чем amoled лучше ips
AMOLED, или все же IPS: выгорание, ШИМ, боль в глазах и DC Dimming
Еще пару лет назад AMOLED матрицами оснащались лишь флагманские смартфоны, однако сейчас данная технология добралась и до среднебюджетных устройств. В связи с этим пользователи мобильных гаджетов все чаще задаются вопросами о различиях матриц, их качестве и вреде здоровью. Сегодня мы расскажем о достоинствах и недостатках AMOLED матриц, мерцании, технологии DC Dimming, а также сравним их с привычными IPS дисплеями.
В чем кроется основная разница OLED и IPS матриц?
реклама
Кроме IPS, наиболее распространенными матрицами среди смартфонов являются AMOLED, а у компании Samsung – Super AMOLED, но все это лишь разные маркетинговые формулировки одной технологии изготовления дисплеев под названием OLED.
Независимо от доработок производителей, OLED – это активные матрицы на органических светодиодах. Каждый пиксель в них является обособленным – он светится и меняет цвет независимо от соседних пикселей.
Более «обкатанная» временем технология под названием IPS подразумевает наличие двух отдельных слоев: жидких кристаллов и подсветки – именно в этом кроется главное отличие этого типа матриц.
Преимущества OLED дисплеев
Во-первых, как было упомянуто ранее, каждый пиксель в OLED матрицах подсвечивается самостоятельно. Это способствует более низкому энергопотреблению гаджета, ведь неиспользуемые пиксели просто отключаются. Напомним, именно на OLED дисплеях применение темной темы несколько увеличивает автономность смартфона.
реклама
Во-вторых, благодаря отключению отдельных пикселей появилась функция Always On Display, которая отображает самую важную информацию даже на выключенном дисплее без высокого потребления энергии.
В-третьих, качественно откалиброванные матрицы имеют лучшую цветопередачу – черный и белые цвета обретают естественный вид под любыми углами обзора.
В-четвертых, из-за отсутствия дополнительного слоя с подсветкой, производителям удалось значительно снизить толщину матрицы. А потому в смартфоны научились встраивать сканер отпечатков пальцев прямо под дисплей. Кроме того, некоторые бренды работают над созданием фронтальной камеры, также спрятанной под экран. На IPS матрицах все это, на данный момент, невозможно.
Немного о недостатках OLED матриц
Несмотря на то, что OLED матрицы в смартфонах используются уже на протяжении 10 лет, они имеют ряд серьезных недостатков. Самый очевидный – стоимость. Изготовление OLED панелей обходится значительно дороже IPS, потому AMOLED и Super AMOLED дисплеями до недавнего времени оснащались лишь флагманские устройства.
реклама
Казалось бы, где флагманы, и где бюджетные смартфоны? Основная проблема заключается в том, что даже несмотря на растущую популярность AMOLED матриц в бюджетных и средне бюджетных смартфонах, замена разбитого AMOLED экрана может обойтись в 2-3 раза дороже IPS.
Вторая достаточно серьезная проблема OLED матриц – выгорание пикселей. Они, в настоящее время, имеют свойство памяти. Если дисплей будет отображать статичную картинку на протяжении нескольких минут, то в следующем кадре будут видны части прошлого изображения. Если же включенный экран в бездействии продержать несколько десятков часов – пиксели матрицы могут начать выгорать. Чаще всего выгоранию подвергаются синие пиксели, что негативно сказывается на качестве цветопередачи матрицы в дальнейшем.
ШИМ и его вред для вашего здоровья
Все дело в том, что уровень подсветки в OLED дисплеях остается неизменным всегда – таковы конструктивные особенности данных матриц. Но как же тогда затемняется матрица в смартфоне, если начать самостоятельно регулировать яркость? Тут на помощь приходит ШИМ – широтно-импульсная модуляция. Таким образом, уровень яркости AMOLED дисплея определяется не интенсивностью подсветки, а количеством выключений и включений пикселей за секунду. Человеческий глаз не способен заметить мерцания визуально, так как частота ШИМ в среднем составляет 200 колебаний в секунду.
реклама
Важно отметить, что многие производители смартфонов задействуют ШИМ в своих смартфонах не постоянно, а только ниже определенного порога яркости. Так, iPhone с OLED дисплеями способны понижать напряжение матрицы до 50%, что позволяет комфортно использовать устройство без какого-либо ущерба для глаз.
