чем варить ковкий чугун
Электроды для ковкого чугуна
Чугун – один из самых широко используемых материалов в тяжелой промышленности. А про ковкий чугун можно сказать, что это основа машиностроения. Поэтому вопросы сварки этого материала являются актуальными всегда. Основными особенности этого сплава при сварке являются высокая скорость охлаждения, выгорание углерода и образование трещин.
В первой случае в месте сварного шва возможно образование так называемого отбеленного чугуна, который является намного более хрупким и хуже поддается механической обработке.
Если происходит выгорание углерода, то вокруг зоны сварного шва образуются пустоты, что приводит к потере прочности. Причина же трещинообразования – это перенапряжения в металле при изменении температуры. В нашем случае, ковкий чугун менее подвержен этому явлению, ввиду несколько большей пластичности и более благоприятной структуре графитовых вкраплений. Но все равно не стоит списывать возможность возникновения этой разновидности дефекта.
Рассмотрим же, какими электродами варить ковкий чугун методом электродуговой сварки. На практике возможны следующие варианты: электроды стальные, чугунные, на медной или никелевой основе. Для использования каждого конкретного вида есть свои предпосылки, например обрабатываемость, прочность или пластичность шва.
Сразу необходимо отметить, что стальные электроды для сварки ковкого чугуна использовать рекомендуется только в случаях, если после сварочных работ будет проводиться дополнительный отжиг детали. Без этого, полученный шов будет обладать крайне низкой пластичностью, и практически не будет поддаваться дальнейшей обработке. Так что в отдельности, такой вариант сварки можно использовать только в виде исключения для проведения мелких ремонтных работ.
Ведь если рассмотреть процесс получения ковкого чугуна – то его получает из белого в результате специализированного отжига. А под действием высокой температуры сварки углерод растворяется в железе, что приводит к образованию соединений цементита, и ковкий чугун переходит обратно в белый. И при сварке стальными электродами этот процесс наиболее ярко выражен. В случаях же, если после сварки также предусмотрена дальнейшая термообработка детали, то для сварки возможно использовать угольные электроды и присадку из стержней белого чугуна. Данные метод имеет широкое распространение на производстве, для заделки трещин и раковин в литых деталях, не прошедших еще цикл термообработки.
Основным же, и наиболее результативным видом электродов для сварки ковкого чугуна ручной дуговой сваркой, является использование латунных электродов или никеле-медных электродов, или как их еще называют, электродов из монель-металла. Его сплав содержит 67% никеля и до 38% меди. При сварке латунными электродами главным преимуществом является то, что температура плавления латуни 880°C, что позволяет не допускать распада углеродов отжига, и следовательно, сохранить свойства ковкого чугуна без отбеливания.
Для получения сварного шва повышенной прочности в отдельных случая используются электроды по ковкому чугуну из сплава меди с алюминием. При сварке чугуна медно-никелевыми электродами применяется постоянный ток обратной полярности. Нужно отметить, что сварку чугуна необходимо производить непрерывно, при больших объемах используется работа сразу двух сварщиков.
Ввиду вышеупомянутых более пластичных свойств ковкого чугуна чаще всего используется холодная сварка без подогрева, в вертикальном положении. Самыми распространенными из отечественных электродов для сварки ковкого чугуна являются МНЧ-2 и ОЗЧ-2. Реже используются ОЗЧ-4, они обеспечивают сварку не только в вертикальном, но и в горизонтальном положении, а также используются при сварке с предварительным подогревом.
Как варить чугун
Чугун – сплав, основными компонентами которого являются железо и углерод, а дополнительными – легирующие добавки и примеси. По своей структуре чугуны делятся на серые и белые.
Белый чугун на изломе имеет белый или светло-серый цвет, отсюда и название данного вида. Углерод находится в белом чугуне в виде цеменита. Белый чугун не поддается механической обработке из-за своей хрупкости и высокой твердости; в производстве различных изделий применяется редко; сварке не подлежит.
