживается в следующих случаях: остеомаляция, успешно вылеченная препаратами витамина D; гипервитаминоз D; низкое содержание фосфора в рационе питания; саркоидоз Бека (в некоторых случаях).
В моче снижение содержания Са возможно при низком потреблении этого макроэлемента с пищей, а кроме того, нередко отмечается на поздних сроках беременности.
Концентрация Са в спинномозговой жидкости (СМЖ) составляет около 1/2 от сывороточного содержания. Изменения в содержании Са в СМЖ невелики, а их регистрация не имеет большого значения для диагностики различных патологических состояний. Уровень Са в СМЖ может снижаться у некоторых пациентов с эпилепсией, длительно получающих терапию фенитоином и другими аниэпилептическими препаратами (АЭП). Практически все известные к настоящему времени АЭП обладают Са-изгоняющими свойствами. Дети грудного и раннего возраста, страдающие эпилепсией, наиболее подвержены риску гипокальциемии [1].
Методы коррекции кальциопенических состояний. Если при острых нарушениях концентрации Са в сыворотке крови тактика лечения уже давно разработана и является почти хрестоматийной, то в области профилактики и коррекции умеренной гипокальциемии до сих пор отмечается определенный пробел.
В различных областях медицины нередко имеет место эмпирический подход к данной проблеме. Попытки компенсировать индуцированный приемом антиконвульсантов дефицит Са за счет приема антиэпилептических препаратов, в состав которых включены соли кальция, в подавляющем большинстве случаев малоэффективны. Так, одна 300-миллиграммовая таблетка препарата Конвульсофин содержит всего 33 мг кальциевой соли, а в составе Паглюферала обнаруживается 250 мг глюконата Са (в составе глюферала — 200 мг). Указанные количества макроэлемента явно недостаточны для нивелирования Са-изгоняющих эффектов этих антиэпилептических средств.
Широкая распространенность, мультифакториальность и потенциальная предотвратимость кальциопенических состояний предполагают необходимость совершенствования методов их профилактики и коррекции. J.-Y. Reginster et al. (2002) подчеркивает влияние ежедневного приема Са и витамина D на секрецию гормонов паращитовидной железой [7]. Сомнения относительно существующих рекомендаций по профилактическому приему препаратов Са и витамина D высказывали A. Prentice (2002) и J. A. Amorim Cruz (2003) [8, 9]. H. L. Newmark et al. (2004) считают необходимым добавление Са и кальциферола в зерновые продукты промышленного производства [10]. В отличие от профилактики кальциопенических состояний, в их коррекции диета малоэффективна. Поэтому для коррекции дефицита Са в организме используются препараты, содержащие этот макроэлемент [1, 2].
Препараты кальция, используемые в медицине, и показания к их применению. В используемых справочниках лекарственных средств приводятся следующие основные формы кальция: хлорид, глюконат, лактат, карбонат и цитрат, хотя данный макроэлемент может быть представлен и другими соединениями (кальция фолинат, ацетат, g-гидроксибутират, глицерофосфат, глутаминат, добезилат, пангамат, пантотенат, тринатрия пентенат, фосфат и др.) [11, 12, 13].
В числе показаний к назначению основных перечисленных препаратов Са фигурируют следующие: недостаточная функция паращитовидных желез, сопровождающаяся тетанией или спазмофилией; усиленное выделение Са из организма (при длительной обездвиженности больных, синдромах мальабсорбции или приеме АЭП); аллергические заболевания; уменьшение проницаемости сосудов; кожные заболевания; паренхиматозный гепатит; токсические поражения печени; нефрит; гиперкалиемическая форма пароксизмальной миоплегии; хроническая почечная недостаточность; остеопороз [11, 12, 13].
В литературе последних лет представлены и другие показания к применению препаратов Са: синдром хронической усталости; сахарный диабет; артериальная гипертензия у детей с солевой чувствительностью. Помимо этого, кальций может назначаться для повышения свертываемости крови (как гемостатическое средство). В качестве показаний к использованию препаратов Са необходимо привести различные виды рахита (витамин D-зависимый, витамин D-резистентный, витамин D-дефицитный, остеопения маловесных детей и т. д.) [1].
К сожалению, даже при продолжительном назначении препаратов, обладающих Са-изгоняющим действием, а также других лекарственных средств, индуцирующих гипокальциемию, рутинной коррекции уровня кальция обычно не проводится, а в существующих рекомендациях подобной процедуры не предусмотрено.
Положительный эффект препаратов кальция проявляется только при индивидуальном подборе их дозировки. При назначении всегда необходимо учитывать утилизацию (усвоение) данного макроэлемента, выраженную в процентах от назначаемого количества. В частности, для глюконата, лактата и хлорида кальция она составляет соответственно 9%, 13% и 27%. Для карбоната и цитрата кальция характерны более высокие показатели всасывания из кишечника. B. W. Downs et al. (2005) cообщают о высокой биологической эффективности новой соли на основе кальций-калиевого соединения гидроксицитрусовой кислоты [14].
