Что влияет на скорость полета пули
Начальная скорость пули и причины, на нее влияющие.
За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытным путём с последующими расчетами.
При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное действие пули и пробивное действие пули, а также уменьшается влияние внешних условий на её полет.
Даже обычные пули, которые имеют начальную скорость более 1000 м/с обладают мощным фугасным действием. Это фугасное действие обладает экспансивным ростом, по мере того как начальная скорость переходит границу в 1000 м/с.
Основные факторы, влияющие на начальную скорость пули:
· вес порохового заряда;
· форма и размер зёрен пороха (скорость сгорания пороха);
Дополнительные факторы, влияющие на начальную скорость пули:
Ø температура и влажность порохового заряда;
Ø плотность заряжания;
Ø силы трения между пулей и каналом ствола;
Ø температура окружающей среды.
Влияние длины ствола:
Влияние характеристик порохового заряда:
Ø С повышением влажности порохового заряда уменьшаются скорость его горения и начальная скорость пули.
Ø С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличиваются максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).
Ø Изменение веса порохового заряда приводит к изменению количества пороховых газов, а следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули.
Для стрелка начальная скорость пули (снаряда) является едва ли не самой главной из всех величин, рассматриваемых во внутренней баллистике.
И действительно, от этой величины зависит наибольшая дальность стрельбы, дальность прямого выстрела, т.е. наибольшая дальность стрельбы прямой наводкой по видимым целям, при которой высота траектории полета пули не превосходит высоту цели, время движения пули (снаряда) до цели, ударное действие снаряда по цели и другие показатели.
Вот почему необходимо внимательно относиться к самому понятию начальной скорости, к способам ее определения, к тому, как изменяется начальная скорость при изменении параметров внутренней баллистики и при изменении условий стрельбы.
Затем, двигаясь по инерции и встречая сопротивление воздушной среды, пуля начинает терять свою скорость. Следовательно, скорость движения пули все время меняется. Учитывая это обстоятельство, скорость пули принято фиксировать только в каких-нибудь определенных фазах ее движения. Обычно фиксируют скорость пули при вылете ее из канала ствола.
Скорость движения пули у дульного среза ствола в момент вылета ее из канала ствола называется начальной скоростью.
За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она измеряется расстоянием, которое могла бы преодолеть пуля за 1 секунду по вылете из канала ствола, если бы на нее не действовали ни сопротивление воздуха, ни ее тяжесть. Так как скорость пули в некотором удалении от дульного среза мало отличается от скорости при вылете ее из канала ствола, при практических расчетах обычно считают, что наибольшую скорость пуля имеет в момент вылета из канала ствола, т.е. что начальная скорость пули является наибольшей (максимальной) скоростью.
Так, при стрельбе из 7,62 мм магазинной винтовки системы Мосина обр. 1891/30 гг. начальная скорость легкой пули равна 865 м/сек, а тяжелой пули — 800 м/сек. При стрельбе из 5,6 мм малокалиберной винтовки ТОЗ-8 начальная скорость пули различных партий патронов колеблется в пределах 280—350 м/сек.
Величина начальной скорости пули зависит от длины ствола оружия; массы пули; массы, температуры и влажности порохового заряда патрона, формы и размеров зерен пороха и плотности заряжания.
Также необходимо рассматривать начальную скорость пули в сочетании с ее массой. Очень важно знать, какой энергией обладает пуля, какую работу она может выполнить.
Из физики известно, что энергия движущегося тела зависит от его массы и скорости движения. Следовательно, чем больше масса пули и скорость ее движения, тем больше кинетическая энергия пули. При постоянной длине ствола и постоянной массе порохового заряда начальная скорость тем больше, чем меньше масса пули. Увеличение массы порохового заряда приводит к повышению количества пороховых газов, а следовательно, и к повышению величины максимального давления в канале ствола и увеличению начальной скорости пули. Чем больше масса порохового заряда, тем больше максимальное давление и начальная скорость пули.