Из белого чугуна посредством отливки и длительной термообработки при температуре 1000°С получают ковкий чугун. Данный вид благодаря своим технологическим и механическим свойствам используется при производстве различных деталей, способных выдерживать ударные и вибрационные нагрузки. Ковкий чугун применяется при строительстве автомобилей, сельскохозяйственных машин, судов, станков и т.д. Поэтому исполнителям важно знать, как варить ковкий чугун.
Высокопрочные чугуны получают посредством добавления в сплав легирующих добавок; используются при изготовлении ответственных деталей в машиностроении, высокопрочных труб.
Излом серого чугуна обладает серебристо-серым цветом, весь углерод в его составе содержится в виде графита. Данный вид отлично обрабатывается режущим инструментом; широко применяется как конструкционный материал; характеризуется хорошими литейными свойствами; высокой износостойкостью; обладает способностью гасить вибрации.
Недостатки: пониженная прочность и высокая хрупкость.
Особенности сварки чугуна
На фото: пора в сварочном валике
Чугун обладает рядом специфических характеристик, которые влияют на сварочный процесс:
Несмотря на множество трудностей сварка чугуна распространена как при ремонте изделий, так и при исправлении брака чугунного литья, а также при изготовлении сварно-литых конструкций. Наличие специфических характеристик требует того, чтобы исполнитель точно знал, чем можно варить чугун. Ведь от этого зависит не только удобство и комфорт во время сварочных работ, но и получение качественного и надежного соединения.
Сварка по чугуну: подготовка
Технология сварки чугуна должна включать грамотный этап подготовки, предотвращающий появление дефектов в будущем.
Трещины в чугунных изделий имеют глубокую и тонкую структуру. Для достаточной проварки дефекта необходимо разделать трещины на всю глубину. Разделка может осуществляться вырубкой или шлифованием (механические способы); дуговой или кислородной строжкой или резкой (термические способы).
Длина разделки должна превышать длину трещины на 5-6 мм. с обеих сторон. Разделка должна плавно выходить на поверхность. Глубина разделки сквозных трещин должна быть на 1-2 мм. меньше толщины изделия. Глубина разделки несквозных трещин должна превышать глубину её расположения не менее чем на 1-2 мм. После разделки концы трещин необходимо засверлить. Если засверлить трещины нет возможности, то нужно их вырезать, а концы – закруглить.
Чтобы предотвратить перекалку чугуна следует произвести грамотную разделку кромок, которая способствует равномерному нагреву рабочей поверхности. Скосы кромок толстостенных деталей должны составлять 45 градусов.
Зачистка свариваемой поверхности от загрязнений проводится наждачной бумагой, болгаркой, щеткой с металлическими ворсинками, пескоструйкой. Устойчивые и сильные загрязнения можно удалить с помощью пламени горелки.
При работе с тонким металлом требуется применять графитовые формы. Они выполняют функцию подкладки под изделие. Это позволяет поддержать прогретый участок и сохранить первоначальную форму детали.
[ads-pc-2][ads-mob-2]
Технологии сварки чугуна
В зависимости от отсутствия или наличия предварительного подогрева, а также величины температуры прогрева выделяют следующие технологии сварки чугуна:
Горячая сварка применяется, в основном, в промышленных и производственных условиях. В домашних условиях очень сложно прогреть изделие до температуры в 600-650°C, так как для этого необходимо специальное оборудование. Данная технология помогает избежать образования трещин в наплавленном металле.
Исполнитель должен стараться равномерно нагревать чугунные детали. Разница температур основного изделия и шва может привести к разломам. Перед нагреванием свариваемые конструкции нужно закрепить для устранения напряжения, которое может привести к образованию трещин. Следует избегать нагрева свыше 750°C. При воздействии таких высоких температур металл переходит в стадию расплавления.
Видео
Посмотрите ролик, где профессионал сваривает развалившуюся на части чугунную деталь используя электрод УОНИ-13/55.
Полугорячая сварка применяется как в промышленных, так и в домашних условиях. Предварительный нагрев составляет до 400-450°C.