Литература
В. М. Студеникин, доктор медицинских наук, профессор
Э. М. Курбайтаева
НЦЗД РАМН, Москва
Особенности минерального обмена
Минеральные вещества наряду с белками, жирами, углеводами и витаминами являются жизненно важными компонентами пищи человека, необходимыми для построения структур живых тканей и осуществления биохимических и физиологических процессов, лежащих в основе жизнедеятельности организма. В данной статье речь пойдет о макроэлементах — кальции, фосфоре, магнии, их метаболизме в организме человека, биологической роли, клинических признаках их недостаточности, основных пищевых источниках, а также способах коррекции нарушений минерального обмена. Важно помнить, что содержание минеральных веществ в плазме крови не всегда коррелирует с их запасами в организме, поэтому выявить дефицит минеральных компонентов можно лишь с учетом клинической картины.
КАЛЬЦИЙ
Строительный материал
Роль кальция как структурного материала известна в течение столетий. Доисторический человек тоже страдал от остеопороза. Несмотря на прогресс, достигнутый в изучении этого заболевания, все еще требует уточнения роль потребления кальция как причинного, профилактического и лечебного фактора.
Кроме структурной функции кальций влияет на проницаемость клеточных мембран, действуя как вторичный мессенджер, инициируя ответы клеток на различные стимулы. Перемещение кальция из внутриклеточного пространства во внеклеточную среду обеспечивает такие события, как дифференцировка клетки, сокращение, секреция и перистальтика. Множество ферментов, включая те, что участвуют в системе свертывания крови, зависят от кальция. Он влияет на функцию эндокринных желез (особенно паращитовидных), оказывает противовоспалительное и десенсибилизирующее действие, находится в биологическом антагонизме с ионами натрия и калия.
Хранилище кальция
Приблизительно из 800 мг кальция, потребляемых ежедневно, 25–50 % абсорбируются и поступают в обновляемый кальциевый пул. Этот пул состоит из небольшого количества кальция в биологических жидкостях и составляет 1 % от общего количества кальция в организме. Остальные 99 % кальция находятся в костях и зубах.
У взрослого человека внеклеточный пул кальция обновляется 20–30 раз в сутки, тогда как кость обновляет его каждые 5–6 лет. Почки фильтруют приблизительно 8,6 г/сут, почти все количество его повторно абсорбируется и лишь от 100 до 200 мг экскретируется с мочой. Всасывание кальция кишечником, реабсорбция почкой и обновление в кости непосредственно регулируется гормоном паращитовидной железы, кальцитонином и витамином D. Уровень кальция сыворотки тщательно регулируется (составляет около 2,5 ммоль/л), чтобы сохранить внеклеточную концентрацию кальция и, таким образом, обеспечить нормальную нейромышечную и гормональную функцию.
Условия всасываемости кальция
Абсорбция кальция зависит от его взаимодействия с другими компонентами пищи и таких факторов, как действие кальций-регулирующих гормонов и физиологическое состояние организма.
Растворимость солей кальция увеличивается в кислой среде желудка, но растворенные ионы до некоторой степени повторно связываются и преципитируются в тощей и подвздошной кишке, где pH ближе к нейтральному. В желудочно-кишечном трактате компоненты пищи, такие как глюкоза, жирные кислоты, фосфор и оксалаты, связываются с кальцием, образуя комплексы. Желудочная кислотность оказывает небольшой эффект на абсорбционную способность кальция, применяемого с пищей.
Вообще всасывание кальциевых добавок, особенно менее растворимых, улучшается, если они принимаются вместе с пищей. Возможно, это происходит потому, что пища стимулирует желудочную секрецию и моторику и пищевые источники кальция становятся более измельченными и растворимыми.
Абсорбция кальция
Есть два пути всасывания кальция в кишечнике. Один — активный, трансцеллюлярный процесс, который происходит главным образом в дуоденуме и проксимальном отделе тощей кишки. Он регулируется витамином D. На активное всасывание кальция воздействует физиологическое состояние организма (в т. ч. беременность и кормление грудью), гиповитаминоз D, возраст. Другой путь всасывания кальция — пассивный — независим от витамина D и происходит на всем протяжении тонкой кишки. В этом случае количество абсорбируемого кальция зависит от его содержания в рационе.
Большая часть абсорбции кальция происходит в подвздошной кишке, где пища остается на наиболее длительный период. Приблизительно 4 % кальция (8 мг/сут) всасывается в толстой кишке.
Поскольку основная часть кальция организма находится в кости, скелет — главное депо кальция. Вначале отрицательный баланс кальция приводит к безопасной мобилизации его из кости. В дальнейшем хроническое истощение скелетного кальция приводит к неблагоприятным эффектам.
Сколько в граммах?
Организм новорожденного содержит 30 г кальция, который увеличивается к периоду взрослой жизни к 1000–1200 г. Чтобы накопить это количество, ежедневно в течение детства от рациона должно оставаться приблизительно от 100 до 150 мг кальция. Пик достигается к половой зрелости: 200 мг для женщин и 280 мг для мужчин. Затем происходит снижение до 10–30 мг/сут (в период зрелости). Способность удерживать определенный уровень кальция теряется (становится отрицательной) у женщин после менопаузы и у мужчин к 65-летнему возрасту. Баланс кальция положителен во время беременности и отрицателен в период кормления грудью.
Имеются данные, что остеопороз является следствием повышения экскреции кальция с мочой при сниженной абсорбции. Кроме того, вторичный гиперпаратиреоидизм ведет к увеличенному обмену веществ в кости и возрастной потере костной массы.
Существуют дискуссии относительно того, увеличивается ли потребность кальция при старении.