Тем не менее, на яркости ниже 50% абсолютно каждый дисплей начинает мерцать, и некоторые пользователи с наиболее чувствительным зрением отмечают усталость и сухость в глазах после использования смартфона с AMOLED дисплеем.
На графике отчетливо видно, как с понижением яркости увеличивается количество мерцаний за определенный промежуток времени.
Технология DC Dimming, а также другие способы обезопасить здоровье
Если же вы купили смартфон с AMOLED дисплеем и испытываете неприятные ощущения в глазах, либо же только присматриваетесь к новому гаджету – данный раздел определенно будет полезным. Прежде всего важно понимать, что воздействию ШИМ подвержена достаточно малая часть пользователей. И даже если вы входите в эту группу, то чтобы это понять потребуется несколько суток использования смартфона.
Существует несколько способов обезопасить свое зрение, и начнем с самого неоднозначного – переход на устройство с IPS. Этот вариант имеет место быть только в том случае, если использование OLED матриц вызывает серьезный дискомфорт, а именно головные боли, рябь и сухость в глазах. Если же вы без ощутимых проблем используете устройства с OLED, но хотите обезопасить свое зрение – старайтесь использовать гаджет на яркости свыше 50%. Как можно понять из графика выше, чем выше яркость – тем ниже частота мерцания. Но и злоупотреблять этим правилом также не стоит – максимальная яркость дисплея при длительном использовании способствует выгоранию пикселей.
Начать хотелось бы с важной и весьма эффективной функции под названием DC Dimming. К сожалению, данная технология реализована далеко не на каждом смартфоне с AMOLED матрицей – обращайте на это внимание при покупке. Она позволяет регулировать яркость дисплея при помощи изменения напряжения на всем промежутке, минимизируя ШИМ. Единственным недостатком использования DC Dimming является ухудшение цветопередачи матрицы.
Также есть возможность уменьшить мерцания при помощи различных программ. Они накладывают черный фильтр поверх изображения, перед этим повысив яркость дисплея до максимума. В таком случае ШИМ действительно уменьшается, правда, вместе с ресурсом матрицы из-за максимальной яркости.
Отметим, в случае с iPhone подобных режимов по уменьшению мерцаний в настройках не предусмотрено. Паниковать не стоит – в смартфонах от Apple это частично и так реализовано. Как мы помним, на яркости до 50% iPhone вовсе не задействуют ШИМ, а значит пользоваться устройством в условиях достаточной освещенности будет максимально комфортно любому пользователю.
В случае с использованием смартфона в полной темноте, где даже 50% яркости воспринимается очень ярко и некомфортно, на помощь приходит предусмотренная утилита в настройках под названием Фильтры. Активируя опцию «Понижение точки белого», так дисплей устройства становится ощутимо тусклее. А чтобы не тратить каждый раз свое время на включение опции в настройках, ее можно установить на тройное нажатие кнопки питания.
Какой итог?
В настоящее время трудно говорить о силе воздействия ШИМ на зрение человека, ведь многие пользователи на протяжении нескольких лет используют смартфоны с AMOLED дисплеями и не испытывают проблем со здоровьем. В данном материале мы постарались лишь подробно рассказать вам о всех особенностях, преимуществах и недостатках OLED дисплеев в смартфонах. Надеемся, мы ответили на многие интересующие вас вопросы.
Какой дисплей лучше: OLED или IPS. Примеры и тесты
AMOLED-экраны становятся доступнее, сменяя обычные жидкокристаллические дисплеи даже в дешёвой технике.
Хорошо ли это? Попробуем разобраться в теории, а потом проверить на практике.
Все очень неоднозначно. Вы точно удивитесь, прочитав этот материал.
Какие бывают экраны?
Строение основных типов дисплеев
Дисплеи современной электроники постоянно эволюционировали. Электронно-лучевые трубки вымерли, им на смену пришли жидкие кристаллы и светодиоды.
Сегодня на рынке одновременно сосуществуют как минимум 4 крупных класса экранов со своей технологией изготовления и особенностями отображения картинки.
TN (Twisted Nematic). Самый доступный дисплей, использующий для создания изображения жидкие кристаллы, изображение на которых становится видимым благодаря подсветке из ламп – накаливания, люминисцентных и других. Этот класс устарел, хотя в ряде сценариев использования не имеет аналогов.
