чем больше хромосом тем сложнее устроен организм
Чем больше хромосом в ДНК, тем сложнее организм? Какие есть примеры?
это не правильное мнение, от количества хромосом уровень сложности не зависит. мы привыкли считать что человеческий организм наивысший по сложности организм, а растение примитивное. приведу пример который противоречит вашей гипотезе- вопросу.
вот и делайте соответствующие выводы. все таки не количество хромосом а что то другое влияет на уровень развития и сложность организма.
Организм ДНК лишить невозможно. Это примерно так, как здание лишить кирпичей. Организм просто перестанет быть именно организмом. И будет просто набором химических элементов.
Организм он и есть организмом, пока ДНК владеют им. Без ДНК нет организма.
Генетическая информация передаётся через ДНК.Дезоксирибонуклеиновая кислота-ДНК-макромолекула обеспечивающая передачу,хранение генетической информации.ДНК находится в ядре клетки.С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».В ДНК встречается четыре вида азотистых оснований.Расшифровка ДНК стала одним из поворотных моментов в биологии.
Ученые Великобритании осуществили исследования и установили следующее, уксусный альдегид который появляется в результате распада этилового спирта в теле человека способен вызывать не восстанавливаемые повреждения в ДНК. Сами клетки обладают двумя защитами способные их защитить от воздействия ацетальдегида. С помощью ферментов токсин распадается, но когда ферментов не хватает и ацетальдегид, концентрируясь осуществляет нанесение урона ДНК за счет белков Фанкони. Если белков Фанкони мало, то всему телу и так же ДНК будет нанесен существенный урон. При алкоголизме в теле скапливается ацетальдегид и он способен парализовать функцию механизмов защиты.
Я так понимаю, что это уже ученые делают и делали. Вспомните овечку Долли. Ее клонировали из клетки овцы, в которой как раз есть ДНК.
Механизм (патогенез) инфекционных заболеваний заключается в том, что вирус проникает через «входные ворота» в организм человека или животного. При воздушно-капельных инфекциях это происходит через слизистую оболочку носа, ротовой полости, глаз.
Далее вирусы попадают в кровь. Эта стадия и называется виремией (вирусемией). Как правило, появление вирусов в крови вызывает высокую температуру у заболевшего, но может происходить и во время инкубационного периода. Часть вирусов при этом могут погибать, а часть продолжает размножаться, оседает в каких-то органах или тканях, создает в них вторичный очаг. И из этого нового очага вирусы вновь могут попасть в кровяное русло (это вторичная виремия), вызывая возврат высокой температуры.
Например, при кори первичная виремия протекает кратковременно и наблюдается на третьи-пятые сутки инкубационного периода. А вторичная вирусемия знаменует уже разгар заболевания. При других инфекционных заболеваниях наблюдаются другие сроки вирусемии.
Опасность вирусемии в том, что в эту стадию некоторые инфекции могут передаваться трансмиссивным путем.
ДНК-рекордсмены: как соотносятся между собой геномы человека и червяка
МОСКВА, 4 июл — РИА Новости, Анна Урманцева. У кого геном больше? Как известно, одни существа имеют более сложное строение, чем другие, а раз все записано в ДНК, то и это тоже должно быть отражено в ее коде. Получается, человек с его развитой речью обязан быть сложнее маленького круглого червяка. Однако если сравнить нас с червяком по количеству генов, получится примерно то же самое: 20 тысяч генов Caenorhabditis elegans против 20-25 тысяч Homo sapiens.
Впрочем, может, мы не то считаем? Гены — это «коробочки», в которые упакованы нуклеотиды — «буквы» генома. Может, посчитать их? У человека 3,2 миллиарда пар нуклеотидов. А вот японский вороний глаз (Paris japonica) — красивое растение с белыми цветами — имеет в своем геноме 150 миллиардов пар оснований. Получается, что человек должен быть устроен в 50 раз проще какого-то цветка.
А двоякодышащая рыба протоптер (двоякодышащая — обладающая как жаберным, так и легочным дыханием), получается, в 40 раз сложнее, чем человек. Может, все рыбы почему-то сложнее, чем люди? Нет. Ядовитая рыба фугу, из которой японцы готовят деликатес, имеет геном в восемь раз меньше, чем у человека, и в 330 раз меньше, чем у двоякодышащей рыбы протоптер.
