чем больше плотность жидкости тем больше жидкости
Плотность жидкостей
Приведена таблица плотности жидкостей при различных температурах и атмосферном давлении для наиболее распространенных жидкостей. Значения плотности в таблице соответствует указанным температурам, допускается интерполяция данных.
Множество веществ способны находится в жидком состоянии. Жидкости – вещества различного происхождения и состава, которые обладают текучестью, — они способны изменять свою форму под действием некоторых сил. Плотность жидкости – это отношение массы жидкости к объёму, который она занимает.
Рассмотрим примеры плотности некоторых жидкостей. Первое вещество, которое приходит в голову при слове «жидкость» — это вода. И это вовсе не случайно, ведь вода является самой распространённой субстанцией на планете, и поэтому её можно принять за идеал.
Плотность воды равна 1000 кг/м 3 для дистиллированной и 1030 кг/м 3 для морской воды. Поскольку данная величина тесно взаимосвязана с температурой, стоит отметить, что данное «идеальное» значение получено при +3,7°С. Плотность кипящей воды будет несколько меньше – она равна 958,4 кг/м 3 при 100°С. При нагревании жидкостей их плотность, как правило, уменьшается.
Жидкость | Температура, °С | Плотность жидкости, кг/м 3 |
---|---|---|
Анилин | 0…20…40…60…80…100…140…180 | 1037…1023…1007…990…972…952…914…878 |
Антифриз 65 (ГОСТ 159-52) | -60…-40…0…20…40…80…120 | 1143…1129…1102…1089…1076…1048…1011 |
Ацетон C3H6O | 0…20 | 813…791 |
Белок куриного яйца | 20 | 1042 |
Бензин | 20 | 680-800 |
Бензол C6H6 | 7…20…40…60 | 910…879…858…836 |
Бром | 20 | 3120 |
Вода | 0…4…20…60…100…150…200…250…370 | 999,9…1000…998,2…983,2…958,4…917…863…799…450,5 |
Вода морская | 20 | 1010-1050 |
Вода тяжелая | 10…20…50…100…150…200…250 | 1106…1105…1096…1063…1017…957…881 |
Водка | 0…20…40…60…80 | 949…935…920…903…888 |
Вино крепленое | 20 | 1025 |
Вино сухое | 20 | 993 |
Газойль | 20…60…100…160…200…260…300 | 848…826…801…761…733…688…656 |
Глицерин C3H5(OH)3 | 20…60…100…160…200…240 | 1260…1239…1207…1143…1090…1025 |
ГТФ (теплоноситель) | 27…127…227…327 | 980…880…800…750 |
Даутерм | 20…50…100…150…200 | 1060…1036…995…953…912 |
Желток яйца куры | 20 | 1029 |
Карборан | 27 | 1000 |
Керосин | 20 | 802-840 |
Кислота азотная HNO3 (100%-ная) | -10…0…10…20…30…40…50 | 1567…1549…1531…1513…1495…1477…1459 |
Кислота пальмитиновая C16H32O2 (конц.) | 62 | 853 |
Кислота серная H2SO4 (конц.) | 20 | 1830 |
Кислота соляная HCl (20%-ная) | 20 | 1100 |
Кислота уксусная CH3COOH (конц.) | 20 | 1049 |
Коньяк | 20 | 952 |
Креозот | 15 | 1040-1100 |
Кровь человека | 37 | 1050-1062 |
Ксилол C8H10 | 20 | 880 |
Купорос медный (10%) | 20 | 1107 |
Купорос медный (20%) | 20 | 1230 |
Ликер вишневый | 20 | 1105 |
Мазут | 20 | 890-990 |
Масло арахисовое | 15 | 911-926 |
Масло машинное | 20 | 890-920 |
Масло моторное Т | 20 | 917 |
Масло оливковое | 15 | 914-919 |
Масло подсолнечное (рафинир.) | -20…20…60…100…150 | 947…926…898…871…836 |
Мед (обезвоженный) | 20 | 1621 |
Метилацетат CH3COOCH3 | 25 | 927 |
Молоко | 20 | 1030 |
Молоко сгущенное с сахаром | 20 | 1290-1310 |
Нафталин | 230…250…270…300…320 | 865…850…835…812…794 |
Нефть | 20 | 730-940 |
Олифа | 20 | 930-950 |
Паста томатная | 20 | 1110 |
Патока вареная | 20 | 1460 |
Патока крахмальная | 20 | 1433 |
ПАБ | 20…80…120…200…260…340…400 | 990…961…939…883…837…769…710 |
Пиво | 20 | 1008-1030 |
ПМС-100 | 20…60…80…100…120…160…180…200 | 967…934…917…901…884…850…834…817 |
ПЭС-5 | 20…60…80…100…120…160…180…200 | 998…971…957…943…929…902…888…874 |
Пюре яблочное | 0 | 1056 |