STN (Super Twisted Nematic), а так же Double STN и DSTN (Dual-ScanTwisted Nematic). Продолжение ЖК-экранов с улучшенными параметрами. В продаже встречаются под названием обычных TN.
IPS (In-Plane Switching). Разновидность ЖК, в котором используется более равномерная и яркая светодиодная подсветка.
VA (Vertical Alignment). Фирменная матрица Philips, которая совмещает преимущества IPS и TN-матриц. Характеристики находятся где-то посередине между ними, как и достоинства с недостатками. Не применяется в компактной электронике.
AMOLED (Active Matrix Organic Light-Emitting Diode). Вместо двухслойной матрицы «жидкие кристаллы + подсветка», в технологии используется один слой органических светодиодов: они дают и цвет, и свет.
Особенности IPS, о которых нужно знать
Принципиальное устройство IPS-экрана
IPS-матрицы получили столь широкое распространение благодаря тому, что их действительно легко выпускать. В числе их плюсов:
Доступность. Массовое производство делает свое дело, позволяя использовать для создания IPS предприятия по выпуску TN-матриц прошлого.
Цветопередача. Жидкие кристаллы могут отображать очень много оттенков, а LED отлично дополняет возможности, точно подсвечивая текущее положение пикселей. К тому же, опыт инженеров позволил превратить IPS-матрицы в самые точные дисплеи. Правда, пока дело не касается черного цвета.
Энергопотребление. Жидкие кристаллы, формирующие картинку на IPS экране, почти не потребляют ток. Основным потребителем энергии являются диоды подсветки.
Долговечность. Жидкие кристаллы не подвержены процессу старения и износа. Светодиоды подсветки также обладают огромным ресурсом.
Хорошо видна неравномерность подсветки
Тем не менее, у IPS достаточно много теоретических и фактических недостатков:
Черный цвет. У TN-матрицы не может быть чисто черного цвета: под слоем цветоизлучателя все равно есть подсветка, которая образует шлейф изображения.
Низкая контрастность. Низкая глубина черного не позволяет точно разделять оттенки серого, они смешиваются. К тому же, подсветка имеет узкий диапазон светимости, который приводит к низкой разнице между самым ярким и самым темным пикселями.
Большое время отклика. В данном случае проблема полностью в подсветке: её светодиоды просто не успевают быстро срабатывать.
Особенности AMOLED, о которых нужно знать
Принципиальное устройство AMOLED-экрана
В свою очередь [A]MOLED обладает собственным рядом болезней: независимые светодиоды и вред, и благо. Так, среди плюсов:
Раздельное свечение пикселей. Один пиксель – один светодиод, который не светится при отображении черного, обеспечивая почти бесконечный контраст.
Высокая скорость. Раздельное управление пикселями способствует достижению большей частоты смены кадров, которая достигается довольно сложными схемами управления.
Низкое энергопотребление. Темные участки для AMOLED требуют меньшего потребления энергии, а черные не потребляют ничего. И наоборот, белый цвет крайне разорителен для них.
Неравномерный размер светодиодов приводит к артефактам
Тем не менее, существующие технологии оставляют ряд «детских болезней», которые пока не могут быть устранены.
ШИМ. Все светодиоды светятся импульсами. При низкой яркости дисплея это становится заметно. В IPS это решается рядами синхронной подсветки, но в AMOLED приходится искать баланс: или яркое свечение с синим оттенком (он лучше различим человеческому глазу), или низкая частота «мигания» диодов (высокая нагрузка на глаза).
Баланс белого. Синие светодиоды быстрее выгорают из-за технологических особенностей, поэтому AMOLED-экраны страдают неверным цветоотображением (иногда в качестве превентивных мер).
Эффект памяти. Статичная картинка заставляет органические светодиоды терять яркость, что со временем приводит к появлению артефактов.
PenTile. Попытка решить проблему синих светодиодов привело к использованию разного числа субпикселей. И это видно при низкой яркости.
Как и что будем тестировать?
Для чистоты эксперимента и наиболее корректного сравнения 2 типов экранов будем испытывать смартфоны. Именно они используют наиболее качественные матрицы: маленькие дисплеи проще сделать, чем огромные ТВ-панели.