Согласно технологии холодной сварки предварительный подогрев не требуется. Холодная сварка активно используется в быту, когда специальное оборудование отсутствует, а потребность в сваривании носит эпизодический характер. Однако, соединение, созданное по такой технологии, отличается невысоким качеством. Если только не используется высококачественный специальный электрод, как, например, Zeller 855 на нижеследующем видео.
Способы сварки чугуна
1. Ручная дуговая сварка может проводиться по горячей, полугорячей и холодной технологиях. В зависимости от выбранного метода, разнятся виды используемых электродов.
Ручная дуговая сварка горячим методом осуществляется в несколько этапов:
Горячая ручная дуговая сварка может выполняться плавящимися и угольными электродами. К первому типу относятся чугунные стержни, электроды с медной и никелевой основой.
Сварка ковкого чугуна осуществляется расходниками марок ОЗЧ-2 и ОЗЧ-6, МНЧ-2, ЦЧ-4.
Для работы с серым чугуном предназначены электроды ОЗЖН-1 и ОЗЖН-2, МНЧ-2, ОЗЧ-2, ОЗЧ-4 и ОЗЧ-6.
Для высокопрочных чугунов подойдут сварочные материалы ОЗЖН, ОЗЧ-3, ОЗЧ-4, МНЧ-2.
Сваривание проводится непрерывно на больших величинах тока. Каким током варить чугун зависит от марки выбранного расходника. Однако, сваривание угольными электродами осуществляется на постоянном токе прямой полярности.
Основные недостатки данной технологии:
В некоторых случаях к металлу шва предъявляются менее жесткие требования. В подобных ситуациях целесообразно применять полугорячую и холодную ручную дуговую сварку. Применяемые виды электродов: чугунные, с медной и никелевой основой, расходники общего назначения (обычные/стальные).
2. Сварка чугунных изделий может проводиться с применением неплавящихся электродов: вольфрамовых, угольных, графитовых.
Подробная информация о соединении чугуна различными видами электродов представлена в статье “Сварка чугуна электродами“.
3. Полуавтоматическая горячая, полугорячая и холодная сварка чугуна. Технология MIG проводится в среде инертного газа, а MAG – в среде активного газа.
Суть процесса МИГ/МАГ: сварочная проволока (например, ПП-АНЧ-1, ПП-АНЧ-2, ПП-АНЧ-3) механизированным способом подается в зону электрической дуги, там она расплавляется и образует сварное соединение. В зону дуги подается газ, который защищает сварочную ванну от взаимодействия с атмосферным воздухом.
Горячий метод сварки полуавтоматом применяется в тех случаях, когда необходимо качественное соединение с высокими показателями сопротивления разрыву и излому. Для минимизации количества трещин изделие необходимо охлаждать постепенно.
Полугорячая технология используется для сварки изделий, испытывающих некоторые нагрузки при эксплуатации.
Холодный метод сварки чугуна полуавтоматом отличается простотой, применяется для сваривания неответственных деталей, которые не будут подвергаться нагрузкам.
Непрерывная подача проволоки позволяет выполнять большой объем работ за достаточно короткое время. Результат носит удовлетворительный характер.
4. Аргонодуговая сварка чугуна (технология TIG) отличается сложностью процесса. Средой, защищающей сварочную зону от воздействия окружающего воздуха, является газ аргон. В качестве присадочного материала используются чугунные, никелевые или алюминиево-бронзовые прутки. Последний тип присадки не рекомендуется использовать, если свариваемое изделие будет подвергаться тепловому воздействию. Также исполнителю понадобятся вольфрамовые электроды.
Данный способ требует выполнения некоторых требований:
5. Газовая сварка чугуна выполняется после равномерного и более длительного (по сравнению с дуговой сваркой) прогрева изделия. Нагрев позволяет снизить вероятность возникновения отбеленных участков. Скос кромок делается V-образным, угол раскрытия – 90 градусов. Скашивание проводится только при работе с изделиями, толщина стенок которых превышает 4 мм.
В качестве присадочных прутков применяются чугунные стержни. Диаметр стержней высчитывается следующим образом: толщина изделия, мм./2 или толщина изделия, мм/2 + 1 мм. Для газовой сварки чугуна также необходимо использование флюса (например, ФСЧ-1, ФСЧ-2, БМ-1). Присадочный пруток покрывают флюсом, а также флюс подсыпают в сварочную ванну. Кроме этого, флюс выполняет несколько функций:
Сварочное пламя должны быть нормальным или науглероживающим. Сваривание выполняется в нижнем положении. Для обработки крупных деталей желательно использовать две горелки.
Медленное остывание чугунных изделий после газовой сварки осуществляется под слоем асбеста.
[ads-pc-3][ads-mob-3]
6. Электрошлаковая сварка позволяет получить удовлетворительные свойства швов из серого чугуна, без отбеленных участков, трещин, пор и других дефектов. Также данная технология применяется при исправлении дефектов в крупных чугунных отливках, т.е. когда для ремонта необходимо наплавить большой объем металла. Кроме этого ЭШС используется при изготовлении крупногабаритных массивных изделий из высокопрочных чугунов. Расходными материалами являются литые чугунные пластины, использующиеся в качестве электродов, и фторидные обессеривающие и неокислительные флюсы – в качестве флюсов.
7. Лазерная сварка чугуна является безопасным и высококачественным методом. Для получения швов без трещин применяется две разновидности сваривания:
8. Контактная сварка применяется для работы с чугунными трубами, подразумевает оплавление и предварительный нагрев концов конструкции. Это предупредит образование закалочных структур. Сварные швы характеризуются достаточно высокой плотностью.
9. Плазменная пайко-сварка чугуна. Для удаления графита из структуры чугуна, который затрудняет смачивание рабочей поверхности расплавленным припоем, используется пескоструйная обработка. Паяемые поверхности следует подготовить – обработать флюсом № 209 или 284 при температуре 600-700°С. Затем изделие необходимо обезжирить ацетоном, бензином или раствором щелочи. Пайка проводится паяльником или газовой горелкой с применением флюсов на основе хлористого цинка. При низкотемпературной пайке используются оловянно-свинцовые или другие легкоплавкие припои, при высокотемпературной – припои на основе меди или серебряные припои.
Наплавка чугуна
Наплавка чугуна может производиться с помощью специальных электродов следующих марок:
МНЧ-2, применяется для ответственных стыков, наплавка выполняется без подогрева.
ОЗЖН-1 предназначены для осуществления работ по заделке серьезных дефектов.
ОЗЧ-2 используются для наплавления ковкого и серого чугуна.
Технология наплавки чугуна представлена в статье “Наплавка металла: электродом и другие”.
Газовая наплавка осуществляется с помощью теплоты, выделяемой при горении смеси ацетилена (заменителей ацетилена) и кислорода. В качестве расходных материалов используются литые прутки и флюсы.
Техника безопасности
Выполнение сварки в производственных условиях требует, чтобы исполнитель был аттестован для осуществления соответствующего вида работ.
Участок горячей сварки должен быть оснащен специальным оборудованием, которое выполняет функцию удаления пыли, выделяющейся при сварке.
Также существуют общие правила, которых необходимо придерживаться как профессиональным сварщикам, так и домашним мастерам:
Технология сварки ковких, высокопрочных и легированных чугунов
Состав и свойства
Классификация по составу и свойствам
Ковкие чугуны (КЧ), которые получают в результате отжига белого чугуна, характеризуются повышенной прочностью, пластичностью и ударной вязкостью вследствие образования при отжиге хлопьевидного графита. Основные преимущества КЧ заключаются в однородности их свойств по сечению, практическом отсутствии напряжений в отливках, высоких механических свойствах и хорошей обрабатываемости.
Отличительной особенностью высокопрочных чугунов с шаровидным графитом (ЧШГ) являются еще более высокие прочностные свойства, обусловленные сферической формой графита, при которой в меньшей степени, чем при других формах графита, ослабляется рабочее сечение матрицы и гораздо ниже концентрация напряжений у графитовых включений.
Легированные чугуны обладают специальными свойствами, обеспечивающими длительную и надежную работу отливок в разнообразных условиях эксплуатации.
Ковкие чугуны (ГОСТ 1215—79) получают ферритными или перлитными. Содержание основных элементов в КЧ составляет, %: С 2,3—3,0; Si 0,9—1,6; Мn 0,3—0,6 (при ферритной матрице) и до 1,2 (при перлитной матрице). Снижение содержания углерода в указанных пределах увеличивает прочность КЧ благодаря уменьшению количества и размеров графита, а также улучшению его формы. Фосфора и серы в КЧ меньше, чем в сером чугуне.
Чугуны с шаровидным графитом (ГОСТ 7293—85) различают на ферритные, перлитно-ферритные, перлитные и бейнитные. Содержание основных элементов в ЧШГ составляет, %: С 3,2—3,8; Si 1,9—2,9 (в бейнитных— 3,4—3,6); Мn 0,4—0,9; Cr≤0,1. Примеси достигают, %: S≤0,02; Р≤0,1, т. е. значительно ниже, чем в сером чугуне. Содержание магния — сферо-идизатора графита — колеблется от 0,03 до 0,08%.
Легированные хромовые чугуны подразделяются на жаростойкие, коррозионностойкие и износостойкие и содержат до 36 % Сг; с увеличением хрома содержание С, Si, Мn уменьшается. Никелевые имеют в своем составе до 21 % Ni, кремнистые — до 18% Si, марганцевые — до 12% Мn, высоколегированные алюминиевые — до 31 % Аl. Практически все легированные чугуны могут иметь как пластинчатую, так и шаровидную форму графита.
Основные марки, структура и свойства
Ковкий чугун маркируют буквами КЧ и цифровыми обозначениями в зависимости от механических свойств. Первые две цифры соответствуют временному сопротивлению, вторые — относительному удлинению (ферритные — от КЧ 30-6 до КЧ 37-12, перлитные —от КЧ 45-6 до КЧ 63-2). Ферритные КЧ имеют более высокую пластичность, а высокая твердость перлитного чугуна обеспечивает лучшую стойкость против износа КЧ с зернистым перлитом используют для изготовления отливок, подверженных знакопеременным (в том числе, ударным) нагрузкам при эксплуатации.
Аналогично ковким маркируются высокопрочные чугуны с шаровидным графитом: ферритные (ВЧ 38-7 и ВЧ 42-12), перлитно-ферритные (ВЧ 45-5 и ВЧ 50-2), перлитные (от ВЧ 60-2 до ВЧ 80-3), бейнитные (ВЧ 100-4 и ВЧ 120-4). ЧШГ обладают комплексом ценных свойств, значительно превосходящих те же характеристики серого чугуна: износостойкостью, жаростойкостью, коррозионной стойкостью и др. Многие свойства дополнительно повышаются в результате рационального легирования и термической обработки.
Промежуточными по свойствам между КЧ и ЧШГ являются чугуны с вермикулярным графитом, обозначаемые ЧВГ.
Обозначение легированных чугунов разнообразное. Согласно ГОСТ 7769—82 и 11849—76 жаростойкие хромовые чугуны обозначают ЖЧХ, а коррозионностойкие — ЧХ, после чего ставят цифры, указывающие содержание Сr. Износостойкие чугуны обозначают ИЧХ и далее цифры содержания Сr и других элементов (как при обозначении сталей, например, ИЧХ13ГЭМ). Пример обозначения никелевого чугуна: ЧН15Д7Х2. Если графит имеет шаровидную форму, добавляется буква Ш. Аналогично обозначение кремнистых чугунов, обладающих окалино-, росто- и коррозионно-стойкостью (ЖЧС5, ЖЧЮ7Х2, ЧС15М4); алюминиевых жаропрочных (ЖЧЮ7Х2) и марганцевых износостойких чугунов (ИЧХ4Г7Д).
Характерными структурными составляющими матрицы легированных чугунов являются: феррит, перлит, аустенит, карбиды. Условие образования аустенита в никелевом чугуне (содержащем 2,3—3,6% С и до 2% Si): Ni+2,5 Mn + Cu≥18.
Свариваемость чугунов
Склонность к образованию трещин
Склонность сварных соединений к образованию трещин в ЗТВ (зона термического влияния) у ЧШГ значительно выше по сравнению с обычными серыми чугунами при одинаковых содержаниях С, Si и Мn. В то же время требование высокой прочности, предъявляемое к сварным соединениям ЧШГ, является одним из основных при изготовлении и ремонте деталей. Только выполнение сварки с высоким предварительным подогревом всей детали или местным, если позволяет конструкция, способствует исключению трещин, а получение наплавленного металла в виде ЧШГ дает полную равнопрочность сварных соединений с основным металлом.
Свариваемость легированных чугунов (в первую очередь, стойкость против образования трещин) ухудшается с ростом содержания легирующих элементов. Особенно свойственно это хромовым, кремнистым и марганцевым чугунам вследствие увеличения в их структуре количества карбидов Сr, Si, Мn. Исключение составляют чугуны с аустенитной основой: никелевые, марганцевые и более сложного состава, которые обладают удовлетворительной свариваемостью. С другой стороны, высоконикелевые чугуны, хорошо противостоящие появлению холодных трещин, склонны к образованию горячих трещин (ГТ) из-за эвтектик, образующихся в шве и ЗТВ сварного соединения.
Влияние химического состава и структуры
Термический цикл, которому повергаются КЧ и ЧШГ в процессе сварки плавлением, ухудшает механические свойства основного металла в ЗТВ. Это происходит из-за наличия структурно-свободного углерода, который при высоких температурах интенсивно растворяется в аустенитной матрице. Вследствие протекающей диффузии углерода от хлопьевидных или шаровидных включений графита в аустенитную матрицу понижается температура плавления матрицы в приграничных микрообъемах и происходит ее расплавление в зонах вокруг графитных включений. В условиях последующего быстрого охлаждения эта фаза, обогащенная углеродом, затвердевает с образованием ледебурита. Присутствие в ЗТВ игл первичного цементита, ледебурита и мартенсита охрупчивает металл околошовной зоны и облегчает появление трещин.
Увеличение содержания углерода в КЧ и ЧШГ способствует более полной графитизации металла шва и ЗТВ, снижению твердости соединения и уменьшению опасности образования трещин.
Модифицирующие элементы (Mg, РЗМ, Y и др.), глобуляризирующие графитную фазу в ЧШГ, одновременно способствуют переохлаждению и кристаллизации с образованием цементита и ледебурита. Поскольку в условиях сварки это явление усиливается, всегда существует опасность образования оторочки вокруг шва, содержащей в структуре карбиды и мартенсит и вызывающей появление трещин.
Сера и фосфор снижают механические свойства сварных соединений из-за образования в металле шва участков, обогащенных сернистыми и фосфидными эвтектиками на основе железа. Содержание этих вредных примесей ограничено стандартами в КЧ, %: S≤0,12—0,18 и Р≤0,12—0,2, а в ЧШГ, %; S≤0,02 и Р≤0,1. Чистыми по этим элементам должны быть и компоненты электродных материалов.
Структура основы КЧ и ЧШГ оказывает меньшее влияние на свариваемость, чем химический состав. Чугуны с ферритной матрицей более стойкие против образования трещин, чем перлитные, благодаря запасу пластичности и вязкости, но уровень прочности сварных соединений у них ниже.
Способы сварки и свойства соединений
Дуговая сварка. Все специальные чугуны соединяют ручной дуговой сваркой с применением электродов со стержнем, однородным основному металлу. Так, например, пруток марки ПЧС-2 (стержень электрода ЭВЧ-2) для сварки ЧШГ содержит, %: С 3,0—3,8; Si 2,4—3,6; Мт 0,2—0,5; Y 0,1 ≤0,4; Се 0,03—0,15; Са 0,03—0,1; Cr≤0,5; Ni≤0,3; S≤0,08; P≤0,2 и обеспечивает получение шаровидного графита в металле шва. В компонентах покрытий большое количество графитизаторов: С и Si. Сварку КЧ и ЧШГ производят с предварительным подогревом отливок и деталей до температуры 400—700°С и замедленным охлаждением после сварки. Для низколегированных чугунов с пластинчатым графитом температура подогрева может быть значительно ниже.