Остается посчитать хромосомы — но это еще сильнее запутывает картину. Как может человек по количеству хромосом быть равным ясеню, а шимпанзе — таракану?
С этими парадоксами эволюционные биологи и генетики столкнулись давным-давно. Они были вынуждены признать, что размер генома, в чем бы мы его ни пытались посчитать, поразительно не связан со сложностью устройства организмов. Этот парадокс назвали «загадкой значений С», где С — это количество ДНК в клетке (C-value paradoх, точный перевод — «парадокс величины генома»). И все-таки какие-то корреляции между видами и царствами существуют.
Ясно, например, что эукариоты (живые организмы, клетки которых содержат ядро) имеют в среднем геномы больше, чем прокариоты (живые организмы, клетки которых не содержат ядро). Позвоночные животные имеют в среднем геномы больше, чем беспозвоночные. Однако тут есть исключения, которые никто пока не смог объяснить.
Были предположения, что размер генома связан с продолжительностью жизненного цикла организма. Некоторые ученые утверждали на примере растений, что многолетние виды имеют более крупные геномы, чем однолетние, причем обычно с разницей в несколько раз. А самые маленькие геномы принадлежат растениям-эфемерам, которые проходят полный цикл от рождения до смерти в течение нескольких недель. Этот вопрос сейчас активно обсуждается в научных кругах.
Поясняет ведущий научный сотрудник Института общей генетики им. Н. И. Вавилова Российской академии наук, профессор Техасского агромеханического университета и Гёттингенского университета Константин Крутовский: «Размер генома не связан с продолжительностью жизненного цикла организма! Например, есть виды внутри одного рода, которые имеют одинаковый размер генома, но могут различаться по продолжительности жизни в десятки, если не сотни раз. В целом есть связь размера генома с эволюционной продвинутостью и сложностью организации, но со множеством исключений. В основном размер генома связан с плоидностью (копийностью) генома (причем полиплоиды встречаются и у растений, и у животных) и количеством высокоповторяющейся ДНК (простые и сложные повторы, транспозоны и другие мобильные элементы)».
Есть также ученые, которые придерживаются другой точки зрения на этот вопрос.
Комментирует Андрей Синюшин, кандидат биологических наук, доцент кафедры генетики биологического факультета МГУ имени М. В. Ломоносова:
«Есть впечатление, что размер генома хотя и влияет на некоторые показатели организма, не решает ничего однозначно. Иначе «парадокс величины генома» и не был бы парадоксом. Рост и развитие организма связаны с делением клеток. Каждому делению клетки предшествует удвоение ДНК — копирование всех ее «букв» — нуклеотидов. Поэтому логика проста: чем больше у клетки ДНК (независимо от ее содержания), тем медленнее будет делиться такая клетка и происходить рост организма, состоящего из таких клеток.
Чем больше хромосом тем сложнее устроен организм
Проанализируйте таблицу «Размеры геномов и эволюционный возраст организмов».
Размеры геномов и эволюционный возраст организмов
Уровень организации | Минимальный размер (млн лет назад) | |
---|---|---|
Эукариоты | 9,2 | 2000 |
Животные | 19,6 | 1250 |
Хордовые | 68,6 | 575 |
Позвоночные | 342 | 540 |
Тетраподы | 931 | 375 |
Амниоты | 951 | 315 |
Млекопитающие | 1695 | 220 |
Приматы | 2215 | 65 |
Выберите утверждения, которые можно сформулировать на основании анализа представленных данных. Запишите в ответе номера выбранных утверждений.
1) Чем эволюционно моложе организм, тем больше у него минимальный размер генома.
2) Эукариоты устроены сложнее, чем прокариоты.
3) Размер генома прямо пропорционален размеру животного.
4) Приматы — эволюционно наиболее молодая группа из представленных.
5) Все амниоты — тетраподы.
На основании анализа представленных данных верные утверждения:
4) Приматы — эволюционно наиболее молодая группа из представленных.
Хромосомные нарушения
Наша команда профессионалов ответит на ваши вопросы
Данная брошюра содержит информацию о том, что такое хромосомные нарушения, как они могут наследоваться, и какие проблемы могут быть с ними связаны. Данная брошюра не может заменить Ваше общение с врачом, однако она может помочь Вам при обсуждении интересующих Вас вопросов.