Причины потери кальция
Хотя паратгормон, кальцитонин, и витамин D — основные кальций- регулирующие гормоны, другие гормоны также влияют на обмен веществ кости и метаболизм кальция. Это глюкокортикоиды, гормоны щитовидной железы, гормон роста, инсулин и эстрогены.
Избыток глюкокортикостероидов (ГКС) (при болезни Кушинга или когда они используются в терапии) приводит к потере кости, особенно трабекулярной, приводя к остеопорозу. Главный эффект ГКС — подавление остеобластной деятельности, хотя функцию остеокластов они также нарушают. ГКС также мешают транспорту кальция через энтероциты.
Гормоны щитовидной железы стимулируют резорбцию кости. И компактная, и трабекулярная кость разрушаются при гипертиреоидизме. Гипотиреоидизм мешает эффекту паратгормона по мобилизации кости, ведя к вторичному гиперпаратиреоидизму. При этом увеличивается и абсорбция кальция в кишке, и его почечная реабсорбция. Гормон роста стимулирует рост хряща и кости посредством факторов роста. Это также стимулирует активный транспорт кальция в кишке. Инсулин стимулирует остеобластную продукцию коллагена и непосредственно уменьшает почечную реабсорбцию кальция и натрия.
Есть обратная взаимосвязь между потреблением с пищей фосфора и содержанием кальция в моче. Фосфор увеличивает синтез паратгормона (уменьшающего уровень кальция в моче) и оказывает непосредственное влияние на почечный канальцевый транспорт кальция. Изменения содержания кальция в моче обычно сопровождаются аналогичными изменениями содержания натрия, и наоборот. Эти два элемента сообща участвуют в механизмах реабсорбции в проксимальном отделе канальца. Если к диете здоровых женщин, находящихся в постменопаузе, ежедневно на протяжении десяти лет добавлять 3 и 6 г хлорида натрия, то это привело бы к мобилизации 7,5 и 10 % соответственно скелетного кальция и явилось бы фактором риска развития остеопороза.
Кофеин также увеличивает потерю кальция с мочой. Инфузия аминокислот и глюкозы пациентам, получающим полное парентеральное питание, приводит к потере кальция с мочой и отрицательному балансу кальция, который может быть оптимизирован назначением дополнительного фосфора в растворах.
Нормальные уровни эстрогена сыворотки необходимы для обеспечения оптимального баланса кости. Снижение уровня эстрогенов у постклимактерических женщин — главный фактор в развитии резорбции кости и остеопороза. В кости были идентифицированы рецепторы эстрогена. Лечение эстрогенами уменьшает резорбцию кости в течение недель без изменений в сыворотке паратгормона, кальцитонина или метаболитов витамина D. Однако более пролонгированная терапия эстрогенами приводит к увеличению синтеза паратгормона и метаболита витамина D, что может объяснять наблюдаемые улучшения кишечной абсорбции и почечной реабсорбции кальция. Тестостерон также ингибирует резорбцию кости. Остеопороз наблюдается у взрослых мужчин с гипогонадизмом.
Кальций экскретируется приблизительно в равных количествах с мочой и кишечным секретом. Потеря кальция через кожу составляет лишь около 15 мг/сут, хотя она существенно увеличивается при выраженном потоотделении. Приблизительно 150 мг/сут кальция поступает в просвет кишки при секреции кишечного сока и с желчью, но приблизительно 30 % абсорбируется, так что минимальная фекальная экскреция кальция составляет 100 мг/сут. Экскреция кальция с мочой составляет от 100 до 240 мг/сут и очень изменчива у здоровых людей. 99,8 % его подвергаются реабсорбции. У одного и того же человека есть большие дневные колебания в уровне кальция в моче, главным образом благодаря кальцийуретическому эффекту пищевых продуктов.
Усвоенные углеводы и белок имеют кальцийуретический эффект, который линейно связан с потреблением этих веществ, но относительно независим от потребления кальция. На каждые дополнительные 50 г белка рациона теряются с мочой 60 мг кальция. Высокий уровень содержания фосфора в некоторых белках снижает, но не устраняет его кальцийуретический эффект. Кальцийуретический эффект белка приводит к снижению почечной реабсорбции кальция, что не компенсируется увеличением его абсорбции в кишке. Следовательно, богатая белками диета у взрослых приводит к отрицательному балансу кальция.
Инсулин может ухудшать почечную реабсорбцию кальция.
Дефицит кальция и его коррекция
Количество абсорбируемого из пищи кальция недостаточно, чтобы восполнить потери с калом и мочой. Некоторые исследования баланса кальция у взрослых женщин показывают, что в среднем ежедневно необходимо 550 мг, чтобы предотвратить отрицательный баланс кальция. Люди пожилого возраста нуждаются даже в более высоком его поступлении, так как у них может быть нарушена абсорбция.
Потребление кальция в течение жизни может иметь существенное влияние на минеральную плотность кости в зрелом, тем более в пожилом и старческом, возрасте. Высокое содержание минерала в кости задерживает наступление времени, когда развиваются симптомы остеопороза, но не изменяют степени потери костью кальция.