При сварке без подогрева требуемое качество соединений достигают при использовании электродов на никелевой и железоникелевой основе: ОЗЧ-3, ОЗЧ-4, ОЗЖН-1. Металл шва (наплавленный металл) имеет аустенитную структуру с включениями междендритного графита. В зависимости от доли никеля структура шва, кроме аустенита, может содержать и продукты его распада, снижающие прочность и пластичность.
Механические свойства наплавленного металла при использовании электрода ОЗЖН-1 (со стержнем, содержащим 50 % Ni) близки к свойствам ЧШГ: δв = 400—600 МПа; δт = 300—470 МПа; δ = 6—13%; НВ 180—200. Однако сварные соединения, выполненные железоникелевыми электродами, в состоянии после сварки имеют прочность на 20—40 % ниже прочности основного металла и при испытании на растяжение разрушаются хрупко. Улучшить механические свойства удается только с помощью термической обработки. Для надежного исключения трещин по зоне сплавления при сварке ЧШГ и КЧ электродами ОЗЖН-1 применяют предварительный подогрев деталей до температуры 200—350 °С.
Электроды марки ЦЧ-4 со стальным стержнем и феррованадием в покрытии ограниченно применяют для сварки КЧ и ЧШГ. Твердость наплавленного металла, который представляет собой ванадиевую сталь с мелкодисперсными карбидами V, позволяет вести механическую обработку, однако в ЗТВ при сварке без подогрева неизбежно образование ледебурита и мартенсита, что повышает ее твердость до HV 500—600. Возникает опасность образования трещин, соединение не обрабатывается режущим инструментом. Равнопрочность соединений основному металлу не достигается, поэтому часто для надежности сварку выполняют со стальными ввертышами. Медно-стальные электроды (ОЗЧ-2, ОЗЧ-6) и электроды для сварки конструкционных сталей применяют лишь для декоративной заварки мелких литейных дефектов.
Механизированная дуговая сварка наиболее перспективна для применения порошковых проволок. При сварке КЧ, ЧШГ и легированных чугунов с шаровидным графитом структура металла шва должна характеризоваться компактной или глобулярной формой графита, а также подобной матрицей, чтобы сохранить в соединении ценные свойства основного металла. Сферо-идизации графитной фазы достигают введением в состав порошковых проволок Mg, Са, Y, РЗМ. Так, проволока ПП-АНЧ-5 содержит комплекс модифицирующих элементов: Mg, Са, РЗМ, которые вводят в шихту в виде лигатуры на основе кремния.
Сварку порошковой проволокой ПП-АНЧ-5 выполняют с предварительным нагревом отливок и деталей до температуры 400—600°С. Диапазон режимов определяется скоростью подачи проволоки; при диаметре проволоки 3 мм он составляет: Iсв = = 250—600 А; Uд = 25—40 В; vп.пр = 80—350 м/ч; ток — постоянный прямой полярности. Заваренные отливки, как правило, подвергают термической обработке. Сварные соединения равнопрочны ЧШГ ферритного (ВЧ 42-12) и перлитно-ферритного (ВЧ 45-5, ВЧ 50-2) класса.
Шихта порошковой проволоки ППВЧ-1 содержит модификаторы МР-1 или МР-2, изготовленные из иттирий содержащего сырья. Сварку можно осуществлять с перегревом сварочной ванны без опасности потери шаровидной формы графита в шве. Порошковая проволока ППСВ-7 содержит большое количество силикокальция (Са — глобуляризатор графита).
Автоматическую сварку ЧШГ низкоуглеродистой стальной проволокой производят под керамическим флюсом, содержащим Сr и Мn. Аустенитную структуру металла шва достигают при содержании в нем 20—26 % Мn и 9—12 % Cr. Кроме аустенита, в матрице есть небольшое количество феррита и мелкодисперсные карбиды, твердость составляет HRC 25— 30. Прочность сварных соединений ферритного ЧШГ достигает 80—90 % прочности основного металла.