В роли испытуемых выступят 2 смартфона Xiaomi: в левом углу ринга Mi 8 с AMOLED-матрицей, в правом – упрощенный Mi 8 Lite с IPS-экраном.
Принадлежность устройств одному производителю и поколению даёт примерное представление о развитии технологий в срезе.
Более доступный Mi 8 Lite дешевле не в последнюю очередь благодаря экрану, но для сохранения позиции субфлагман должен оснащаться максимально качественной матрицей. Не хуже, чем у флагмана.
Яркость и особенности работы
IPS-экран Mi 8 Lite (слева), AMOLED-экран Mi 8 (справа)
Экраны смартфонов полностью идентичны по размерам и разрешению, отличаясь только размером «выреза» под фронтальную камеру. Это позволяет детально рассмотреть параметры.
И делать мы это будем не в лабораторных, а в боевых условиях сложного освещения, так нагляднее и интереснее. Особенно когда дело касается наиболее важного: яркости, равномерности подсветки и четкости изображения.
AMOLED-экран Mi 8
Как видно на фото выше, даже OGS-экран (без воздушной прослойки) Mi 8 Lite бликует больше. Причина – 3 слоя экрана: защитное стекло, слой жидких кристаллов, подсветка.
Более равномерная подсветка позволяет достигнуть большей видимой плотности цвета, который на Mi 8 с AMOLED выглядит «жирнее». Все дело в том, что яркость, контраст и динамический диапазон действительно выше даже при сходных уровнях.
IPS-экран Mi 8 Lite
Если обратить внимание, шрифты на AMOLED-экране более четкие, прорисованы резче. Причем и в случаях со сложными цветами, тусклыми оттенками.
Тем не менее, фоновые участки на жидкокристаллическом дисплее проработаны лучше, мягкие переходы ярче и различимее.
Артефакты, которые не видно
AMOLED-экран Mi 8: Pentile
Макроснимки даже при максимальной яркости выявляют недостатки каждого из типа дисплеев.
Матрица из органических светодиодов, использованная Xiaomi, демонстрирует свою структуру. Глаз обычно не замечает неравномерную яркость пикселей, но белый фон и камера проявляют дефект.
Тот самый Pentile, который характерен для всех аналогичных экранов, может быть видимым, или нет. Но так или иначе, эта структура используется во всех массовых дисплеях.
IPS-экран Mi 8 Lite: видимая пиксельная сетка
Жидкокристаллическая матрица показывает свою структуру на любом цвете, при любой яркости. Но пиксельная сетка не напрягает глаза, в отличие от неравномерной яркости.
К тому же, повышение частоты подсветки за 60 Гц практически лишает IPS-панель основного недостатка. У AMOLED этот финт проходит тяжелее, все равно раздражающе действуя на глаза.
Цвет: где правильный?
IPS-экран Mi 8 Lite (слева), AMOLED-экран Mi 8 (справа), холодная схема цветов
С цветами разных типов экранов все не так гладко, как кажется. Повсеместно считается, что AMOLED обладает ядовитой гаммой, IPS лучше поддаётся наладке и предлагает максимально точную гамму.
На практике все подтверждается человеческим глазом и оказывается с точностью до наоборот при изучении через оптические приборы.
IPS-экран Mi 8 Lite (слева), AMOLED-экран Mi 8 (справа), стандартная схема цветов
Все дело в коварстве покрытий защитного стекла: разработчикам удалось за счет олеофобного покрытия «смягчить» белый на AMOLED-панели Mi 8.
То же покрытие от жирных следов на стекле Mi 8 Lite даёт противоположный эффект, серьезно искажая гамму в холодный спектр.
Подобное поведение проявляется при любых настройках цветовой гаммы. В чем же дело?
IPS-экран Mi 8 Lite (слева), AMOLED-экран Mi 8 (справа), теплая схема цветов
Экран Mi 8 Lite слишком сильно бликует из-за раздельной структуры, тогда как гамма Mi 8 не нуждается в коррекции. Отсутствие прослоек позволяет дисплею показывать то, что предполагали разработчики вне зависимости от внешних условий.
Макрофотографии только подтверждают сказанное. С поправкой на общую яркость, уровни яркости Mi 8 всегда выше.
Посмотрим под углом
IPS-экран Mi 8 Lite: цвета прозрачные, правильный белый
Более тщательное изучение с близкого расстояния меняет позиции жидкокристаллических матриц: теперь AMOLED бликует, IPS – нет.