С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличиваются максимальное давление и начальная скорость пули. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим при стрельбе обязательно нужно учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).
С повышением влажности порохового заряда уменьшаются скорость его горения и начальная скорость пули.
Плотностью заряжания называется отношение массы заряда к объему гильзы при вставленной пуле (каморы сгорания заряда). При очень глубокой посадке пули значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать для стрельбы. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули.
Пробивное действие пули (таблицы 1 и 2) характеризуется ее кинетической энергией (живой силой). Кинетическая энергия, которую сообщают пуле пороховые газы в момент вылета ее из канала ствола, называется дульной энергией. Энергия пули измеряется в джоулях.
Таблица 1
Пробивное действие легкой пули 7,62 мм снайперской магазинной винтовки
системы Мосина обр. 1891/30 гг.(при стрельбе на расстояния до 100 м)
Проникание пули, см
0,6
1,2
10–12
15–20
35 досок
до 150
70
60–70
ВИНТОВОЧНЫЕ пули обладают громадной кинетической энергией. Так, дульная энергия легкой пули при стрельбе из винтовки образца 1891/30 гг. равна 3600 Дж. Насколько велика энергия пули, видно из следующего: чтобы получить в столь короткий отрезок времени (не путем выстрела) такую энергию, потребовалась бы машина мощностью 3000 л. с.
Из всего сказанного ясно, какое большое практическое значение имеет для стрельбы большая начальная скорость и зависимая от нее дульная энергия пули. С увеличением начальной скорости пули и ее дульной энергии увеличивается дальность стрельбы; траектория пули становится более отлогой; значительно уменьшается влияние внешних условий на полет пули; увеличивается пробивное действие пули.
Прежде всего пуля при прохождении по каналу ствола, вследствие больших сил трения, закругляет углы полей нарезов и производит истирание внутренних стенок канала ствола. Кроме того, движущиеся с большой скоростью частицы пороховых газов ударяют с силой в стенки канала ствола, вызывая на их поверхности так называемый наклеп. Это явление заключается в том, что поверхность канала ствола покрывается тонкой коркой с постепенно развивающейся в ней хрупкостью. Происходящая при выстреле упругая деформация расширения ствола приводит к появлению на внутренней поверхности металла мелких трещин.
Образованию таких трещин способствует и высокая температура пороховых газов, которые в силу очень короткого действия вызывают частичное оплавление поверхности канала ствола. В нагретом слое металла возникают большие напряжения, которые в конечном счете и приводят к появлению и увеличению этих мелких трещин. Повышенная хрупкость поверхностного слоя металла и наличие к тому же трещин на нем приводят к тому, что пуля при прохождении по каналу ствола производит сколы металла в местах трещин. Износу ствола в значительной мере способствует и нагар, остающийся в канале ствола после выстрела. Он представляет собой остатки сгорания капсюльного состава и пороха, а также металла, соскобленного с пули или выплавленного из нее, оторванных газами кусочков дульца гильзы и т.д.
Таблица 2
Пробивное действие пули 5,6-мм малокалиберной винтовки ТОЗ-8 (при стрельбе на расстояние до 25 м)
Материал | Проникание пули, см |
Листовое железо | 0,2 |
Кирпичная кладка | 2,0 |
Сосновые доски | 8,0 |
Фанера | 3,2 |
Сухой дуб | 3,0 |
Слой мягкой глины | 8,0 |
Впрочем, здесь речь идет об обыкновенных пассажирских самолетах и об артиллерийских снарядах, летящих со средней скоростью.
Получается, что реактивный самолет не только не отстанет от такого снаряда, но и перегонит его.
В чем же тут дело? Что мешает снаряду лететь так же долго и так же далеко, как летит самолет?
Самолет летит долго потому, что воздушный винт тянет или реактивный двигатель толкает его все время вперед. Двигатель работает несколько часов подряд — пока хватит горючего. Поэтому и самолет может лететь непрерывно несколько часов подряд.