Раствор поваренной соли в воде (10%-ный) | 20 | 1071 |
Раствор поваренной соли в воде (20%-ный) | 20 | 1148 |
Раствор сахара в воде (насыщенный) | 0…20…40…60…80…100 | 1314…1333…1353…1378…1405…1436 |
Ртуть | 0…20…100…200…300…400 | 13596…13546…13350…13310…12880…12700 |
Сероуглерод | 0 | 1293 |
Силикон (диэтилполисилоксан) | 0…20…60…100…160…200…260…300 | 971…956…928…900…856…825…779…744 |
Сироп яблочный | 20 | 1613 |
Скипидар | 20 | 870 |
Сливки молочные (жирность 30-83%) | 20 | 939-1000 |
Смола | 80 | 1200 |
Смола каменноугольная | 20 | 1050-1250 |
Сок апельсиновый | 15 | 1043 |
Сок виноградный | 20 | 1056-1361 |
Сок грейпфрутовый | 15 | 1062 |
Сок томатный | 20 | 1030-1141 |
Сок яблочный | 20 | 1030-1312 |
Спирт амиловый | 20 | 814 |
Спирт бутиловый | 20 | 810 |
Спирт изобутиловый | 20 | 801 |
Спирт изопропиловый | 20 | 785 |
Спирт метиловый | 20 | 793 |
Спирт пропиловый | 20 | 804 |
Спирт этиловый C2H5OH | 0…20…40…80…100…150…200 | 806…789…772…735…716…649…557 |
Сплав натрий-калий (25%Na) | 20…100…200…300…500…700 | 872…852…828…803…753…704 |
Сплав свинец-висмут (45%Pb) | 130…200…300…400…500..600…700 | 10570…10490…10360…10240…10120..10000…9880 |
Стекло жидкое | 20 | 1350-1530 |
Сыворотка молочная | 20 | 1027 |
Тетракрезилоксисилан (CH3C6H4O)4Si | 10…20…60…100…160…200…260…300…350 | 1135…1128…1097…1064…1019…987…936…902…858 |
Тетрахлордифенил C12H6Cl4 (арохлор) | 30…60…150…250…300 | 1440…1410…1320…1220…1170 |
Толуол | 0…20…50…80…100…140 | 886…867…839…810…790…744 |
Топливо дизельное | 20…40…60…80…100 | 879…865…852…838…825 |
Топливо карбюраторное | 20 | 768 |
Топливо моторное | 20 | 911 |
Топливо РТ | -60…-40…0…20…40…60…100…140…160…200 | 836…821…792…778…764…749…720…692…677…648 |
Топливо Т-1 | -60…-40…0…20…40…60…100…140…160…200 | 867…853…824…819…808…795…766…736…720…685 |
Топливо Т-2 | -60…-40…0…20…40…60…100…140…160…200 | 824…810…781…766…752…745…709…680…665…637 |
Топливо Т-6 | -60…-40…0…20…40…60…100…140…160…200 | 898…883…855…841…827…813…784…756…742…713 |
Топливо Т-8 | -60…-40…0…20…40…60…100…140…160…200 | 847…833…804…789…775…761…732…703…689…660 |
Топливо ТС-1 | -60…-40…0…20…40…60…100…140…160…200 | 837…823…794…780…765…751…722…693…879…650 |
Углерод четыреххлористый (ЧХУ) | 20 | 1595 |
Уроторопин C6H12N2 | 27 | 1330 |
Фторбензол | 20 | 1024 |
Хлорбензол | 20 | 1066 |
Этилацетат | 20 | 901 |
Этилбромид | 20 | 1430 |
Этилиодид | 20 | 1933 |
Этилхлорид | 0 | 921 |
Эфир | 0…20 | 736…720 |
Эфир Гарпиуса | 27 | 1100 |
Гидродинамика. Плотность и вязкость жидкости.
В большинстве случаев, при снижении температуры плотность растет, и все же в природе существуют вещества, чья плотность ведёт себя абсолютно противоположным образом, к примеру, вода, бронза и чугун. Так, плотность воды будет иметь наибольшую величину при 4°C и уменьшается как с ростом, так и со снижением температуры относительно этой величины.
При смене агрегатного состояния плотность вещества меняется скачкообразно: плотность возрастает при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Опять же эта закономерность не свойственная воде, кремнию, германию и некоторым другим веществам, поскольку их плотность при переходе в твердую фазу наоборот будет становиться меньше.
Динамический коэффициент вязкости воды в значительной степени зависит от температуры, но почти не зависит от давления. Величина указанного коэффициента для пресной воды, полученная расчетным путем для t, °С = 0° С, μ = 1,793·103 Па·с. Для вычисления динамического коэффициента вязкости употребляют эмпирическую формулу Пуазейля:
μ = 0,000183/(1 + 0,0337t + 0,000221t2),
причем t является температурой воды.