Только тогда становится понятно, что реальной разницы между балансом белого у экранов нет, всё зависит от внешних искажений и восприятия.
Подбор другого объектива и условий съемки повернет ситуацию в иную сторону. Поэтому именно структура и частота обновления будут определять качество цветопередачи.
AMOLED-экран Mi 8: цвета насыщенные, правильный черный
В данном случае AMOLED придется несладко, поскольку повышение скорости съемки оставит белый цвет белым у IPS, и радужным у матрицы из органических светодиодов.
Возвращаясь к заголовку, придется отметить: видимых проблем при изменении угла обзора нет у матриц обоих типов. Неудивительно, слишком уж высокая частота обновления и плотность пикселей.
При низких разрешениях IPS продемонстрирует проблемы черного именно под углом.
Что выбрать и почему?
IPS-экран Mi 8 Lite (слева), AMOLED-экран Mi 8 (справа)
Подводить итоги сравнения матриц достаточно сложно. Для человеческого глаза в лабораторных условиях изображение на качественной AMOLED и качественном IPS будут полностью идентичны.
Тем не менее, при длительном использовании именно IPS станет самым надёжным. AMOLED, хотя не раздражает на первый взгляд, может приводить к усталости глаз, а также сильнее подвержен выгоранию. Но только в тех случаях, когда используется некачественный экран с низким разрешением и частотой обновления. При прочих равных разницы в качестве изображения нет.
А вот широкое распространение AMOLED-матриц обусловлено 3 причинами: маркетингом, необходимостью снижения себестоимости за счет массового выпуска и энергопотреблением.
Поэтому, если бы не мода, мы все бы продолжали покупать флагманские смартфоны с IPS. И проблем бы не знали.
Мнение автора может не совпадать с мнением редакции.
IPS против AMOLED — выбираем лучший экран для смартфона
После выхода статьи об OLED-экранах, один из наших читателей попросил рассказать о том, какой экран современных смартфонов лучше — IPS или AMOLED (он же — Super AMOLED, Dynamic AMOLED или XDR OLED).
Вначале я не планировал писать об этом подробный материал, так как был уверен, что в интернете информации на эту тему предостаточно. Но затем решил немного погуглить и то, что я обнаружил, кардинально изменило мое мнение.
Помимо того, что многие статьи написаны людьми, не представляющими, как работают экраны, большая часть этого материала содержит уже неактуальную информацию, перепечатываемую снова и снова.
В своей статье я постараюсь максимально просто и понятно объяснить принцип работы экранов современных смартфонов, а в конце мы сравним все преимущества и недостатки каждой технологии, чтобы выбор следующего смартфона вы смогли сделать более осознанно.
Только в самом начале я бы хотел сделать важное замечание. Дабы избежать излишней сложности и сделать статью понятной для каждого читателя, я умышленно буду делать ряд упрощений и упускать некоторые детали, не имеющие ключевой важности для понимания темы.
И последнее. Если вас не интересуют все технические подробности устройства экранов, просто промотайте статью к тому месту, где мы будем делать практические выводы и ответим на вопрос — что же лучше: IPS или AMOLED.
Что такое IPS, AMOLED или Super AMOLED и почему важно их различать?
Не стоит объяснять, почему экран является одним из важнейших компонентов смартфона. Но проблема заключается в том, что экраны не просто разделяются на «дешевые и дорогие» или «хорошие и плохие». Существуют два принципиально разных типа дисплеев, которые широко распространены сегодня в мобильных телефонах. И стоимость не является их ключевым отличием.
Речь идет об экранах на основе жидких кристаллов (LCD-дисплеи) и экранах на базе органических светодиодов (OLED-дисплеи). Во всех смартфонах используются варианты либо первого, либо второго типа.
Наиболее известные смартфоны с LCD-дисплеями — это продукты компании Apple, а также средне-бюджетные и бюджетные Android-смартфоны:
Я специально не упоминал слово IPS, так как IPS — это лишь разновидность основной технологии LCD. Помимо IPS, бывают и другие типы экранов, такие как: S-IPS, LTPS, PLS и пр. Но все они являются дисплеями на основе жидких кристаллов и построены по одному и тому же базовому принципу.
