Что влияет на движение литосферных плит
Движение земной коры — виды, процессы, проявление и результат
Земная кора всегда движется. Какие-то движения регистрируют только ученые, какие-то нельзя не заметить, ведь они приводят к сильнейшим разрушениям, например, землетрясения. Устройство Земли до сих пор не изучено полностью. Однако, некоторые данные все же известны человечеству.
Движение земной коры
Земная кора является самым тонким слоем планеты. Ученые часто сравнивают ее с кожурой яблока. Однако, эта «кожура» неоднородна. Принято выделять 7 больших литосферных платформ и некоторое количество малых. Именно потому что платформы относительно друг друга двигаются в разных направлениях возникают очаги повышенной сейсмической активности. Почти все эти движения незаметны, если не проводить направленные измерения.
Почему же земная кора движется?
Дело в том, что литосферные плиты находятся на вязкой жидкости, на мантии. То есть можно сказать, что платформы плавают на ней. Мантия же в свою очередь обладает температурой к центру достигающей, в теории, 10 000°С. Однако эта температура неравномерна, то есть на стыке с литосферой она опускается до 1500°С из-за чего возникает эффект, похожий на движение воды в кастрюле на огне. Горячая мантия поднимается от ядра планеты, а охлажденная опускается к центру, из-за чего литосферные плиты приводятся в движение.
Помимо внутренних процессов на платформы также могут оказывать влияние внешние факторы. Учеными было доказано, что на движение коры способно влиять отступание и наступление льда во время ледниковых периодов.
Виды движения коры
Ученые выделяют несколько признаков, ко которым можно классифицировать движение литосферных плит. Это связано с различными характеристиками движений.
Чаще всего их делят по направлению движения:
Также движение различают в зависимости от скорости, с которой литосферные плиты перемещаются:
Очередная классификация подразделяет движения коры на 3 группы:
Отдельными видами движений являются вулканизм и землетрясения.
Землетрясения
Они возникают в результате толчков в недрах Земли. Земля за небольшое время либо поднимается, либо опускается. Разница в уровне может доходить до нескольких метров. Из-за колебаний участки земной коры меняют расположение относительно друг друга в горизонтальном направлении. Движение возникает по причине разрыва или смещения земли, которые происходят на большой глубине. Это место именуют очагом землетрясения, на поверхности же участок земли, где ощущаются тектонические движения, называют эпицентром.
Сейсмология – это наука, занимающаяся изучением землетрясений, а для измерения силы землетрясений применяется сейсмограф. Сила землетрясений измеряется по шкале Рихтера. Она состоит из 12 делений, единица измерения – магнитуда. Обычно применяется шкала относительного типа. Они обе оценивают действие землетрясений на постройки и людей. По этим критериям можно судить о силе землетрясений, а именно:
Вулканическая активность
Процессы, во время которых магма движется в верхних слоях мантии и приближается к поверхности Земли, называют вулканизмом. Он проявляется в образовании геологических тел в осадочных горных породах и в выходе лавы на поверхность, аз-за чего формируется необычный рельеф.
Вулканизм неразрывно связан с движением земной коры. Движение коры вызывает появление возвышенностей и вулканов, под которыми находятся трещины. Они очень глубокие и по ним могут подниматься газы, обломки горных пород, лава. Извержение вулкана с выбросом пепла вызывается колебаниями земной коры. Эти явления значительно влияют на погоду, меняют рельеф.
Последствия
Как раз движение тектонических плит меняет рельеф планеты. Такие явления, как вулканизм, землетрясения – следствия движений земной коры. Связано это с тем, что в местах столкновения платформ со временем накапливается напряжение, которое в какой-то момент вызывает разрушение плит, а это в свою очередь вызывает землетрясение.
Многие формы рельефа возникают из-за движения литосферных плит. В местах разрыва возникают озера, а в местах столкновения – горы.
Вертикальное смещение земной коры вызывает отступление моря или уменьшение площади материков.
О медленных движениях надо помнить при строительстве дамб, водохранилищ, населенных пунктов, иначе могут произойти серьезные потери.
Невероятно опасны быстрые движения литосферных плит. Если возникает смещение литосферных плит на дне океана, то появляются цунами.