Для того, чтобы лучше понять, что представляют собой хромосомные нарушения, вначале будет полезно узнать, что такое гены и хромосомы.
Что такое гены и хромосомы?
Наше тело состоит из миллионов клеток. Большинство клеток содержат полный набор генов. У человека тысячи генов. Гены можно сравнить с инструкциями, которые используются для контроля роста и согласованной работы всего организма. Гены отвечают за множество признаков нашего организма, например, за цвет глаз, группу крови или рост.
Гены расположены на нитевидных структурах, называемых хромосомами. В норме в большинстве клеток организма содержится по 46 хромосом. Хромосомы передаются нам от родителей – 23 от мамы, и 23 от папы, поэтому мы часто похожи на своих родителей. Таким образом, у нас два набора по 23 хромосомы, или 23 пары хромосом. Так как на хромосомах расположены гены, мы наследуем по две копии каждого гена, по одной копии от каждого из родителей. Хромосомы (следовательно, и гены) состоят из химического соединения, называемого ДНК.
Рисунок 1: Гены, хромосомы и ДНК
Рисунок 2: 23 пары хромосом, распределенные по размеру; хромосома под номером 1 – самая большая. Две последние хромосомы – половые.
Хромосомные изменения
Правильный хромосомный набор является очень важным для нормального развития человека. Это связано с тем, что гены, которые дают «инструкции к действиям» клеткам нашего организма, находятся на хромосомах. Любое изменение количества, размера или структуры наших хромосом может означать изменение количества или последовательности генетической информации. Такие изменения могут привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка.
Хромосомные изменения могут быть унаследованы от родителей. Чаще всего хромосомные изменения возникают на этапе формирования яйцеклетки или сперматозоида, или при оплодотворении (вновь возникшие мутации, или мутации de novo). Эти изменения невозможно контролировать.
Существует два основных типа хромосомных изменений. Изменение числа хромосом. При таком изменении существует увеличение или уменьшение числа копий какой-либо хромосомы. Изменение структуры хромосом. При таком изменении материал какой-либо хромосомы поврежден, или изменена последовательность генов. Возможно появление дополнительного или утрата части исходного хромосомного материала.
В данной брошюре мы рассмотрим хромосомные делеции, дупликации, инсерции, инверсии и кольцевые хромосомы. Если Вас интересует информация о хромосомных транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».
Изменение числа хромосом.
В норме в каждой клетке человека содержится 46 хромосом. Однако, иногда ребенок рождается либо с большим, либо с меньшим числом хромосом. В таком случае возникает, соответственно, либо избыточное, либо недостаточное число генов, необходимых для регуляции роста и развития организма.
Один из наиболее распространенных примеров генетического заболевания, вызванного избыточным числом хромосом, является синдром Дауна. В клетках людей с этим заболеванием находится 47 хромосом вместо обычных 46-ти, так как присутствует три копии 21-ой хромосомы вместо двух. Другими примерами заболеваний, вызванных избыточным числом хромосом являются синдромы Эдвардса и Патау.
Рисунок 3: Хромосомы девочки (последняя пара хромосом ХХ) с синдромом Дауна. Видны три копии 21-ой хромосомы вместо двух.
Изменение структуры хромосом.
Изменения в структуре хромосом происходят, когда материал определенной хромосомы поврежден, или изменена последовательность генов. К структурным изменениям также относятся избыток или утрата части хромосомного материала. Это может происходить несколькими путями, описанными ниже.
Изменения структуры хромосом могут быть очень небольшими, и специалистам в лабораториях бывает сложно их выявить. Однако даже если структурное изменение найдено, часто бывает сложно предсказать влияние этого изменения на здоровье конкретного ребенка. Это может разочаровать родителей, которые хотят получить исчерпывающую информацию о будущем своего ребенка.
Транслокации
Если Вы хотите больше узнать о транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».
Делеции
Термин «хромосомная делеция» означает, что часть хромосомы утрачена или укорочена. Делеция может случиться в любой хромосоме и на протяжении любой части хромосомы. Делеция может быть любого размера. Если утраченный при делеции материал (гены) содержал важную информацию для организма, то у ребенка могут возникать трудности в обучении, задержка развития и другие проблемы со здоровьем. Тяжесть этих проявлений зависит от размеров утраченной части и локализации внутри хромосомы. Примером такого заболевания является синдром Жубер.