Если же говорить об OLED-экранах, то их можно встретить практически на всех без исключения флагманах и даже в смартфонах средней ценовой категории. Речь идет о таких популярных смартфонах, как:
В свою очередь, OLED-экраны можно разделить на Super AMOLED, XDR OLED, Dynamic AMOLED и прочие. Помимо разных торговых марок, все эти экраны не имеют никаких принципиальных отличий.
Таким образом, можно сделать следующий вывод:
Экраны всех современных смартфонов разделяются только на два типа: LCD и OLED
Теперь давайте рассмотрим принцип работы этих дисплеев, начав с LCD или, в более узком смысле этого слова, IPS-экранов.
Как устроены IPS-экраны современных смартфонов?
Чтобы понять, как работает IPS-экран, нужно немножко вспомнить школьные уроки физики.
Что такое свет?
Говоря простым языком — это энергия, которую мы можем видеть своими глазами. Свет распространяется в окружающей среде, как обычные волны по воде. Вот только если обычная волна колеблется лишь в одном направлении:
То электрическое поле световой волны имеет хаотическое направление и выглядит схематически следующим образом:
Но мы можем очень просто сделать так, чтобы все волны шли параллельно друг другу, как по воде. Для этого достаточно погасить «лишние» волны.
Такой процесс называется поляризацией света. То есть, если мы весь свет пропустим через «мелкую решеточку с вырезами» (поляризатор), через нее пройдут только те волны, направление которых совпадает с вырезами, а остальные просто погасятся:
Теперь мы имеем световую волну, в которой электрическое поле колеблется только в одном направлении. Все очень просто, не так ли?
А что будет, если эту волну мы пропустим через еще один поляризатор («мелкую решеточку»), только повернем этот второй поляризатор на 90° относительно первого? Верно, такая решетка пропустит только горизонтальные волны. Но ведь у нас нет таких волн, после первого поляризатора остались лишь вертикальные. В итоге, световая волна полностью погасится «решеткой» поляризатора:
Вот и все, что нам нужно знать о свете, чтобы разобраться в том, как работает IPS-экран смартфона!
Принцип работы IPS-матрицы
Принцип работы LCD дисплея невероятно прост. Весь экран состоит из множества пикселей — маленьких точек, формирующих изображение. Каждая такая точка (пиксель) состоит в свою очередь из 3 субпикселей (маленьких ячеек) — красного, зеленого и синего.
Если нам нужно, чтобы определенная точка на экране горела желтым цветом, мы включаем на полную яркость красный и зеленый субпиксели, а яркость синего снижаем к нулю (отключаем его вообще). Так как эти субпиксели невероятно малы, все 3 цвета (ярко красный, ярко зеленый и «отсутствующий синий») сливаются для нас в один — желтый:
Если теперь яркость зеленого субпикселя уменьшить в 2 раза, наш желтый пиксель превратится в оранжевый и т.д. То есть, изменяя яркость 3 цветных субпикселей, мы будем получать желаемый цвет точки на экране.
Каким же образом можно изменять яркость каждого отдельного субписеля на экране смартфона? Откуда вообще берутся цвета? Давайте разберемся с этим вопросом на примере одного единственного субпикселя, скажем, красного цвета.
Поставим лампу, которая будет излучать естественный свет. За лампой разместим поляризатор, чтобы естественный свет стал поляризованным, теперь поставим фильтр красного цвета и в конце разместим еще один поляризатор, только развернем его на 90° относительно первого. У нас получился следующий «бутерброд»:
Включаем яркость лампы на максимум, свет начинает проходить через первый поляризатор и становится поляризованным, затем свет проходит через красный фильтр, в котором отсекаются волны любой длины, отличной от красного. В итоге, красный свет направляется ко второму поляризатору и… полностью гасится (см. чуть выше объяснение про волны света).
Получается, как бы ярко ни светила лампа, красный субпиксель никогда не будет гореть. Как же нам регулировать яркость? Я забыл уточнить важное условие — лампа одна для всех пикселей. Если мы будем уменьшать яркость лампы — будет падать яркость и всего экрана. Но как же тогда изменять яркость отдельных субпикселей красного, зеленого и синего цветов?
Вот здесь и приходят на помощью жидкие кристаллы! Что это вообще такое? Говоря очень простым языком — это такая вязкая жидкость, молекулы которой упорядоченны определенным образом. Более того, они могут изменять свое положение под воздействием напряжения (а также температуры и многих других факторов).