Проводилось множество клинических испытаний, но не все они показали, что добавки кальция замедляют потерю кости у женщин в постменопаузе. Известно, что добавки карбоната кальция, обеспечивая 2000 мг кальция в день, в большей степени замедляют скорость потери кортикальной кости (пример — проксимальный отдел предплечья), чем трабекулярной (поясничный отдел позвоночника). К сожалению, большинство переломов происходит в трабекулярной кости. Пищевые добавки кальция могут защищать от деминерализации кости тех женщин, чья обычная диета содержит мало кальция. Добавки эффективны при поддержании скелетного кальция у женщин, находившихся более шести лет в постменопаузе и не получавших эстрогены. Исследования показывают, что кальция цитрат-малат более эффективен, чем карбонат кальция. Но никакая пищевая добавка не изменяет скорости потери минерала кости у тех женщин, которые исходно получали оптимальный уровень кальция с пищей, от 400 до 650 мг/сут.
Нарушение метаболизма кальция
Заболевания, связанные с нарушением метаболизма кальция, могут быть классифицированы следующим образом:
Кишечная мальабсорбция
Многие расстройства функции кишечника характеризуются мальабсорбцией кальция, так же как и дефицитом витамина D и остеомаляцией. Они включают желудочно-кишечные заболевания, такие как болезнь Крона и целиакия, резекцию тонкой кишки или наложение обходного анастомоза. Истощение кальция и витамина D объясняется мальабсорбцией, стеатореей, неадекватным пероральным потреблением или комбинацией этих причин.
Идиопатическая гиперкальциурия и кальциевый нефролитиаз.
У большинства пациентов с кальциевыми камнями в почке имеется идиопатическая гиперкальциурия. Приблизительно в 90 % случаев она характеризуется повышением активной абсорбции кальция, нормальным содержанием кальция и паратгормона в сыворотке и повышением в сыворотке метаболитов витамина D. Повышение уровня производных витамина D может быть первичным дефектом, и связано оно с усиленной фильтрацией фосфата почками. По причинам, которые полностью не поняты, при кальциевом нефролитиазе наблюдается более низкое содержание минерала в кости. Возможные объяснения — гипофосфатемия, гиперкальциурия и нарушение метаболизма витамина D, сопровождающееся низким потреблением кальция. Лечение мочекаменной болезни диетой с низким содержанием кальция не предупреждает камнеобразование и способствует остеопорозу.
Нарушение кишечной абсорбции
Чрезмерное кишечное всасывание и гиперкальциемия наблюдаются при саркоидозе и при первичном гиперпаратиреоидизме (из-за увеличенной экстраренальной продукции метаболита витамина D). Ухудшение всасывания кальция вызвано редуцированным синтезом метаболитов витамина D при хронической почечной недостаточности и гипопаратиреоидизме.
Гипертензия
Адекватное потребление кальция обратно пропорционально связано с давлением крови. Низкий ренин плазмы, чувствительность к пищевой соли и измененный метаболизм кальция — предикторы гипотензивного ответа на дополнительное поступление кальция. Ренин-альдостероновая система и кальций- регулируемые гормоны, особенно метаболиты витамина D, работают скоординированно через изменение распределения кальция между внутриклеточным и внеклеточным пространствами. Предполагаются также другие механизмы, включая прямой эффект кальций-регулируемых гормонов на транспорт кальция в клетках гладкой мускулатуры сосудов и редуцирование симпатического ответа мозга.
Рак толстой кишки
Данные большого количества эпидемиологических обзоров свидетельствуют, что потребление кальция в количестве, равном норме или слегка превышающем ее, защищает от рака толстой кишки. Однако комплексность рациона человека препятствует подтверждению правильности этой гипотезы. Например, более высокое потребление кальция из молочных продуктов обычно сочетается с большим количеством жира, белка, витамина D (молоко насыщено этим витамином), фосфора и рибофлавина. Однако несколько клинических испытаний показали сокращение пролиферации клеток в слизистой оболочке толстой кишки у лиц с риском развития рака толстой кишки, получавших добавки кальция. Считают, что кальциевые добавки увеличивают внутрипросветную концентрацию ионов кальция (и фосфата кальция), которые могут преципитировать желчные или жирные кислоты. А те могут стимулировать пролиферацию эпителиальных клеток толстой кишки.
Потребность в кальции
Рекомендуемые потребности основаны на количестве диетического кальция, необходимого для восполнения потерь с кишечным секретом, мочой и потом, учитывая эффективность кишечного всасывания. Суточная потребность составляет у взрослых 0,8–1 г/сут.
Потребность в кальции повышается у беременных и кормящих грудью женщин, спортсменов, при работе, связанной с профессиональными вредностями (фторсодержащая пыль, пыль от фосфатных удобрений и др.), обильном потоотделении, лечении ГКС и анаболическими стероидами. У лиц с остеопорозом потребность в дополнительном кальции оценивается в ходе их лечения.
Пищевые источники
Более половины количества потребляемого кальция население получает с молочными продуктами. Другими источниками являются некоторые зеленые овощи (брокколи), орехи, соевый творог, осажденный кальцием, костная мука.
Существенным вкладом в потребление кальция у некоторых людей могут быть обогащенные кальцием пищевые продукты (соки и мука) и антациды, содержащие кальций. В продуктах питания кальций содержится главным образом в виде труднорастворимых солей (фосфатов, карбонатов, оксалатов и др.). Биодоступность кальция из ряда немолочных источников недостаточна.