Не лишним будет выделить, что во многие расчетные формулы входит отношение динамического коэффициента вязкости μ к плотности жидкости ρ, такое соотношение принято обозначать как кинематический коэффициент вязкости (кинематическая вязкость):
Значения коэффициентов вязкости существенно уменьшаются с ростом температуры. Очевидно, что указанные коэффициенты вязкости отличаются для различных жидкостей. По практическому опыту известно, что вязкость масла больше, чем вязкость воды.
Плотность жидкости
Каждое жидкостное вещество владеет своими индивидуальными качествами и параметрами. В физике традиционно рассматривается определённое количество явлений, связанных с данными оригинальными параметрами.
Жидкостные вещества привычно подразделяются на две главные части:
Данные категории жидкостных веществ обладают значимыми отличиями меж собой. Капельные жидкостные вещества значительно отличимые от газообразных веществ. Данные вещества имеют конкретный объём. Величина этого объёма не изменяется под воздействием тех или иных наружных сил. В состоянии газа жидкостные вещества полностью распространяются по всему объёму, в котором они находятся. При этом аналогичная категория жидкостных веществ уменьшит или увеличит свой действительный объём в большой степени, при воздействии наружных сил и в зависимости их величины. У жидкостных веществ каждого вида присутствуют три свойства, которых данные вещества не могут лишиться:
Данные параметры имеют возможность воздействовать на множественные законы их передвижения, по данной причине эти свойства являются основными на этапе их исследования и использования информации в практических целях.
Понятие плотности жидкости
Плотность жидкости – это отношение массы жидкости к объёму, который она занимает. При поступательном повышении давления объём воды будет стремительно уменьшаться от изначального своего размера. Различие величин является ориентировочно 1 к 20 000. Аналогичная уровень данных составит показатель объёмного сжатия для других капельных жидкостных веществ. В большинстве случаев, практическая деятельность показывает, что значительных преобразований давления не случается, по этой причине общепринято не применять в практических целях сжимаемость воды во время вычислений удельного веса и плотности зависимо от давления.
Для вычисления плотности жидкостных веществ используется термин температурного расширения для капельных жидкостных веществ. Данное термин квалифицируется показателем температурного расширения, выражаемое повышение объёма жидкостных веществ при повышении температуры на 10°C. Подобным образом, основывается показатель плотности для конкретного жидкостного вещества. Данный показатель необходимо предусматривать при разном атмосферном давлении, и разных температурах.
Плотность воды
Весьма общераспространенным и часто встречавшимся в повседневной жизнедеятельности жидкостным веществом считается вода. Рассматривая главные параметры плотности и вязкости данного вещества, получаем плотность в естественных условиях равной 1000 килограмм на метр кубический. Данная величина используется в дистиллированной воде. Для морской воды величина плотности немного больше, и составляет 1030 килограмм на метр кубический. Данное значение не представляться конечным и очень тесно взаимосвязано с температурным показателем. Совершенные данные возможно фиксировать при температуре примерно +4°C.
Не нашли что искали?
Просто напиши и мы поможем
При выполнении расчётов для кипячёной воды с температурой +100°C, плотность очень значительно уменьшится и будет равна 958 килограмм на метр кубический. Экспериментально доказано, что при выполнении нагревания различных жидкостных веществ, плотность данных веществ становиться значительно меньше. Плотность воды является существенно приближённой к некоторым популярным продуктам питания. Плотность воды сравнима с винными изделиями, уксусными растворами и некоторыми молочными изделиями.
Часть продуктов питания обладают большими значениями плотности, чем вода. Но большое количество продовольственных и непродовольственных изделий, а также напитков, значительно уступающих традиционной воде. В числе которых находятся спирты и нефтяные продукты, включительно мазуты и бензиновые смеси. Для расчётов плотность определённых газообразных веществ применяются формулы состояния идеальных газов. Данные расчёты требуются в ситуациях, когда функционирование конкретных газов значительно различается с функционированием идеальных газов и явления сжижения не наблюдается.
Объём газообразного вещества обыкновенно находится в зависимости от величин давления и температурных показателей. Разница давлений, которая создаёт значительные преобразования плотности газообразных веществ, появляется во время передвижения на высоких скоростях. Обыкновенно несжимаемые газообразные вещества выражаются на скоростях, превышающих 100 м/сек. Высчитывается отношение скорости передвижения жидкостного вещества со скоростью звука. Данное вычисление разрешает сопоставлять большое количество параметров при свидетельствовании плотности любого вещества.
Вязкость жидкостных веществ
Вторым обязательным параметром каждого жидкостного вещества считается вязкость. Данное состояние жидкостного вещества способно производить противодействие любой наружной силе. Все существующие жидкостные вещества оснащены данным свойством. Вязкость формируется как внутреннее трение при сравнительном смещении частиц жидкостного вещества, которые находятся рядом. В реальности имеются как легко движущиеся жидкостные вещества, так и вещества с большой вязкость.