Если мы разместим жидкие кристаллы между двумя прозрачными электродами таким образом, чтобы их молекулы выстроились по спирали, то получим очень интересную «конструкцию»:
Свет, проходя по этой спирали, будет изменять свою поляризацию с «вертикальной» на «горизонтальную». Другими словами, волна света проходит через кристалл по «дорожкам», выстроенным из молекул.
Теперь посмотрите на предыдущую картинку с лампой и поляризаторами. Если сразу после первого поляризатора разместить жидкие кристаллы в виде такой спирали, тогда свет, проходящий по ним, изменит свою поляризацию (волны развернутся на 90°) и уже без малейших потерь пройдет через второй поляризатор. Ведь световые волны теперь повернуты вдоль «отверстий» второго поляризатора.
Вот и получилось пропустить полностью весь свет через красную ячейку (субпиксель). Но гореть он будет на максимальной яркости только в том случае, если спираль будет полностью завернута и весь свет будет «поворачиваться» на 90°.
Если же мы начнем понемногу разрушать спираль, все меньше и меньше света будет проходить через второй поляризатор. И когда спираль будет полностью «разрушена», свет снова будет гаситься вторым поляризатором:
Слева на картинке жидкие кристаллы выстроены так, чтобы изменять направление световой волны (или поворачивать плоскость поляризации). В этом случае свет полностью будет проходить через второй поляризатор и мы увидим яркий пиксель на экране смартфона.
Справа на картинке жидкие кристаллы под воздействием напряжения выстроены так, чтобы не влиять на поляризацию света, не изменять «угол наклона» волны. В итоге, весь свет от лампы полностью гасится вторым поляризатором и наш субпиксель вообще не светится.
Чем сильнее напряжение подается на жидкие кристаллы, тем сильнее будет «разрушаться» спираль и тем ниже будет яркость пикселя. Как только напряжение перестанет подаваться — молекулы снова выстроятся по спирали.
Вот так, в общих чертах, и формируется изображение на IPS-экране.
А теперь важное уточнение. Я специально показал работу LCD-дисплея не по технологии IPS, а по технологии TN, так как ее немного проще понять новичку.
В IPS экранах используется ровно тот же принцип: за экраном размещается подсветка, затем идет поляризационный фильтр, затем сетка из транзисторов (TFT), после нее — слой жидких кристаллов, затем цветовой фильтр и второй поляризатор:
Сетка из транзисторов нужна для того, чтобы смартфон мог управлять каждым отдельным пикселем (это называется активная матрица).
IPS отличается от TN-матрицы лишь тем, что молекулы не размещаются по спирали и второй поляризационный фильтр не поворачивается относительно первого. То есть, происходит немного другое вращение молекул. Если в TN матрице при отсутствии напряжения свет полностью проходит через экран (по спирали молекул жидкого кристалла), то в IPS матрице наоборот — свет проходит только при подаче напряжения.
Более подробно на этом останавливаться здесь не будем, чтобы не усложнять статью. Главное понять, что принцип работы один и тот же.
Подводим итоги
Жидкие кристаллы не излучают свет, они лишь меняют его поляризацию. Поэтому для работы IPS-экрана нужна отдельная подсветка — специальная лампа, размещенная за экраном.
Изменяя с помощью жидких кристаллов поляризацию света («поворачивая» световую волну), мы изменяем интенсивность свечения одного конкретного субпикселя, отвечающего за один из 3 основных цветов. А выстроив яркость каждого из этих субпикселей, мы получим цвет конкретной точки на экране смартфона.
Теперь осталось подобрать нужный цвет для остальных полутора миллионов таких точек, состоящих из 3 субпикселей, и мы получим красочную картинку на экране iPhone 11!
Как устроены OLED-экраны современных смартфонов?
Довольно подробное объяснение принципа работы OLED-экранов я приводил в прошлой статье, поэтому здесь лишь вкратце опишу отличия от IPS-экранов.
OLED-экраны строят картинку ровно по тому же принципу, что и IPS. Здесь также каждый пиксель состоит из 3 субпикселей красного, зеленого и синего цветов. И точно также для получения конкретного цвета одного пикселя нужно изменить яркость каждого из субпикселей.