Заключение
Земная кора постоянно движется и это движение приводит к большим последствиям. Из-за него возникли красивые горы, озера, но оно же становиться следствием крупных землетрясений или цунами. Недооценить влияние смещения тектонических плит невозможно. Человечеству потребуется еще много лет, чтобы научиться предугадывать места, где случится землетрясение или цунами, ведь, не зная точно внутреннее строение Земли, сложно давать какие-либо прогнозы.
Почему и как движутся тектонические плиты?
тектонические плиты движутся потому что они плавают на жидкой мантии земли. Эта мантия, в свою очередь, также движется из-за конвекционных течений, которые заставляют горячую породу подниматься, выделять немного тепла и затем падать. Это явление жидкой мантии порождает завихрения жидких пород под земной корой, которые переносятся на плиты (BBC, 2011).
Глубина жидкой мантии затрудняет изучение, так что характер ее поведения еще не полностью определен. Тем не менее, считается, что движения тектонических плит вызваны в ответ на внезапные напряжения, а не из-за основных изменений температуры.
Процесс формирования тектонических плит или тектоники плит может занять сотни миллиардов лет. Этот процесс не происходит равномерно, так как маленькие кусочки зубного налета могут соединяться друг с другом, вызывая сотрясения на поверхности земли, которые различаются по интенсивности и продолжительности (Briney, 2016).
Помимо процесса конвекции есть еще одна переменная, которая заставляет пластины двигаться, и это гравитация. Эта сила заставляет тектонические плиты перемещаться на несколько сантиметров каждый год, что приводит к огромному удалению плит друг от друга с течением миллионов лет (EOS, 2017).
Конвекционные токи
Мантия представляет собой жидкий материал, но достаточно плотный, чтобы по нему могли плавать тектонические плиты. Многие геологи думают, что причина, по которой командование течет, заключается в том, что существует явление, известное как конвекционные потоки, которые способны перемещать тектонические слои (Engel, 2012)..
Конвекционные токи генерируются, когда самая горячая часть мантии поднимается, охлаждается и снова погружается. Повторяя этот процесс несколько раз, создается необходимое движение для смещения тектонических плит, которые имеют свободу движения в зависимости от силы, с которой конвекционные потоки сотрясают мантию..
Линейное движение пластин может быть объяснено тем, как процесс конвекции образует единицы массы жидкости или ячейки, которые, в свою очередь, движутся в разных направлениях, как показано на следующем рисунке:
Конвекционные ячейки постоянно меняются и ведут себя в пределах параметров хаотической системы, что позволяет генерировать различные непредсказуемые географические явления.
Некоторые ученые сравнивают это явление с движением ребенка, играющего в ванной, полной игрушек. Таким образом, земная поверхность может соединяться и отделяться несколько раз в течение неопределенного периода времени (Jaeger, 2003).
Процесс субдукции
Если пластина, расположенная под океанской литосферой, встречает другую пластину, плотная океаническая литосфера погружается под другую пластину, погружаясь в мантию: это явление известно как процесс субдукции (USGS, 2014).
Как будто это была скатерть, тонущая океаническая литосфера тянет остальную часть тектонической плиты, вызывая ее движение и сильное сотрясение в земной коре..
Этот процесс вызывает разделение океанической литосферы в нескольких направлениях, в результате чего образуются океанические корзины, в которых может быть создана новая, теплая и легкая океаническая кора..
Во время этого процесса есть плита, которая опускается, и другая, которая накладывается на плиту при спуске. Этот процесс вызывает наклон одной из пластин на угол от 25 до 40 градусов относительно поверхности Земли..
Континентальный дрейф
Теория континентального дрейфа объясняет, как континенты изменили свое положение на поверхности Земли.
Эта теория была поднята в 1912 году Альфредом Вегенером, геофизиком и метеорологом, который объяснил феномен континентального дрейфа, основываясь на сходстве окаменелостей животных, растений и различных горных пород, обнаруженных на разных континентах (Yount, 2009).
Считается, что континенты когда-то были объединены в духе Пангеи (суперконтинента с возрастом более 300 миллионов лет) и что позже они разделили и сместили позиции, которые мы в настоящее время знаем.
Эти смещения были вызваны движениями тектонических плит, которые имели место в течение миллионов лет.