Увеличение биодоступности
К составным компонентам пищи, стимулирующим биодоступность кальция, относится лактоза. Она увеличивает всасывание кальция. Повышается абсорбция и после добавления лактазы, что может быть объяснено тем фактом, что наиболее метаболизированный сахар увеличивает всасывание кальция. Эти данные получены для младенцев. Неясно, улучшает ли лактоза абсорбцию кальция из молочных продуктов у взрослых.
Более высокая распространенность остеопороза у людей с непереносимостью лактозы скорее связана с низким потреблением молочных продуктов, а не с эффектом лактозы на всасывание кальция.
Уменьшение биодоступности
Пищевая клетчатка снижает всасывание кальция. Замена белой муки (22 г пищевых волокон в день) мукой из цельной пшеницы (53 г пищевых волокон в день) в обычном рационе служит причиной отрицательного баланса кальция даже при его потреблении, превышающем норму.
Аналогично влияют на абсорбцию кальция пищевые волокна фруктов и овощей. Несколько составных частей волокон связывают кальций. Уроновые кислоты прочно связывают кальций in vitro. Вероятно, поэтому гемицеллюлоза подавляет всасывание кальция. 80 % уроновых кислот пектина подвергается метилированию и не может связывать кальций. Поэтому пектин не влияет на абсорбцию кальция. Теоретически типичная вегетарианская диета содержит достаточное количество уроновых кислот, чтобы связать 360 мг кальция, но большинство этих кислот усваивается в дистальных отделах кишечника, поэтому часть кальция все же абсорбируется.
Фитиновая кислота — другая составная часть растений, которая связывает кальций. Высокое содержание фитинов в пшеничных отрубях объясняет их неблагоприятные эффекты на абсорбцию кальция. Интересно, что добавление кальция к пшеничному тесту уменьшает деградацию фитинов на 50 % в течение брожения и выпечки. Пшеничные отруби препятствуют всасыванию кальция в такой степени, что это использовалось в терапевтических целях при гиперкальциуриях.
Темно-зеленые покрытые листвой овощи зачастую имеют относительно высокое содержание кальция. Но всасыванию кальция из большинства их препятствует щавелевая кислота. Продукты с низким содержанием щавелевой кислоты (белокочанная капуста, брокколи, репа) — хорошие источники кальция. Например, всасывание из капусты кальция столь же высоко, как из молока.
Жир пищи не оказывает влияния на баланс кальция у здоровых лиц. Но при наличии мальабсорбции жира (стеатореи — повышенного содержания в кале нейтрального жира, жирных кислот или их солей) кальций преципитируется с жирными кислотами, формируя нерастворимые мыла в просвете кишечника.
Хотя индуцированная диетой (богатой белком) кальциурия служит причиной отрицательного баланса кальция, удивительно, что она не приводит к компенсаторному увеличению эффективности абсорбции кальция в кишке.
Взаимодействие с нутриентами
Ни уровень фосфора в пище, ни соотношение кальция с фосфором не влияет на всасывание кальция у людей. Напротив, длительное непрерывное поступление с пищей большего количества фосфора приводит к гиперпаратиреоидизму и вторичной резорбции костей.
Поскольку и кальций, и железо обычно рекомендуется женщинам, интересны взаимодействия между этими добавками. В одном исследовании добавка карбоната кальция и гидроксиапатита уменьшала абсорбцию железа примерно до 50 % у постклимактерических женщин. В другом исследовании кальций молока ингибировал всасывание железа на 30 %. В случае дополнительного приема с пищей кальций ингибирует всасывание железа из его препаратов (сульфата железа), пищевого негемового и гемового железа. Но если карбонат кальция принимался без пищи, то он даже в высоких дозах не ингибировал всасывание железа из сульфата железа. Таким образом, использование добавки кальция с пищей существенно влияет на всасывание железа. Кальций, вероятно, затрагивает внутриклеточную передачу железа энтероцитом.
Не выявлено влияние кальциевых добавок на абсорбцию магния и цинка.
Кальций для пожилых людей
Работами многих авторских коллективов (Wood R. еt al., 1995; Russel R., 1997; Evans W., Cyr-Campbell D., 2001 и др.) проводились исследования, имеющие цель ответить на вопрос, нуждаются ли пожилые люди в дополнительном введении кальция. Действительно, в стареющем организме происходит накопление минеральных веществ, особенно солей кальция, наблюдаются отложения его в стенках сосудов, хрящах и других тканях. Отмеченные явления нередко сочетаются с явным дефицитом минерала в костной ткани, особенно у женщин. Было установлено, что по ряду причин, связанных с расстройством ферментных систем пищеварения, всасывание кальция в тонкой кишке существенно снижено и, соответственно, усвоение данного макроэлемента не способно обеспечить метаболические нужды организма. В этом заключается одна из нередких причин остеопороза у пожилого человека. Несомненно, данная категория пациентов нуждается в повышенных дополнительных количествах пищевого кальция.
Тканевые потребности в кальции увеличиваются у людей старших возрастов при развитии у них эндокринопатий, особенно скрыто протекающих (например, гипопродукции эстрогенов), при нарушениях минерального обмена, проявляющегося желчнокаменной или мочекаменной болезнью, при расстройствах витаминной (особенно витамина D), минеральной (особенно Mg) обеспеченности.