Сварку ЧШГ стальной проволокой осуществляют также с присадкой керамических стержней. Введение в их состав редкоземельных металлов обеспечивает получение в металле шва чугуна с шаровидным графитом и перлитной основой. Состав керамического стержня СКВЧ-1 для сварки ЧШГ % (по массе): графит 10—15; чугунный порошок 5—15; карбид кремния 10— 20; лигатура с РЗМ 5—10; алюмомагниевый порошок 8—12; криолит 12—22; альгинат натрия 1—3; плавиковый шпат — остальное.
Ремонтную сварку поврежденных деталей из КЧ, ЧШГ и легированных (особенно, никелевых) чугунов выполняют самозащитной проволокой сплошного сечения из сплава на основе Ni. Проволока ПАНЧ-11 (ТУ 48-21-593—82) обеспечивает малое тепловложение в основной металл и неглубокое проплавление.
Проволоки на основе меди ограниченно применяют для сварки специальных чугунов, главным образом, для заварки мелких литейных дефектов.
Электрошлаковая сварка ЧШГ осложнена тем, что из-за длительного пребывания сварочной ванны в жидком состоянии трудно обеспечить стабильное получение в металле шва графита шаровидной формы. Для надежного модифицирования металла шва необходимо применять флюсы, содержащие элементы — глобуляризаторы графита. Другой путь — использование порошковых проволок, лент или присыпок с модификаторами.
Электрошлаковую технологию перспективно использовать для наплавки слоев чугуна с заданными составом и свойствами, в частности высокохромовых и высококремнистых чугунов. При этом достигают большой производительности процесса.
Газовую сварку ЧШГ осуществляют с присадкой прутков марки ПЧС-2. Используют ацетилен, пропан-бутан и другие горючие газы. Флюс ФПСН-1 можно применять при сварке любым газом. Техника сварки та же, что и для серого чугуна.
Контактную сварку применяют в производстве лито-сварных изделий из ЧШГ. Предварительный подогрев и последующая термообработка обеспечивают получение ферритно-перлитной структуры стыка без включений цементита. Предел прочности сварного соединения близок к прочности основного металла (ВЧ 45-5) и составляет 400—450 МПа. Контактной сварке хорошо поддаются КЧ и многие марки легированных чугунов.
Сварка трением. При компактной форме графита в чугуне удается получить соединения чугунных деталей между собой или со сталью. Для сварки КЧ с углеродистой сталью рекомендуется режим: частота вращения 3600 об/мин; давление на стадии нагрева 40—90 МПа; давление проковки 90 МПа, время нагрева 20—80 с. При давлении нагрева 70 МПа и времени нагрева 40 с получают соединение, равнопрочное чугуну.
Предупреждение пор и трещины
При сварке КЧ и ЧШГ с получением однородного металла шва основной мерой предотвращения холодных трещин является предварительный (иногда и сопутствующий) подогрев отливок или деталей и замедленное охлаждение после сварки. Температура подогрева варьируется в зависимости от марки чугуна, толщины стенки отливки, сложности выполняемых сварочных работ и составляет 300—700°С. Резко возрастает опасность образования трещин, если сварку производят на отливках из КЧ или ЧШГ до графитизирующего отжига при наличии свободных карбидов в структуре. Термическую обработку (отжиг или более сложную) желательно выполнить до и после проведения сварки.
Мерой повышения стойкости металла шва против образования горячих трещин является модифицирование его структуры. Так, проволока ПАНЧ-11 содержит в своем составе редкоземельные металлы, которые придают глобулярную форму неметаллическим включениям, нейтрализуют вредное действие серы.
Для исключения пор в высоконикелевых швах предупреждают попадание в них Н2 и О2. Действенными мерами являются: удаление, влаги, ржавчины, следов масла, краски со свариваемых деталей, максимальное снижение параметров режима Iсв Uд, сварка короткой дугой, применение защитных газов, подогрев до температуры 200—300 °С.