Поэтому-то линия полета снаряда — траектория — получается не прямой, а точно такой же, как и для брошенного камня, похожей на дугу.
Попробуем выстрелить из орудия один раз при горизонтальном положении ствола, другой раз — придав стволу угол бросания 3 градуса, а в третий раз — при угле бросания 6 градусов.
Снаряд, брошенный со скоростью 600—700 метров в секунду, при горизонтальном положении ствола пролетит до падения на землю всего лишь метров 300. Теперь произведем выстрел под углом бросания в 3 градуса.
Линия бросания пойдет уже не горизонтально, а под углом в 3 градуса к горизонту.
Само собой разумеется, что дальность полета будет зависеть не только от угла бросания, но и от скорости: чем больше начальная скорость снаряда, тем дальше он упадет при прочих равных условиях.
Следовательно, реальная наибольшая начальная скорость снаряда, которую можно достичь в классическом артиллерийском орудии, принципиально не может превзойти величины 2500—3000 м/с, а реальная дальность стрельбы не превышает нескольких десятков километров. В этом заключается особенность артиллерийских ствольных систем (в том числе и стрелкового оружия), осознав которую человечество в стремлении к космическим скоростям и дальностям обратилось к использованию реактивного принципа движения.
Автор: Сергей Монетчиков
Источник: brаtishkа.ru
Начальная скорость пули: факторы влияния
Для стрелка начальная скорость пули (снаряда) является едва ли не самой главной из всех величин, рассматриваемых во внутренней баллистике.
И действительно, от этой величины зависит наибольшая дальность стрельбы, дальность прямого выстрела, т. е. наибольшая дальность стрельбы прямой наводкой по видимым целям, при которой высота траектории полета пули не превосходит высоту цели, время движения пули (снаряда) до цели, ударное действие снаряда по цели и другие показатели.
Вот почему необходимо внимательно относиться к самому понятию начальной скорости, к способам ее определения, к тому, как изменяется начальная скорость при изменении параметров внутренней баллистики и при изменении условий стрельбы.
Скорость движения пули у дульного среза ствола в момент вылета ее из канала ствола называется начальной скоростью.
За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она измеряется расстоянием, которое могла бы преодолеть пуля за 1 секунду по вылете из канала ствола, если бы на нее не действовали ни сопротивление воздуха, ни ее тяжесть. Так как скорость пули в некотором удалении от дульного среза мало отличается от скорости при вылете ее из канала ствола, при практических расчетах обычно считают, что наибольшую скорость пуля имеет в момент вылета из канала ствола, т. е. что начальная скорость пули является наибольшей (максимальной) скоростью.
Величина начальной скорости пули зависит от длины ствола оружия; массы пули; массы, температуры и влажности порохового заряда патрона, формы и размеров зерен пороха и плотности заряжания.
Также необходимо рассматривать начальную скорость пули в сочетании с ее массой. Очень важно знать, какой энергией обладает пуля, какую работу она может выполнить.
Из физики известно, что энергия движущегося тела зависит от его массы и скорости движения. Следовательно, чем больше масса пули и скорость ее движения, тем больше кинетическая энергия пули. При постоянной длине ствола и постоянной массе порохового заряда начальная скорость тем больше, чем меньше масса пули. Увеличение массы порохового заряда приводит к повышению количества пороховых газов, а следовательно, и к повышению величины максимального давления в канале ствола и увеличению начальной скорости пули. Чем больше масса порохового заряда, тем больше максимальное давление и начальная скорость пули.
С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличиваются максимальное давление и начальная скорость пули. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим при стрельбе обязательно нужно учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).
С повышением влажности порохового заряда уменьшаются скорость его горения и начальная скорость пули.
Плотностью заряжания называется отношение массы заряда к объему гильзы при вставленной пуле (каморы сгорания заряда). При очень глубокой посадке пули значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать для стрельбы. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули.