Кальций для женщин
Сформулированы рекомендации о ежедневном дополнительном обеспечении кальцием в количестве 1000 мг женщин в менопаузе, не получающих эстрогены, и 1500 мг женщин в менопаузе, принимающих дополнительно эстрогены. Использование замещающих эстрогенов и другой фармакологической терапии привлекает повышенное внимание к предупреждению и лечению остеопороза. Ежедневное употребление стандартных поливитаминов с минералами (в первую очередь Ca), определенно, рекомендуется тем, у кого потребление неадекватно, нарушено всасывание или повышены тканевые потребности.
Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!
ФОСФОР
Энергия организма
Высшие организмы используют органический фосфор, получая его из растительных источников с пищей. Скорее фосфат, чем фосфор, является центром внимания нутриционной биохимии.
Фосфорная кислота (H3PO4) — сильная кислота. Моновалентные катионы (натрий, калий и аммоний) могут формировать высокорастворимые соли фосфата, а двухвалентные (кальций и магний) образуют относительно нерастворимые его соединения.
Живая материя имеет огромную потребность в фосфоре. ДНК и РНК — это полимеры, основанные на мономерах сложных эфиров фосфата; высокоэнергетичная связь фосфата АТФ — основная энергия живущих организмов. Мембраны клетки состоят в значительной степени из фосфолипидов. Неорганические компоненты кости — это прежде всего фосфат кальция и гидроксиапатит. Разнообразие его ферментных функций определяется чередованием фосфорилирования и дефосфорилирования белков клеточными киназами и фосфатазами. Метаболизм всего главного метаболического субстрата зависит от функционирования фосфора как кофактора разнообразных ферментов и как основного резервуара для метаболической энергии в форме АТФ, креатин фосфата и фосфоэнолпирувата.
Другая важная роль фосфора заключается в том, что нейтральные молекулы являются растворимыми в липидах и проходят через мембраны. Так как фосфаты ионизированы в физиологическом pH, они могут осуществлять перемещение фосфорилированных молекул в пределах клеток. Наконец, фосфор соединяется с кальцием, образуя гидроксиапатит — основное неорганическое соединение кости.
Фосфор во внеклеточных жидкостях составляет лишь 1 % от общего фосфора организма. Большая часть (70 %) общего фосфора в плазме обнаружена как составная часть органических фосфолипидов. Однако клинически полезной фракцией в плазме является неорганический фосфор, 10 % которого связано с белком, 5 % составляют комплексы с кальцием или магнием, и большая часть неорганического фосфора плазмы представлена двумя фракциями ортофосфата. Фосфор обнаружен во всех клетках организма. Основные места, содержащие его, — это гидроксиапатит кости и скелетная мускулатура. Общее содержание фосфора составляет приблизительно 500 г у мужчин и 400 г у женщин.
Метаболизм фосфора
Метаболизм фосфора в организме представляет сложное взаимодействие между различными факторами, которые могут затрагивать пищеварение, его абсорбцию, распределение и экскрецию.
Нерастворимые минеральные соли фосфата образуются при повышенном pH. Кислая среда желудка (pH — 2) и большей части проксимального отдела тонкой кишки (pH — 5) может играть важную роль в поддержании растворимости и биодоступности неорганического фосфора. В этом отношении важны потенциальные эффекты гипохлоргидрии (у пожилых и получающих антисекреторную терапию пациентов) на растворимость и биодоступность фосфора.
Приблизительно 60–70 % фосфора абсорбируется из обычной смешанной диеты. Показано, что всасывание фосфора находится в диапазоне от 4 до 30 мг/кг массы тела в сутки и связано с его потреблением. Физиологические состояния, характеризующиеся увеличением потребности в фосфоре (рост, беременность и кормление грудью), сопровождаются соответствующим усилением его абсорбции. У людей старших возрастных групп происходят изменения в экскреции фосфора и адаптации к фосфору пищи. Показано, что, несмотря на потребление рекомендуемой нормы фосфора, отрицательный его баланс наблюдается у пациентов в возрасте старше 65 лет, за счет потери фосфора с мочой.
Клеточный и молекулярный механизм всасывания фосфора кишкой до конца не изучен. Транспорт фосфора через кишечную клетку — это активный, натрий-зависимый путь. Внутриклеточные уровни фосфора относительно высоки. Паратгормон напрямую не регулирует абсорбцию фосфора в кишечнике. Назначение активного метаболита витамина D приводит к увеличению всасывания фосфора и у здоровых, и у пациентов с уремией. Регуляция общего уровня фосфора в организме требует скоординированных усилий почки и кишечника. В условиях низкого потребления фосфора с пищей кишечник увеличивает его всасывание, а почка — почечный транспорт, чтобы минимизировать его мочевые потери. Эта адаптация обеспечивается изменениями в уровне активного метаболита витамина D и паратгормона в плазме. Если эти адаптивные меры не в состоянии скомпенсировать низкое потребление фосфора, то фосфор кости может перераспределяться в мягкие ткани. Однако эти компенсаторные возможности не безграничны.
Фекальные потери фосфора составляют 0,9–4 мг/кг в день. Основная экскреция происходит через почки. Экскреция фосфора имеет широкий диапазон (0,1–20,0 %). Следовательно, почки обладают способностью эффективно регулировать фосфор плазмы. Скорость почечной реабсорбции регулируется его концентрацией в плазме. Это саморегулируемый процесс.
Гормональный регулятор почечной реабсорбции фосфора — гормон паращитовидной железы и нефрогенный цАМФ. Концентрация паратгормона плазмы положительно коррелирует с уровнем экскреции фосфора с мочой. Главные признаки потери фосфора с мочой — увеличение абсорбции фосфора и повышение его уровня в плазме. Состояния, которые приводят к гиперфосфатурии, — гиперпаратиреоидизм, острый дыхательный или метаболический ацидоз, мочегонные средства и увеличение внеклеточной массы фосфора. Уменьшение выделения фосфора с мочой связано с диетическим ограничением фосфора, увеличением в плазме инсулина, гормона щитовидной железы, роста или глюкагона, алкалозом, гипокалиемией и внеклеточным снижением массы фосфора.
Дефицит фосфора
Признаки хронического дефицита фосфора у лабораторных животных — потеря аппетита, развитие тугоподвижности в суставах, хрупкость костей и восприимчивость к инфекциям. У здоровых людей существует малая вероятность развития дефицита фосфора вследствие его широкой представленности в рационах. Однако недоношенные новорожденные часто склонны к развитию рахита из-за неадекватной поставки фосфора и кальция. Витамин D-независимый гипофосфатемический рахит был впервые описан в 1937 г.
Классическое изучение дефицита фосфора у людей проводилось Лотцем в 1968 г. При этом дефицит индуцировался применением у здоровых лиц диеты с низким содержанием фосфора. Показано, что явные симптомы дефицита фосфора (анорексия, слабость, боли в костях) не развивались до снижения уровня фосфора сыворотки ⅓ фосфора в молоке; 20 % приходится на соединения сложных эфиров с аминокислотами казеина; 40 % — на казеиновые. Неорганические фосфаты в молоке представлены солями кальция, магния и калия. Относительная биодоступность фосфора в молоке составляет 65–90 % у младенцев. Однако весь фосфор в казеине молока (20 % от общего) восстановлен фосфопептидом, который является стойким к ферментному расщеплению трипсином и поэтому менее биодоступен. Более низкое содержание казеина в женском молоке, по сравнению с коровьим молоком, может быть причиной более высокой биодоступности фосфора из женского молока.
Растительная пища
В пшенице, рисе и кукурузе более чем 80 % общего фосфора найдено в виде фитиновой (инозитгексафосфорной) кислоты, и 35 % ее обнаружено в зрелых картофельных клубнях.
У людей нет фермента фитазы, необходимого для расщепления фитатов и освобождения фосфора. Но прокариоты (дрожжи и бактерии) содержат фитазу. Это любопытное свойство природы важно для пищевого фосфора по двум причинам. Вначале традиционное использование дрожжей в производстве хлеба приводит к разложению фитата из-за гидролитического действия дрожжей до выпечки. Далее кишечные бактерии способны разложить некоторое количество пищевого фитата. Фитат плохо переваривается в желудочно-кишечном трактате человека. Но впитывание воды может эффективно удалять фитат из некоторых пищевых продуктов. Например, 99,6 % фитата в бобах может быть извлечено при пропитывании их водой. Размалывание зерна удаляет внешние оболочки, которые содержат существенные количества фитата в некоторых хлебных злаках. Но такая обработка уменьшает содержание и фосфора, и других минералов.
Взаимодействие между нутриентами
Высокий уровень фосфора в молочных смесях, используемых для кормления недоношенных новорожденных, может уменьшать абсорбцию магния. Показано, что фосфор уменьшает всасывание свинца у людей.
Известно, что диета, содержащая ежедневно 2 г кальция, не влияет на всасывание фосфора. Однако высокое содержание в пище кальция и тем самым пищевое подавление абсорбции может быть полезным в терапевтических целях для улучшения состояния гиперфосфатемии у пациентов с хронической почечной недостаточностью. Прием с пищей 1000 мг кальция при содержании в ней 372 мг фосфора уменьшает всасывание фосфора до 70–31 %. То есть избыточное потребление добавки кальция может оказывать неблагоприятный эффект на баланс фосфора.
Безрецептурные алюминий- или магний-содержащие антациды связывают фосфор в желудочно- кишечном трактате и уменьшают его всасывание. 3 г гидроксида алюминия (25 ммоль алюминия), поступаемые с пищей, уменьшают всасывание фосфора до 70–35 %.
Насущная проблема — адаптация к диетам с высоким содержанием фитатов. Известно, что наблюдаются ингибирующие эффекты фитатов на абсорбцию железа у людей, потребляющих в течение многих лет пищу с высоким их содержанием (например, у вегетарианцев).
Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!
МАГНИЙ
Энергетик клетки
Магний играет эссенциальную роль во многих фундаментальных клеточных реакциях, поэтому его дефицит может приводить к серьезным биохимическим и клиническим изменениям. Экспериментальные и клинические наблюдения показали важные взаимосвязи этого эссенциального иона с другими электролитами, вторичными мессенджерами, гормонами и факторами роста, их мембранными рецепторами, сигнальными путями, ионными каналами, секрецией и действием гормона паращитовидной железы, метаболизмом витамина D и функцией кости. Несмотря на то что рационы, используемые здоровыми европейцами, по всей вероятности, не ведут к клинически значимой гипомагниемии, были выявлены симптомы, обусловленные его дефицитом.