Любопытная вещь о теории дрейфа континентов состоит в том, что она была первоначально отброшена и гарантирована спустя десятилетия с помощью новых открытий и технологических достижений в области геологии..
Скорость движения
В настоящее время можно отслеживать скорость движения тектонических плит благодаря магнитным полосам, расположенным на дне океанского дна..
Они могут регистрировать изменения в магнитном поле Земли, что позволяет ученым рассчитывать среднюю скорость, с которой пластины разделяются. Указанная скорость может сильно варьироваться в зависимости от пластины.
Плита, расположенная в Кордильера-дель-Артико, имеет самую медленную скорость (менее 2,5 см / год), в то время как в восточной части Тихого океана, около острова Пасхи, в южной части Тихого океана, в 3400 км к западу Чили, имеет самую быструю скорость движения (более 15 см / год).
Скорость движения также может быть получена из геологических картографических исследований, которые позволяют узнать возраст горных пород, их состав и структуру..
Эти данные позволяют определить, совпадает ли один предел плиты с другим, и скальные образования одинаковы. Измеряя расстояние между пластами, можно дать оценку скорости, с которой пластины перемещались в данный период времени..
Что такое движение земной коры? Типы, причины и последствия
Земная кора не статична, а постоянно двигается. Ученые выделяют несколько видов и причин такого движения.
Виды движения
Все движения земной коры могут быть классифицированы по своему направлению либо как вертикальные, либо как горизонтальные перемещения. Вертикальные перемещения представляют собой подъем тех или иных участков коры либо их опускание. Опускание коры сопровождается наступлением моря на сушу, этот процесс называется трансгрессией. Например, Западная Сибирь 200 млн лет назад опускалась вниз, в результате чего на ее месте сформировалось море. Однако 33 млн лет назад начался обратный процесс – подъем суши, сопровождавшийся отступлением моря. Это явление называется регрессией.
Горизонтальные перемещения земной коры связаны с движением тектонических плит. Доказательством такого движения являются контуры материков. Видно, что восточный берег Южной Америки и западное побережье Африки сильно схожи, их можно было бы «приложить» друг к другу как части одной мозаики и получить единый материк. Дело в том, что ещё 175 млн лет назад существовал единый материк Пангея, который из-за горизонтальных перемещений земной коры распался на отдельные континенты.
Также различают медленное и быстрое движение земной коры. Обычно литосферные плиты движутся медленно, со скоростью от 1 до 6 см/год. В отдельных районах Земли, например, вблизи острова Пасхи, горизонтальная скорость плит достигает 18 см/год. Москва опускается вниз на 3,6 мм в год, а Курск примерно с такой же скоростью поднимается.
Иногда происходит резкое и очень быстрое смещение плит, которое часто сопровождается землетрясением. Например, во время землетрясения в Японии 2011 г. северная часть этой страны сместилась сразу на 2,4 м ближе к Северной Америке.
Ещё одна классификация движений коры выделяет три группы таких перемещений. К первой относятся так называемые амплитудные перемещения, чья скорость составляет 5-15 мм/год, а продолжительность оценивается в миллионы лет. Вторая группа – это разрывы земной коры, они возникают там, где горные породы недостаточно прочны, а потому они быстро разрушаются из-за смещения плит. Третья группа – это движение в складчатых областях, которое возникает в пластичных слоях. Оно имеет место на стыке сближающихся плит, при этом возникают горные системы.
Причины движения земной коры
Основная причина перемещений коры связан с процессами, протекающими в мантии Земли. Если литосферные плиты представляют собой твердые тела, то мантия считается уже жидким веществом, в которой литосферные плиты буквально плавают. Правда, свойства мантии и близко не похожи на свойства воды – ее вязкость в сотни триллионов раз превышает вязкость песка. Мантия разогрета до огромных температур (до 1500°С) и находится под огромным давлением, при этом более горячие слои мантии, находящиеся ближе к центру, поднимаются вверх, а холодные опускаются. Возникает циркуляция вещества мантии, она похожа на движение воды в кипящей кастрюле (но скорости значительно ниже). Движение жидкой мантии и вызывает движение литосферных плит.