В первую категорию входят воздух и вода. В тяжёлых масляных веществах противодействие осуществляется на другом уровне. Вязкость возможно квалифицировать уровнем текучести жидкостного вещества. Данное явление именуют подвижностью частиц данного вещества, и этот процесс находится в полной зависимости от плотности жидкости. Вязкость жидкостных веществ в условиях лаборатории устанавливают с помощью вискозиметра. Когда вязкость жидкостного вещества находится в большой зависимости исключительно от температурных параметров, тогда различаются некоторое количество главных характеристик жидкости.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Увеличивая температурные параметры капельной жидкостного вещества, вязкость стремительно уменьшается. Вязкость газообразной жидкости при данных действиях исключительно растёт. Сила наружного трения в жидкостных веществах создаётся при соответствии скорости градиента к площади пластов, осуществляющих трение. В то же время трение в жидкостных веществах различается от явлений трения в других объектах, в частности, в объектах твёрдого вида. В твёрдых объектах сила трения зависима от стабильного давления, а не от участка поверхностей, которые трутся.
Аномальные и идеальные жидкостные вещества
Разделяют два типа жидкостных веществ, в соответствии, с их внутренними параметрами:
К идеальным жидкостным веществам относятся воображаемые жидкостные вещества, не подверженные никаким деформациям, таким образом данные вещества не имеют параметров вязкости. Для вычисления вязкости требуется ввести конкретные корректировочные показатели.
Не нашли нужную информацию?
Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.
Гарантия низких цен
Все работы выполняются без посредников, поэтому цены вас приятно удивят.
Доработки и консультации включены в стоимость
В рамках задания они бесплатны и выполняются в оговоренные сроки.
Вернем деньги за невыполненное задание
Если эксперт не справился – гарантируем 100% возврат средств.
Тех.поддержка 7 дней в неделю
Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.
Тысячи проверенных экспертов
Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».
Гарантия возврата денег
Эксперт получил деньги, а работу не выполнил?
Только не у нас!
Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока
Гарантия возврата денег
В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы
Отзывы студентов о нашей работе
«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами
Используя «Всё сдал!», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:
Принимаем к оплате
Плотность вещества
Масса
Начнем с самого сложного — с массы. Казалось бы, это понятие мы слышим с самого детства, примерно знаем, сколько в нас килограмм, и ничего сложного здесь быть не может. На самом деле, все сложнее.
В Международном бюро мер и весов в Париже есть цилиндр массой один килограмм. Материал этого цилиндра — сплав иридия и платины. Его масса равна одному килограмму, и этот цилиндр — эталон для всего мира.
Высота этого цилиндра приблизительно равна 4 см, но чтобы его поднять, нужно приложить немалую силу. Необходимость эту силу прикладывать обуславливается инерцией тел и математически записывается через второй закон Ньютона.
Второй закон Ньютона
F = ma
В этом законе массу можно считать неким коэффициентом, который связывает ускорение и силу. Также масса важна при расчете силы тяготения. Она является мерой гравитации: именно благодаря ей тела притягиваются друг к другу.
Закон Всемирного тяготения
F = GMm/R2
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6.67 × 10-11 м3 кг-1 с-2
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз. Когда думаешь об этом, хочется взвешиваться исключительно на Луне🙃
Откуда берется масса
Физики убеждены, что у элементарных частиц должна быть масса. Доказано, что у электрона, например, масса есть. В противном случае они не могли бы образовать атомы и всю видимую материю.
Вселенная без массы представляла бы собой хаос из различных излучений, двигающихся со скоростью света. Не существовало бы ни галактик, ни звезд, ни планет. Здорово, что это не так, и у элементарных частиц есть масса. Только вот пока непонятно, откуда эта масса у них берется.
Мужчину на этой фотографии зовут Питер Хиггс. Ему мы обязаны за предположение, экспериментально доказанное в 2012 году, что массу всех частиц создает некий бозон.
Бозон Хиггса невозможно представить. Это точно не частица в форме шарика, как обычно рисуют электрон в учебнике. Представьте, что вы бежите по песку. Бежать ощутимо сложно, как будто бы увеличилась масса. Частицы пробираются в поле Хиггса и получают таким образом массу.
Объем тела
Объем — это физическая величина, которая показывает, сколько пространства занимает тело. Это важный навык — уметь объемы соотносить. Например, чтобы посчитать, сколько пластиковых шариков помещается в гигантский бассейн.
Например, чтобы рассчитать объем прямоугольного параллелепипеда, нам нужно перемножить три его параметра.
Формула объема параллелепипеда
V = a*b*c
А для цилиндра будет справедлива такая формула: