Что влияет на точность полученных результатов физика
Факторы, влияющие на точность измерений.
Все в окружающем нас мире взаимосвязано и взаимообусловлено. Поэтому результат измерения, то есть то, что, мы получаем при проведении измерительной процедуры, определяется не только значением измеряемой величины, но и совместным влиянием целого ряда факторов, учет которых представляет иногда довольно сложную задачу.
Объект измерений. Перед проведением измерения необходимо хорошо изучить объект измерения и представить себе модель исследуемого объекта, которая в дальнейшем, по мере получения измерительной информации, может уточняться. Чем точнее модель соответствует реальному объекту, тем корректнее измерительный эксперимент.
1. При измерении диаметра вала необходимо быть уверенным, что он круглый (иначе неясно какое значение принимать за диаметр). При контроле отклонений формы, наоборот измеряют отклонение от округлости.
2. При измерении периода обращения Земли вокруг Солнца можно пренебречь неравномерностью периода, а можно, наоборот сделать его объектом исследования (измерения).
3. При измерении меняющихся во времени величин часто определяют их средние значения, пренебрегая их измерением. В то же время, существует целое направление – Флуктуационные методы измерений и контроля. Оно основано на изучении флуктуаций (изменений) величины. С помощью этих методов получают необходимую информацию о качестве объекта измерений и осуществляют прогнозирование его технического состояния.
Эксперт или экспериментатор – субъект измерений. Экспериментатор привносит в результат измерения элемент субъективизма, который, по возможности, необходимо стремиться уменьшить. Этот эффект зависит от квалификации измерителя, состояния его здоровья, соблюдения эргономических требований и т.д. Субъективная погрешность измерений исключается путем автоматизации измерений. Если нет возможности перехода к автоматизированным или автоматическим инструментальным измерениям, проводят комплекс мероприятий:
1. к измерениям допускаются лица, прошедшие специальную подготовку, имеющие соответствующие знания, умения, практические навыки;
2. последовательность действий экспериментатора строго регламентируется методикой выполнения измерений.
Важное значение имеет режим работы экспериментатора, степень его устойчивости. На рисунке 1.1 представлен график зависимости работоспособности экспериментатора в течение рабочей смены.
Важное значение имеют также санитарно-гигиенические условия труда:
Освещенность – мелкие предметы различаются при освещенности 50…70лк. Максимальная острота зрения при освещенности 600…1000лк. При естественном освещении производительность труда примерно на 10% выше, чем при искусственном. Применяют три вида освещения:
· общее – освещение всего помещения (при проведении механических измерений невысокой точности);
· местное – освещение непосредственно рабочего места (при измерении применять не рекомендуется, так как получается неравномерное распределение яркости в поле зрения, что снижает производительность труда, приводит к появлению ошибок, повышает утомляемость).
· комбинированное – сочетание общего и местного освещения (при проведении высокоточных измерений, когда необходимо, чтобы свет на мелкие объекты падал под разными углами).
Неточность измерения, обусловленная субъективным фактором, называется субъективной или личной погрешностью. Одной из составляющих такого вида погрешности является погрешность параллакса, обусловленная отклонением от перпендикулярности, шкалы отсчетного устройства, к линии зрения оператора. Для определения этой составляющей рассмотрим рисунок 1.2.
Применяются различные конструктивные приемы для уменьшения субъективной погрешности параллакса (рисунок 1.3).
Уровень шума – не должен превышать 40..45дБ. Оказывает существенное влияние на результат измерения, на утомляемость и производительность экспериментатора.
Часто для снижения утомляемости применяют функциональную музыку: мелодичные ненавязчивые мелодии со спокойным темпом. Рекомендуемое время звучания музыки – 1,5 …2,5часа за смену.
Метод измерения. Оказывает существенное влияние на результат измерения.
Примеры: 1) измерение сопротивления методом амперметра-вольтметра; 2) измерение ЭДС вольтметром; 3) измерение времени (время течет непрерывно, а сигнал поступает дискретно).
Неточность измерений, обусловленная несовершенством метода измерения, называется погрешностью метода или теоретической погрешностью.
Средство измерения. Оказывает двоякое действие на результат измерения. С одной стороны, подключение СИ к объекту измерения может привести и как правило приводит к некоторым изменениям измеряемых величин.
Пример: 1) измерение тока амперметром; 2) измерение температуры жидкости ртутным термометром.
С другой стороны, само СИ, в силу ряда причин, допускает неточность при измерении входной величины. К этим причинам можно отнести:
o нелинейность функции преобразования СИ, которая заменяется линейной;
o отклонения действительных значений параметров деталей и элементов СИ от заданных значений;
o износ деталей и элементов СИ;
o зазоры в подвижных соединениях, приводящие к неопределенности во взаимном положении деталей;
o наводки при работе электронных устройств;
o паразитные емкости и индуктивности и т.д.
Неточность измерения, обусловленная используемыми СИ, называют инструментальной погрешностью измерений.
Условия измерения. Это температура окружающей среды, влажность, давление, электромагнитное и гравитационное поля, напряжение в сети, вибрация и т.д.
Очевидно, что все эти факторы влияют на результат измерения, поскольку они приводят к изменениям параметров и размеров деталей и элементов СИ, приводят к возникновению различных помех (изменение сопротивления от температуры – ТКС, изменение линейных размеров от температуры).
Неточность измерений, вызванная условиями измерений, называют погрешностью от изменения условий измерения.
Что влияет на точность полученных результатов?
Что влияет на точность полученных результатов?
Ответ : Объяснение : На точность полученных результатов могут влиять многие факторы.
Кратко остановимся на этих факторах.
1) Объект измерения необходимо изучить.
Желательно составить его математическую модель.
2) Человек, проводящий измерения, может внести неточности психологического характера («человеческий фактор»).
3) От правильно выбранного метода измерений в конечном счете зависит и точность проведенных измерений.
Здесь всё зависит профессионализма экспериментатора (каким методом он воспользуется).
4) Средства измерений существенным образом влияют на точность (например, диаметр цилиндрика можно измерить штангенциркулем, а можно и микрометром, тем самым увеличив точность измерений).
5) И, конечно, условия измерений (температура, влажность, давление, наводки электромагнитных полей, трение и др.
Как влияет на полученные результаты участие в теплообмене калориметра всегда ли можно этим влиянием пренебречь?
Как влияет на полученные результаты участие в теплообмене калориметра всегда ли можно этим влиянием пренебречь.
Объясните, как влияет на полученные результаты участие в теплообмене калориметр?
Объясните, как влияет на полученные результаты участие в теплообмене калориметр.
Всегда ли можно этим влиянием пренебречь?
Как цена деления линейки влияет на точность измерений?
Как цена деления линейки влияет на точность измерений.
Точность и погрешность измерения?
Точность и погрешность измерения.
Влияет ли на точность определения времени одного колебания маятника число отсчитываемых колебаний?
Влияет ли на точность определения времени одного колебания маятника число отсчитываемых колебаний?
Чем определяется точность измерения?
Чем определяется точность измерения?
А в каком виде лёгкой атлетики (олимпийском) встречный ветер заметно улучшает результат спортсмена?
Если с помощью этих линеек измерить длину экватора (40 000 км), то чему будет равно расхождение между полученными результатами?
Ответ выразите в метрах.
Экспериментально проверьте, как влияет на период обращения груза по окружности уменьшение длины нити, на которой он закреплен?
Экспериментально проверьте, как влияет на период обращения груза по окружности уменьшение длины нити, на которой он закреплен.
M * g = k * x m = k * x / g = 90 * 0, 03 / 10 = 0, 27 кг.
Факторы, влияющие на точность измерений
Точность измерений не может быть выше точности воспроизведения единицы государственным первичным или специальным эталоном (по определению). Никакое техническое устройство не может рассматриваться в качестве измерительного прибора, если ему установленным порядком не передана информация о размере единицы. А передача этой информации от государственного эталона всегда сопровождается потерей точности.
Однако, кроме этого, точность измерений зависит от множества других факторов, связанных с измерительным процессом. Рассмотрение этих факторов следует начать с рассмотрения самого понятия «измерительный процесс», под которым понимают весь объем информации, оборудования и операций, относящихся к данному измерению (МОЗМ, МД № 16).
При этом под понятием – «элемент измерительного процесса» понимают любой отдельный фактор, способный повлиять на результат измерений. Такими факторами являются:
— субъект измерения (оператор);
— метод (способ) измерения;
Объект измерения должен быть достаточно изучен и сформирована его модель, степень детализации которой (глубина изучения объекта измерения) должна быть адекватна цели измерения.
Оператор вносит в измерительный процесс элемент субъективизма, который, по возможности, должен быть уменьшен. Субъективизм оператора зависит от его квалификации, психофизиологического состояния, комфортности (санитарно-гигиенических) условий труда и многого другого. Оператор может оказывать существенное влияние на точность измерений.
Большое значение имеют используемые методы и способы измерений. Очень часто измерения одной и той же величины различными способами и с помощью различных средств измерений дают совершенно различные результаты. Каждый из этих вариантов имеет свои достоинства и свои недостатки и выбор наиболее оптимального (для данной измерительной задачи) является искусством экспериментатора. В таких случаях не может быть готовых решений и рекомендаций.
Практикой измерений накоплен значительный арсенал приемов, позволяющих существенно уменьшить отдельные составляющие погрешности измерений. Целесообразность применения тех или иных приемов определяется по результатам анализа источников возникновения погрешностей и их возможного влияния на конечный результат измерения для каждой конкретной измерительной задачи.
Средства измерений должны выбираться в соответствии с назначением (целью) измерительного процесса и условиями его проведения. Любые средства измерений имеют ограниченную точность, обусловленную наличием проектных, конструктивных и технологических дефектов конструкции прибора, неточности его настройки и регулировки, неточности поддержания режимов работы и т.д., а также вследствие нестабильности параметров элементов и материалов из-за старения, износа и другими причинами.
Кроме того, невозможно создать измерительный прибор, метрологические характеристики которого абсолютно точно соответствовали бы проектным, а определение их экспериментальным путем, в свою очередь, имеет ограниченную точность.
Необходимо также помнить, что в процессе измерения объект и средство измерений вступают во взаимодействие. В процессе этого взаимодействия средство измерений оказывает влияние на объект, проявляющийся в изменении измеряемой величины. Например, подключение амперметра или вольтметра для измерений характеристик электрических сигналов меняет параметры самой контролируемой электрической цепи и, соответственно, вносит погрешность в результат измерений.
В итоге результат измерения оказывается искаженным по сравнению с тем, каким он должен был бы быть, если бы средство измерений не влияло на объект. Как бы ни учитывалось это обстоятельство (а во многих случаях им просто пренебрегают), оно снижает точность результата измерения.
Таким образом, несовершенство средств измерений, некоторая неопределенность их реальных метрологических характеристик и взаимодействие средства измерения с объектом измерения вносят свой вклад в ограничение точности результатов измерений.
Условия проведения измерений, влияющие на точность измерений, включают в себя внешние и внутренние влияющие факторы. Под внутренними понимаются факторы, действующие внутри самого средства измерения. К ним относятся взаимные и паразитные электромагнитные влияния элементов и их соединений друг на друга, тепловыделение, трение, акустическая эмиссия и т.д.
Внешние влияющие факторы включают в себя изменение параметров окружающей среды (температуры, влажности, давления), напряжения в сети питания, наводки от расположенных поблизости электрических, магнитных, электромагнитных гравитационных полей, ускорений и т.п. Исключение, компенсация и учет влияющих факторов в рабочих условиях измерений с помощью функций влияния являются не только наукой, но и искусством.
Все вышеперечисленные факторы, влияющие на точность измерений, учитываются при разработке, стандартизации и аттестации методик выполнения измерений.
Содержание:
При измерении разных физических величин мы получаем их числовые значения с определенной точностью. Например, при определении размеров листа бумаги (длины, ширины) мы можем указать их с точностью до миллиметра; размеры стола – с точностью до сантиметра, размеры дома, стадиона – с точностью до метра.
Нет необходимости указывать размеры стола с точностью до миллиметра, а размеры стадиона с точностью до сантиметра или миллиметра. Мы сами в каждой ситуации, опыте и эксперименте определяем, с какой точностью нам нужны данные физические величины. Однако очень важно оценивать, насколько точно мы определяем физическую величину, какую ошибку (погрешность) в ее измерении допускаем.
При измерении мы не можем определить истинное значение измеряемой величины, а только пределы, в которых она находится.
Пример:
Измерим ширину стола рулеткой с сантиметровыми и миллиметровыми делениями на ней (рис. 5.1). Значение наименьшего деления шкалы называют ценой деления и обозначают буквой С. Видно, что цена деления рулетки С = 1 мм (или 0,1 см).
Совместим нулевое деление рулетки с краем стола и посмотрим, с каким значением
шкалы линейки совпадает второй край стола (рис. 5.1). Видно, что ширина стола составляет чуть больше 70 см и 6 мм, или 706 мм. Но результат наших измерений мы запишем с точностью до 1 мм, то есть L = 706 мм.
Абсолютная погрешность измерения ∆ (ДЕЛЬТА)
Из рис. 5.1 видно, что мы допускаем определенную погрешность и определить ее «на глаз» достаточно трудно. Эта погрешность составляет не более половины цены деления шкалы рулетки. Эту погрешность называют погрешностью измерения и помечают ∆L («дельта эль»). В данном эксперименте ее можно записать
Сам результат измерения принято записывать таким образом: ширина стола L = (706,0 ± 0,5) мм, читают: 706 плюс-минус 0,5 мм. Эти 0,5 мм в нашем примере называют абсолютной погрешностью. Значения измеряемой величины (706,0 мм) и абсолютной погрешности (0,5 мм) должны иметь одинаковое количество цифр после запятой, то есть нельзя записывать 706 мм ± 0,5 мм.
Такая запись результата измерения означает, что истинное значение измеряемой величины находится между 705,5 мм и 706,5 мм, то есть 705,5 мм ≤ L ≤ 706,5 мм.
Относительная погрешность измерения ε (ЭПСИЛОН)
Иногда важно знать, какую часть составляет наша погрешность от значения
измеряемой величины. Для этого разделим 0,5 мм на 706 мм. В результате получим: . То есть наша ошибка составляет 0,0007 долю ширины стола, или 0,0007 · 100% = 0,07%. Это свидетельствует о достаточно высокой точности измерения. Эту погрешность называют относительной и обозначают греческой буквой (эпсилон):
(5.1)
Относительная погрешность измерения свидетельствует о качестве измерения. Если длина какогото предмета равна 5 мм, а точность измерения – плюс-минус 0,5 мм, то относительная погрешность будет составлять уже 10%.
Стандартная запись результата измерений и выводы
На точность измерения влияет много факторов, в частности:
Все это необходимо учитывать при проведении измерений.
Измерительные приборы
Устройства, с помощью которых измеряют физические величины, называют измерительными приборами.
Простейший и хорошо известный вам измерительный прибор — линейка с делениями. На ее примере вы видите, что у измерительного прибора есть шкала, на которой нанесены деления, причем возле некоторых делений написано соответствующее значение физической величины. Так, значения длины в сантиметрах нанесены на линейке возле каждого десятого деления (рис. 3.11). Значения же, соответствующие «промежуточным» делениям шкалы, можно найти с помощью простого подсчета.
Разность значений физической величины, которые соответствуютближайшим делениям шкалы, называют ценой деления прибора. Ёе находят так: берут ближайшие деления, возле которых написаны значения величины, и делят разность этих значений на количество промежутков между делениями, расположенными между ними.
Например, ближайшие сантиметровые деления на линейке разделены на десять промежутков. Значит, цена деления линейки равна 0,1 см = 1 мм.
Как определяют единицы длины и времени
В старину мерами длины служили большей частью размеры человеческого тела и его частей. Дело в том, что собственное тело очень удобно как «измерительный прибор», так как оно всегда «рядом». И вдобавок «человек есть мера всех вещей»: мы считаем предмет большим или малым, сравнивая его с собой.
Так, длину куска ткани измеряли «локтями», а мелкие предметы — «дюймами» (это слово происходит от голландского слова, которое означает «большой палец»).
Однако человеческое тело в качестве измерительного прибора имеет существенный недостаток: размеры тела и его частей у разных людей заметно отличаются. Поэтому ученые решили определить единицу длины однозначно и точно. Международным соглашением было принято, что один метр равен пути, который проходит свет в вакууме за 1/299792458 с. А секунду определяют с помощью атомных часов, которые сегодня являются самыми точными.
Можно ли расстояние измерять годами
Именно так и измеряют очень большие расстояния — например, расстояния между звездами! Но при этом речь идет не о годах как промежутках времени, а о «световых годах». А один световой год — это расстояние, которое проходит свет за один земной год. По нашим земным меркам это очень большое расстояние — чтобы убедиться в этом, попробуйте выразить его в километрах! А теперь вообразите себе, что расстояние от Солнца до ближайшей к нему звезды составляет больше четырех световых лет! И по астрономическим масштабам это совсем небольшое расстояние: ведь с помощью современных телескопов астрономы тщательно изучают звезды, расстояние до которых составляет много тысяч световых лет!
Что надо знать об измерительных приборах
Приступая к измерениям, необходимо, прежде всего, подобрать приборы. Что надо знать об измерительных приборах?
На рисунке 34 изображены три линейки с одинаковыми верхними пределами (25 см). По эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 7, наименее точные — линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала понятие цена деления шкалы прибора.
Цена деления — это значение наименьшего деления шкалы прибора.
Как определить цену деления шкалы? Для этого необходимо:
Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.
Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 35). Цена деления шкалы мензурки 1:
Цена деления шкалы мензурки 2:
А какими линейкой и мензуркой можно измерить точнее?
Измерим один и тот же объем мензуркой 1 и мензуркой 2. Но показаниям шкал в мензурке 1 объем воды V = 35 мл; в мензурке 2 — V = 37 мл.
Итак, любым прибором, имеющим шкалу, измерить физическую величину можно с точностью, не превышающей цены деления шкалы.
Линейкой 1 (см. рис. 34) можно измерить длину с точностью до 1 мм. Точность измерения длины линейками 2 и 3 определите самостоятельно.
Главные выводы:
Для любознательных:
В истории науки есть немало случаев, когда повышение точности измерений давало толчок к новым открытиям. Более точные измерения плотности азота, выделенного из воздуха, позволили в 1894 г. открыть новый инертный газ — аргон. Повышение точности измерений плотности воды привело к открытию в 1932 г. одной из разновидностей тяжелых атомов водорода — дейтерия. Позже дейтерий вошел в состав ядерного горючего. Оценить расстояния до звезд и создать их точные каталоги ученые смогли благодаря повышению точности при измерении положения ярких звезд на небе.
Пример решения задачи
Для измерения величины угла используют транспортир. Определите: 1) цену деления каждой шкалы транспортира, изображенного на рисунке 38; 2) значение угла BАС, используя каждую шкалу; укажите точность измерения угла ВАС в каждом случае.
Решение:
1) Цена деления нижней шкалы:
Цена деления средней шкалы:
Цена деления верхней шкалы:
2) Определенный но нижней шкале с точностью до 10° определенный по средней шкале с точностью до 5°
определенный по верхней шкале с точностью до 1°
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.