Однако на движение коры могут влиять и другие факторы, например, наступление и отступление льдов во время ледниковых периодов. Известно, что из-за массивного ледяного щита Антарктида кора на этом континенте просела вниз примерно на 500 м. Если же лед растает, то снижение нагрузки на коры вызовет медленный подъем коры. Например, в ходе последнего ледникового периода ледяной щит закрывал значительную часть Канады. Когда лед отступил, земная кора в Канаде начала подниматься, и этот процесс до сих пор продолжается.
Последствия движения земной коры
Во многом такие географические явления, как вулканизм и землетрясения, вызваны именно движением земной коры. Когда две сближающиеся литосферные плиты сталкиваются друг с другом, в месте их столкновения возникает напряжение (механическое, не электрическое), которое со временем нарастает. В какой-то критический момент материал плит не выдерживает возрастающего напряжения, разрушается, и в результате происходит землетрясение. В свою очередь землетрясения, происходящие в океане, порождают другое явление – цунами.
Также именно движение коры планеты приводит к формированию многих форм рельефа. Горы возникают на месте столкновения литосферных плит, в складчатых областях. Гималаи, Анды, Кавказ – все эти горные системы возникли из-за смещения коры Земли.
Места, где происходит разрыв земной коры, могут заполняться водой, в результате чего появляются озера. Например, озеро Байкал как раз возникло на месте такого разлома.
Наконец, вертикальные смещения коры приводят либо к отступлению моря и увеличению площади материков, либо, наоборот, к наступлению моря и сокращению территории континентов. Правда, куда большее влияние на этот процесс оказывает изменение уровня Мирового океана, связанное с образованием и таянием льдов.
Список использованных источников
Теория тектоники плит: выяснилось, как на самом деле устроена поверхность Земли
Ранее считалось, что поверхность Земли статичная и жесткая. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов. Что об этом известно?
Читайте «Хайтек» в
Из чего состоит поверхность Земли?
Недра Земли можно делить на слои по их механическим (в частности реологическим) или химическим свойствам. По механическим свойствам выделяют литосферу, астеносферу, мезосферу, внешнее ядро и внутреннее ядро. По химическим свойствам Землю можно разделить на земную кору, верхнюю мантию, нижнюю мантию, внешнее ядро и внутреннее ядро.
Центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2 900 км.
Мантия Земли простирается до глубины 2 890 км, что делает ее самым толстым слоем Земли. Давление в нижней мантии составляет около 140 ГПа (1,4·10 6 атм).
Мантия состоит из силикатных пород, богатых железом и магнием по отношению к вышележащей коре. Высокие температуры в мантии делают силикатный материал достаточно пластичным, чтобы могла существовать конвекция вещества в мантии, выходящего на поверхность через разломы в тектонических плитах.
Толщина земной коры может быть от 5 до 70 км в глубину от поверхности. Самые тонкие части океанической коры, которые лежат в основе океанических бассейнов (5–10 км), состоят из плотной железо-магниевой силикатной породы, такой как базальт.
В нашем материале речь пойдет в верхней части строения Земли: о литосферных плитах.
Как устроены литосферные плиты?
Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой, другие состоят из блока континентальной коры, впаянного в кору океаническую.
Суммарная мощность (толщина литосферы) океанической литосферы меняется в пределах от 2–3 км в районе рифтовых зон океанов до 80–90 км вблизи континентальных окраин. Толщина континентальной литосферы достигает 200–220 км.
Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра.
С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.
Скорость горизонтального движения литосферных плит в наше время варьируется от 1 до 6 см в год (скорость раздвигания плит — от 2 до 12 см в год). Скорость раздвигания плит от Срединно-Атлантического хребта в северной части его составляет 2,3 см в год, а в южной части — 4 см в год.
Наиболее быстро раздвигаются плиты вблизи Восточно-Тихоокеанского хребта у острова Пасхи — их скорость 18 см в год. Медленнее всего раздвигаются плиты в Аденском заливе и Красном море — со скоростью 1–1,5 см в год.
Типы столкновений литосферных плит:
Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.
Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.
Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы. Примеры: Индостанская плита с Евразийской плитой.
Как двигаются литосферные плиты?
Согласно современному научному подходу к движению плит, земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга.
При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции.