Дупликации
Термин «хромосомная дупликация» означает, что часть хромосомы удвоена, и из-за этого возникает избыток генетической информации. Этот избыточный материал хромосомы означает, что организм получает слишком большое число «инструкций», и это может привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка. Примером заболевания, вызванного дупликацией части хромосомного материала является моторно-сенсорная нейропатия типа IA.
Инсерции
Хромосомная инсерция (вставка) означает, что часть материала хромосомы оказалась «не на своем месте» на этой же или на другой хромосоме. Если общее количество хромосомного материала не изменилось, то такой человек, как правило, здоров. Однако если такое перемещение приводит к изменению количества хромосомного материала, то у человека могут возникать трудности в обучении, задержка развития и другие проблемы здоровья ребенка.
Кольцевые хромосомы
Термин «кольцевая хромосома» означает, что концы хромосомы соединились, и хромосома приобрела форму кольца ( внорме хромосомы человека имеют линейную структуру). Обычно это происходит, когда оба конца одной и той же хромосомы укорочены. Оставшиеся концы хромосомы становятся «липкими» и соединяются, формируя «кольцо». Последствия формирования кольцевых хромосом для организма зависят от размера делеций на концах хромосомы.
Инверсии
Хромосомная инверсия означает такое изменение хромосомы, при котором часть хромосомы развернута, и гены в этом участке расположены в обратном порядке. В большинстве случаев носитель инверсии здоров.
Если у родителя обнаружена необычная хромосомная перестройка, как это может отразиться на ребенке?
Возможны несколько исходов каждой беременности:
Таким образом, у носителя хромосомной перестройки могут рождаться здоровые дети, и во многих случаях происходит именно так. Так как каждая перестройка уникальна, Вашу конкретную ситуацию следует обсудить с врачом–генетиком. Часто бывает, что ребенок рождается с хромосомной перестройкой, несмотря на то, что хромосомный набор родителей нормальный. Такие перестройки называют вновь возникшими, или возникшими “de novo” (от латинского слова). В этих случаях риск повторного рождения ребенка с хромосомной перестройкой у этих же родителей очень мал.
Диагностика хромосомных перестроек
Возможно проведение генетического анализа для выявления носительства хромосомной перестройки. Для анлиза берется образец крови, и клетки крови исследуют в специализированной лаборатории для выявления хромосомных перестроек. Такой анализ называется кариотипированием. Также возможно проведение теста во время беременности для оценки хромосом плода. Такой анализ называется пренатальной диагностикой, и этот вопрос следует обсудить с врачом-генетиком. Более подробная информация на эту тему представлена в брошюрах «Биопсия ворсин хориона» и «Амниоцентез».
Как это касается других членов семьи
Если у одного из членов семьи обнаружена хромосомная перестройка, возможно, Вы захотите обсудить этот вопрос с другими членами семьи. Это даст возможность другим родственникам, при желании, пройти обследование (анализ хромосом в клетках крови) для определения носительства хромосомной перестройки. Это может быть особенно важно для родственников, уже имеющих детей или планирующих беременность. Если они не являются носителями хромосомной перестройки, они не могут передать ее своим детям. Если же они являются носителями, то им может быть предложено пройти обследование во время беременности для анализа хромосом плода.
Некоторым людям сложно обсуждать проблемы, связанные с хромосомной перестройкой, с членами семьи. Они могут бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.
Y-хромосома деградирует: исчезнут ли мужчины?
Поделиться:
Как и когда определяется, родится ли существо мужского пола или женского? Сейчас практически любой школьник ответит, что все дело в хромосомах и клетки уже в момент зачатия «знают», станут они в итоге мужской особью или женской. Однако всего сто с небольшим лет назад это не было столь очевидно — а примерно через пять миллионов лет может стать совсем неактуально. Почему?
Двойное открытие
7 июля 1861 года в США родилась Нетти Мария Стивенс, без сомнения, одна из умнейших женщин своего времени. Она окончила сперва Уэстфильдскую нормальную школу (позднее эта школа получила статус университета), затем обучалась в Стэнфордском университете, который и сейчас считается одним из лучших в мире.