Таблица 1 Пробивное действие легкой пули 7,62-мм снайперской магазинной винтовки системы Мосина обр. 1891/30 гг. (при стрельбе на расстояния до 100 м) | |
Материал | Проникание пули, см |
Стальная плита | 0,6 |
Железная плита | 1,2 |
Слой гравия или щебня | 10-12 |
Кирпичная кладка | 15-20 |
Сосновые доски (по 2,5 см каждая), поставленные с промежутками в 2,5 см | 35 досок |
Дерево по торцу | до 150 |
Стенка из дубового дерева | 70 |
Слой мягкой глины | 70-80 |
Земля | 60-70 |
Слой утрамбованного снега | до 350 |
Пробивное действие пули (таблицы 1 и 2) характеризуется ее кинетической энергией (живой силой). Кинетическая энергия, которую сообщают пуле пороховые газы в момент вылета ее из канала ствола, называется дульной энергией. Энергия пули измеряется в джоулях.
Винтовочные пули обладают громадной кинетической энергией. Так, дульная энергия легкой пули при стрельбе из винтовки образца 1891/30 гг. равна 3600 Дж. Насколько велика энергия пули, видно из следующего: чтобы получить в столь короткий отрезок времени (не путем выстрела) такую энергию, потребовалась бы машина мощностью 3000 л. с.
Из всего сказанного ясно, какое большое практическое значение имеет для стрельбы большая начальная скорость и зависимая от нее дульная энергия пули. С увеличением начальной скорости пули и ее дульной энергии увеличивается дальность стрельбы; траектория пули становится более отлогой; значительно уменьшается влияние внешних условий на полет пули; увеличивается пробивное действие пули.
Прежде всего пуля при прохождении по каналу ствола, вследствие больших сил трения, закругляет углы полей нарезов и производит истирание внутренних стенок канала ствола. Кроме того, движущиеся с большой скоростью частицы пороховых газов ударяют с силой в стенки канала ствола, вызывая на их поверхности так называемый наклеп. Это явление заключается в том, что поверхность канала ствола покрывается тонкой коркой с постепенно развивающейся в ней хрупкостью. Происходящая при выстреле упругая деформация расширения ствола приводит к появлению на внутренней поверхности металла мелких трещин. Образованию таких трещин способствует и высокая температура пороховых газов, которые в силу очень короткого действия вызывают частичное оплавление поверхности канала ствола. В нагретом слое металла возникают большие напряжения, которые в конечном счете и приводят к появлению и увеличению этих мелких трещин. Повышенная хрупкость поверхностного слоя металла и наличие к тому же трещин на нем приводят к тому, что пуля при прохождении по каналу ствола производит сколы металла в местах трещин. Износу ствола в значительной мере способствует и нагар, остающийся в канале ствола после выстрела. Он представляет собой остатки сгорания капсюльного состава и пороха, а также металла, соскобленного с пули или выплавленного из нее, оторванных газами кусочков дульца гильзы и т. д.
Впрочем, здесь речь идет об обыкновенных пассажирских самолетах и об артиллерийских снарядах, летящих со средней скоростью.
Получается, что реактивный самолет не только не отстанет от такого снаряда, но и перегонит его.
Таблица 2 Пробивное действие пули 5,6-мм малокалиберной винтовки ТОЗ-8 (при стрельбе на расстояние до 25 м) | |
Материал | Проникание пули, см |
Листовое железо | 0,2 |
Кирпичная кладка | 2,0 |
Сосновые доски | 8,0 |
Фанера | 3,2 |
Сухой дуб | 3,0 |
Слой мягкой глины | 8,0 |
В чем же тут дело? Что мешает снаряду лететь так же долго и так же далеко, как летит самолет?
Снаряд, брошенный со скоростью 600-700 метров в секунду, при горизонтальном положении ствола пролетит до падения на землю всего лишь метров 300. Теперь произведем выстрел под углом бросания в 3 градуса.
Линия бросания пойдет уже не горизонтально, а под углом в 3 градуса к горизонту.
Само собой разумеется, что дальность полета будет зависеть не только от угла бросания, но и от скорости: чем больше начальная скорость снаряда, тем дальше он упадет при прочих равных условиях.