Тепловая конвекция в веществе мантии возникает как эффективный механизм передачи тепловой энергии из ядра Земли и представляет собой конвективные ячейки размером до нескольких тысяч километров. Над восходящими потоками мантийного вещества, то есть горячими и менее плотными, располагаются зоны спрединга океанского дна.
Нисходящие струи остывшего и более плотного мантийного вещества увлекают за собой литосферные плиты в зонах субдукции. Движение плит осуществляется за счет вязкого сцепления вещества верхней мантии, находящегося в конвективном движении, с неровной подошвой литосферы.
Современные движения литосферных плит фиксируются несколькими методами, самыми распространенными из которых являются методы космической геодезии. Современные GPS-приемники способны фиксировать перемещения плит с точностью до долей миллиметра в год.
Последствия движения литосферных плит также можно наблюдать в сейсмодислокациях — нарушениях сплошности горных пород, возникающих в результате землетрясений, которые, в свою очередь, являются следствием мгновенного снятия напряжений в земной коре.
Известный пример сейсмодислокации — забор на ферме в Калифорнии, неподалеку от Сан-Франциско, разделенный на две части, сдвинутые вдоль разлома Сан-Андреас относительно друг друга на несколько метров.
Модель тектоники плит на поверхности вулканического лавового озера
Более 90% поверхности Земли в современную эпоху покрыто восьмью крупнейшими литосферными плитами:
Что ученые узнали о теории тектоники плит?
Ученый Брэдфорд Фоули из Пенсильванского университета США уверен, что поверхность Земли нельзя считать статичной, ведь она постоянно взволнована. Более того, по мнению специалиста, тектоника действует правильно, расставляя все на свои места. Разломы земной коры также являются результатом взаимодействия подземных плит.
На протяжении веков наука считала, что поверхность Земли, ее крайний слой статичен и жесток. Он не движется и не изменяется. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она явно указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов.
Все эти события так или иначе связаны с горячими недрами Земли. Все знакомые нам пейзажи, которые есть на планете, являются продуктами эонного цикла, в которого планета занята постоянным усовершенствованием себя.
Тектоника плит сегодня описывает весь внешний слой Земли. Он занимает толщину около 100 км и разбивается на своеобразные паззлы из плит породы, несущей континенты и морское дно. При этом пластины, образующиеся в процессе этого движения, опускаются вглубь планеты. Этот цикл, как заявляют ученые, создает многие геологические чудеса, но он же является и причиной многих стихийных бедствий на нашей планете.
Он связывает между собой многие несовместимые вещи: спрединг морского дна и магнитные полосы в местах формирования землетрясений и горных хребтов. Геодинамик Брэдфорд Фоули из Пенсильванского университета считает, что тектоника плит действует правильным образом, поскольку она все расставляет на свои места.
А потому теория кажется не просто убедительной, а реальной. Поверхность Земли нельзя считать неподвижной. Она постоянно взволнованная и беспокойная. Образуемые разломы — это тоже результат взаимодействия тектонических плит. Они подтверждают идею дрейфующих континентов, которая считается необычной.
Какое будущее у науки тектоники?
Несмотря на кажущуюся простоту и изящность, по мере накопления новых данных концепция тектоники литосферных плит непрерывно развивается.
Одним из актуальных вопросов современной тектоники и геодинамики остается объяснение причин внутриплитного магматизма и магматизма горячих точек, в результате которого возникают цепочки океанических островов, например, Гавайи или супервулканы вроде Йеллоустонского, а также крупные магматические провинции, скажем, Сибирские траппы и траппы плато Декан в Индии.
Одной из наиболее распространенных гипотез, объясняющих причины внутриплитного магматизма, является концепция мантийных плюмов — струй горячего мантийного вещества, поднимающихся с границы ядро — мантия и являющихся источником избыточного (по сравнению со средним для мантии значением) тепла, которое инициирует выплавление огромных объемов магмы.
В случае излияния на поверхность континента или океанского дна эти расплавы, по составу соответствующие базальтам, формируют крупные изверженные провинции.
Если при подъеме к поверхности земли плюм упирается в океанскую кору, то он прожигает ее, в результате чего формируются вулканические острова — подводные вулканы, вершины которых возвышаются над поверхностью океана, или крупные океанские базальтовые плато вроде плато Онтонг-Джава в Тихом океане.