Место в организме
Магний участвует в следующих реакциях: в синтезе жирных кислот, активации аминокислот, синтезе белка, фосфорилировании глюкозы и ее производных по гликолитическому пути, окислительном декарбоксилировании цитрата. Хорошо известны протеинкиназы — ферменты, которые катализируют передачу фосфата к белковому субстрату. Из них магний аденозин-трифосфат — один из огромного семейства, насчитывающего более чем 100 ферментов. Магний требуется для формирования циклического аденозин монофосфата (цАМФ).
Более половины общего количества магния находится в кости, почти вся остальная часть — в мягких тканях. Это катион с высокой концентрацией в клетках. В количественном отношении он является вторым после калия. Большая часть внутриклеточного магния существует в связанной форме. Магний, как и кальций, формирует комплексы с фосфолипидами мембран клетки и нуклеотидами.
Абсорбция магния
Процент абсорбции магния регулируется его концентрацией в пище и присутствием ингибирующих или способствующих абсорбции компонентов рациона. Магний абсорбируется и в тощей, и в подвздошной кишке. Увеличение потребления кальция незначительно влияет на всасывание магния. В случаях, когда абсорбция магния увеличивалась, не наблюдалось повышение его уровня в крови, из-за повышения экскреции с мочой. Увеличение перорального поступления магния приводит к уменьшению абсорбции фосфата. При различных синдромах мальабсорбции, как правило, уменьшается всасывание магния в кишке.
Клинически значимая мальабсорбция магния может наблюдаться:
Почки играют ключевую роль в гомеостазе магния. Приблизительно 75 % магния сыворотки фильтруется в почечных клубочках. Нарушение фильтрации уменьшает количество магния, поступающего в канальцы. Серьезное снижение функции клубочков служит причиной повышения магния в сыворотке. Восходящая часть петли Генле — главный участок реабсорбции магния, регулирующий экскрецию. Здоровая почка при среднем потреблении магния повторно абсорбирует приблизительно 95 % профильтрованного ею количества.
Когда потребление магния строго ограничено у людей с нормальной функцией почек, выделение магния становится небольшим — менее 0,25 ммоль/сут. Увеличение потребления магния до нормы повышает мочевую экскрецию без изменения уровня магния сыворотки при условии, что функция почек нормальна и вводимое количество не превышает максимальную клубочковую фильтрацию.
Дефицит магния
Симптомы дефицита магния: парестезии, скрытая или явная тетания. Состояния, при которых может развиться гипомагниемия, указаны в таблице 1.
Таблица 1. Клинические состояния, способствующие истощению запасов магния
Воспалительные заболевания кишки
Глютеновая энтеропатия; спру
Кишечная фистула, обходной анастомоз или резекция
Состояние недостатка желчи, например дисфункция слепой кишки со стеатореей
Иммунные заболевания с атрофией ворсинок
Радиационный энтерит Лимфангиоэктазия; другие дефекты абсорбции жира
Первичная идиопатическая гипомагниемия Желудочно-кишечные инфекции
Гиперпаратиреоидизм с гиперкальциемией
Постпаратиреоидэктомия (синдром «голодных костей»)
Первичная идиопатическая гипомагниемия
Синдром теряющей почки
Синдром Барттера Младенцы,рожденные от матерей, страдающих диабетом или гиперпаратиреоидизмом
Преходящая неонатальная гипомагниемия, гипокальциемия
Недостаточное потребление белковых калорий (обычно с инфекцией)
Пролонгированная инфузия или прием пищи с низким содержанием магния в растворах или рационе
Состояние повышенного катаболизма (ожоги, травмы)
Гипермагниемия
Нормальная почка способна к выделению больших количеств магния, абсорбируемого или экскретируемого настолько быстро, что уровень сывороточного магния обычно не достигает опасного. Повышение его может происходить при приеме содержащих магний антацидов или слабительных у больных с хронической почечной недостаточностью. Поскольку 20 % или более количества Mg2+ из различных солей может абсорбироваться, ухудшение почечной фильтрации может привести к существенному повышению магния в сыворотке. При острой почечной недостаточности с олигурией, особенно в сочетании с метаболическим ацидозом, может иметь место гипермагниемия. Инфузия кальция может противодействовать токсичности магния.
Потребность в магнии
В 1989 г. норма для взрослых принята равной 4,5 г/кг. Это составляет в среднем для мужчины и женщины 350 и 280 мг/сут соответственно.
Пищевые источники
Магний широко распространен в продуктах растительного и животного происхождения. Наиболее богаты им хлеб из муки грубого помола, крупы, бобовые, зеленые овощи. Источники магния из различных групп пищи представлены в таблице 2.
Таблица 2. Количество магния в различных пищевых продуктах (в % от ежедневного потребления)
Вид продукта | Возраст (лет) | ||
14–16 | 25–30 | 60–65 | |
Молочные | 21 | 13 | 10 |
Зерновые | 18 | 16 | 18 |
Овощи | 16 | 18 | 18 |
Мясные | 14 | 17 | 15 |
Фрукты | 6 | 6 | 8 |
Смешанные блюда | 11 | 9 | 6 |
Десерты | 10 | 6 | 6 |
Напитки | 4 | 14 | 15 |
Жиры | 0 | 0 |