После получения степени магистра Нетти Стивенс посвятила свою жизнь изысканиям в области цитологии и генетики. Именно она в начале XX века обнаружила, что животные разных полов отличаются друг от друга на хромосомном уровне (эти исследования стали темой ее докторской диссертации). В частности, мисс Стивенс выяснила, что у женских особей (человека) наличествуют две большие хромосомы X.
Читайте также:
Редактирование генома человека
Параллельно с ней работал и другой ученый — Эдмунд Бичер Уилсон. Он, что характерно, исследовал вопрос «с мужской стороны» и установил, что мужской генотип включает хромосомы X и Y. В результате первооткрывателями половых хромосом считаются два ученых, мужчина и женщина. Довольно символично.
Размер имеет значение
Итак, хромосомы X у женщин — большие. В чем смысл этого высказывания? А, собственно, в том, что половые хромосомы достаточно сильно различаются в размерах, да и функциональности тоже.
Y-хромосома намного меньше X (59 миллионов пар нуклеотидов против более 150 миллионов), и «незаменимой» информации она содержит немного — всего один-единственный ген SRY, который и определяет мужской пол организма. Все остальные гены Y-хромосомы, которых не более нескольких десятков, — фактически, дополнительные копии уже имеющихся в хромосоме X. Это не означает, что они не пригодятся, но самому организму нет разницы, в какой хромосоме их в случае надобности брать. Получается, что Y-хромосома, по сути, не нужна для жизни — женщины прекрасно справляются и без нее.
Всегда ли хромосома Y уступала в размере Х-хромосоме? Ответ на этот вопрос отрицательный. Когда-то X и Y были равнозначными, но с тех пор немало воды утекло, и вместе с этим всем утекло абсолютное большинство генов из мужской половой хромосомы. Проще говоря, Y-хромосома деградирует, и при текущей скорости деградации, замечают ученые из Кентского университета, за каких-то 4,6 миллиона лет может и вовсе закончиться. За ненадобностью.
Дело в том, что Y — это единственная хромосома, у которой нет копии. Все остальные хромосомы парные. Биологический смысл такого копирования в том, что оно помогает избежать опасных мутаций. Если в некой хромосоме случайно мутировал какой-то ген, то в организме имеется вторая хромосома, в которой с большой вероятностью этот ген не изменялся, соответственно генотип не страдает. С мужской половой хромосомой такой фокус не проходит: нет ножек — нет мультиков, в смысле нет копий — нет возможности починиться за их счет, переходим к пункту «деградация».
Наполовину полон
Впрочем, не все так плохо. Эволюция — хитрая дама, и к мужчинам она явно питает некоторую слабость, поэтому даже если хромосома Y полностью исчезнет, мужчины вряд ли исчезнут вместе с ней. Скорее всего, в этом случае определяющий пол ген просто перейдет в другую хромосому, а почему бы нет. Или его функции и вовсе возьмет на себя другой ген, это тоже реально.
Соответствующий эксперимент проводила научная группа из Гавайского университета и Университета Экс-Марсель (Франция), которая взяла да и создала самцов мыши без Y-хромосомы вообще. При этом животные сохранили фертильность, и их потомство вполне себе размножалось, хоть и не без помощи репродуктивных технологий — но, в конце концов, кого сейчас этими технологиями напугаешь. С нынешним прогрессом в сфере генетики, может быть, уже наши внуки будут растить в пробирках идеальных детей, которые будут учиться на одни пятерки, а мы все равно будем недовольны, потому что в наше-то время дети были детьми и били стекла футбольными мячами, а не вот это вот всё.
Ну и, конечно, нельзя сбрасывать со счетов защитные механизмы — даже если мужская половая хромосома сейчас и деградирует, но кто ей мешает «взяться за ум» и перестать это делать? Или вообще, наоборот, начать развиваться снова? А даже если она этого не сделает, ну и что — полностью она может исчезнуть, как сказали ученые, только через 4,6 миллиона лет, а до этого еще поди доживи. Или ишак сдохнет, или падишах. Так что открытие Нетти Стивенс и Эдмунда Уилсона будет актуально еще многие и многие тысячелетия.