Следовательно, реальная наибольшая начальная скорость снаряда, которую можно достичь в классическом артиллерийском орудии, принципиально не может превзойти величины 2500-3000 м/с, а реальная дальность стрельбы не превышает нескольких десятков километров. В этом заключается особенность артиллерийских ствольных систем (в том числе и стрелкового оружия), осознав которую человечество в стремлении к космическим скоростям и дальностям обратилось к использованию реактивного принципа движения.
Сергей Монетчиков
Фото Владимира Николайчука
и из архива автора
Братишка 08-2009
Начальная скорость пули: факторы влияния
Для стрелка начальная скорость пули (снаряда) является едва ли не самой главной из всех величин, рассматриваемых во внутренней баллистике.
И действительно, от этой величины зависит наибольшая дальность стрельбы, дальность прямого выстрела, т. е. наибольшая дальность стрельбы прямой наводкой по видимым целям, при которой высота траектории полета пули не превосходит высоту цели, время движения пули (снаряда) до цели, ударное действие снаряда по цели и другие показатели.
Вот почему необходимо внимательно относиться к самому понятию начальной скорости, к способам ее определения, к тому, как изменяется начальная скорость при изменении параметров внутренней баллистики и при изменении условий стрельбы.
Скорость движения пули у дульного среза ствола в момент вылета ее из канала ствола называется начальной скоростью.
За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она измеряется расстоянием, которое могла бы преодолеть пуля за 1 секунду по вылете из канала ствола, если бы на нее не действовали ни сопротивление воздуха, ни ее тяжесть. Так как скорость пули в некотором удалении от дульного среза мало отличается от скорости при вылете ее из канала ствола, при практических расчетах обычно считают, что наибольшую скорость пуля имеет в момент вылета из канала ствола, т. е. что начальная скорость пули является наибольшей (максимальной) скоростью.
Величина начальной скорости пули зависит от длины ствола оружия; массы пули; массы, температуры и влажности порохового заряда патрона, формы и размеров зерен пороха и плотности заряжания.
Также необходимо рассматривать начальную скорость пули в сочетании с ее массой. Очень важно знать, какой энергией обладает пуля, какую работу она может выполнить.
Из физики известно, что энергия движущегося тела зависит от его массы и скорости движения. Следовательно, чем больше масса пули и скорость ее движения, тем больше кинетическая энергия пули. При постоянной длине ствола и постоянной массе порохового заряда начальная скорость тем больше, чем меньше масса пули. Увеличение массы порохового заряда приводит к повышению количества пороховых газов, а следовательно, и к повышению величины максимального давления в канале ствола и увеличению начальной скорости пули. Чем больше масса порохового заряда, тем больше максимальное давление и начальная скорость пули.
С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличиваются максимальное давление и начальная скорость пули. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим при стрельбе обязательно нужно учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).
С повышением влажности порохового заряда уменьшаются скорость его горения и начальная скорость пули.
Плотностью заряжания называется отношение массы заряда к объему гильзы при вставленной пуле (каморы сгорания заряда). При очень глубокой посадке пули значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать для стрельбы. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули.
Таблица 1 Пробивное действие легкой пули 7,62-мм снайперской магазинной винтовки системы Мосина обр. 1891/30 гг. (при стрельбе на расстояния до 100 м) | |
Материал | Проникание пули, см |
Стальная плита | 0,6 |
Железная плита | 1,2 |
Слой гравия или щебня | 10-12 |
Кирпичная кладка | 15-20 |
Сосновые доски (по 2,5 см каждая), поставленные с промежутками в 2,5 см | 35 досок |
Дерево по торцу | до 150 |
Стенка из дубового дерева | 70 |
Слой мягкой глины | 70-80 |
Земля | 60-70 |
Слой утрамбованного снега | до 350 |
Пробивное действие пули (таблицы 1 и 2) характеризуется ее кинетической энергией (живой силой). Кинетическая энергия, которую сообщают пуле пороховые газы в момент вылета ее из канала ствола, называется дульной энергией. Энергия пули измеряется в джоулях.
Винтовочные пули обладают громадной кинетической энергией. Так, дульная энергия легкой пули при стрельбе из винтовки образца 1891/30 гг. равна 3600 Дж. Насколько велика энергия пули, видно из следующего: чтобы получить в столь короткий отрезок времени (не путем выстрела) такую энергию, потребовалась бы машина мощностью 3000 л. с.
Из всего сказанного ясно, какое большое практическое значение имеет для стрельбы большая начальная скорость и зависимая от нее дульная энергия пули. С увеличением начальной скорости пули и ее дульной энергии увеличивается дальность стрельбы; траектория пули становится более отлогой; значительно уменьшается влияние внешних условий на полет пули; увеличивается пробивное действие пули.
Прежде всего пуля при прохождении по каналу ствола, вследствие больших сил трения, закругляет углы полей нарезов и производит истирание внутренних стенок канала ствола. Кроме того, движущиеся с большой скоростью частицы пороховых газов ударяют с силой в стенки канала ствола, вызывая на их поверхности так называемый наклеп. Это явление заключается в том, что поверхность канала ствола покрывается тонкой коркой с постепенно развивающейся в ней хрупкостью. Происходящая при выстреле упругая деформация расширения ствола приводит к появлению на внутренней поверхности металла мелких трещин. Образованию таких трещин способствует и высокая температура пороховых газов, которые в силу очень короткого действия вызывают частичное оплавление поверхности канала ствола. В нагретом слое металла возникают большие напряжения, которые в конечном счете и приводят к появлению и увеличению этих мелких трещин. Повышенная хрупкость поверхностного слоя металла и наличие к тому же трещин на нем приводят к тому, что пуля при прохождении по каналу ствола производит сколы металла в местах трещин. Износу ствола в значительной мере способствует и нагар, остающийся в канале ствола после выстрела. Он представляет собой остатки сгорания капсюльного состава и пороха, а также металла, соскобленного с пули или выплавленного из нее, оторванных газами кусочков дульца гильзы и т. д.
Впрочем, здесь речь идет об обыкновенных пассажирских самолетах и об артиллерийских снарядах, летящих со средней скоростью.
Получается, что реактивный самолет не только не отстанет от такого снаряда, но и перегонит его.
Таблица 2 Пробивное действие пули 5,6-мм малокалиберной винтовки ТОЗ-8 (при стрельбе на расстояние до 25 м) | |
Материал | Проникание пули, см |
Листовое железо | 0,2 |
Кирпичная кладка | 2,0 |
Сосновые доски | 8,0 |
Фанера | 3,2 |
Сухой дуб | 3,0 |
Слой мягкой глины | 8,0 |
В чем же тут дело? Что мешает снаряду лететь так же долго и так же далеко, как летит самолет?
Снаряд, брошенный со скоростью 600-700 метров в секунду, при горизонтальном положении ствола пролетит до падения на землю всего лишь метров 300. Теперь произведем выстрел под углом бросания в 3 градуса.
Линия бросания пойдет уже не горизонтально, а под углом в 3 градуса к горизонту.
Само собой разумеется, что дальность полета будет зависеть не только от угла бросания, но и от скорости: чем больше начальная скорость снаряда, тем дальше он упадет при прочих равных условиях.
Следовательно, реальная наибольшая начальная скорость снаряда, которую можно достичь в классическом артиллерийском орудии, принципиально не может превзойти величины 2500-3000 м/с, а реальная дальность стрельбы не превышает нескольких десятков километров. В этом заключается особенность артиллерийских ствольных систем (в том числе и стрелкового оружия), осознав которую человечество в стремлении к космическим скоростям и дальностям обратилось к использованию реактивного принципа движения.
Сергей Монетчиков
Фото Владимира Николайчука
и из архива автора
Братишка 08-2009
- Что влияет на скорость передачи информации
- Что влияет на скорость процессора