Однако ключевое отличие AMOLED-дисплеев от IPS заключается в том, что экрану на органических светодиодах не нужна подсветка. Соответственно, в смартфонах с AMOLED-экранами нет никаких ламп или другого источника света.
Каждый субпиксель, состоящий из органического вещества, сам излучает свет, когда через него проходит ток. Другими словами, каждая точка на OLED-экране смартфона — это и есть «лампочка», яркость которой можно легко изменять индивидуально.
Что лучше, OLED или AMOLED? И что тогда такое Super AMOLED?
Если вы заметили, я постоянно взаимозаменяю слова OLED и AMOLED. Несмотря на то, что формально это разные понятия, когда мы говорим об экранах смартфонов, можно использовать оба слова.
Разница между ними заключается в том, что AMOLED — это тот же OLED экран только с активной матрицей (Active Matrix OLED). Но так как не существует смартфона, где бы использовался OLED-экран с пассивной матрицей (PMOLED), всегда, говоря слово OLED, все подразумевают AMOLED.
Super AMOLED от Samsung
Super AMOLED и другие модные слова (Dynamic AMOLED, XDR OLED) — это, по сути, все тот же AMOLED-экран, с очень незначительными конструктивными отличиями. И главное здесь не столько эти отличия, сколько само название.
Дело в том, что компания Samsung была пионером в области OLED-экранов и внесла огромный вклад в популяризацию слова AMOLED. Фактически, это слово стало своеобразным брендом. Компания использовала его вместо привычного OLED и хотела зарегистрировать соответствующую торговую марку.
Однако сделать это ей не удалось, так как слово AMOLED буквально означало технологию OLED с активной матрицей. Соответственно, запатентовать название технологии нельзя — оно было общепринятым и до появления первых экранов от Samsung.
Затем к производству AMOLED-экранов подключились другие компании, в частности LG. И Samsung нужно было что-то предпринять, ведь именно на OLED-экраны компания делала основную ставку. А раскручивать общепринятое название, делая огромную услугу конкурентам, было бы не очень хорошо.
Решение нашлось очень быстро. Samsung незначительно изменила конструкцию дисплея, сделав сенсорный слой частью экрана, в то время, как в обычном AMOLED-дисплее сенсорный слой является отдельным элементом, который размещается поверх экрана. Из-за этого вся конструкция стала чуть тоньше.
Теперь слово Super-AMOLED является не просто названием технологии, которую могут использовать все, а собственной торговой маркой и отличительной особенностью экранов Samsung от экранов других компаний (хотя, опять же, существенной разницы нет).
Что лучше — IPS или AMOLED?
Есть люди, которые принципиально выбирают IPS-экран вопреки всем преимуществам OLED-экранов. Однако еще больше тех людей, которые ни за что не купят смартфон с IPS-экраном. В чем же тут дело?
Чтобы не повторять дважды одну и ту же информацию, я лишь перечислю все достоинства и недостатки OLED-экранов. Соответственно, каждый минус OLED-экрана будет являться плюсом IPS-матрицы и наоборот, если в чем-то OLED имеет преимущество, значит в IPS это реализовано хуже.
Основные плюсы OLED-дисплеев
+ Бесконечная контрастность
Контрастность — это разница между самым ярким белым и самым темным черным пикселем на экране. Измеряется контрастность в соотношении X:1, где X — максимальная яркость. То есть, если контрастность равна 1000:1, это значит, что экран смартфона способен отобразить белый цвет в 1000 раз ярче черного.
А учитывая тот факт, что в OLED-дисплее черный цвет — это полностью выключенный диод со значением яркости 0, любое соотношение X:0 будет неверным. Это как сравнивать яркость выключенного экрана с яркостью включенного.
На IPS-экране невозможно добиться идеально черного цвета, так как идеальный черный — это отсутствие света, а как мы уже разобрались, IPS-экран светится постоянно. И даже если под прямым углом черный может казаться действительно очень глубоким, то при малейшем отклонении IPS-экрана, особенно в темноте, преимущество OLED-дисплея будет очевидным.
+ AOD-режим и экономия энергии
Смартфоны с OLED-экранами поддерживают интересный режим работы под названием Always On-Display (постоянно включенный экран). На дисплее смартфона даже в выключенном состоянии отображается какая-то информация:
Это возможно благодаря особенностям OLED-матрицы. Мы можем легко включать только отдельные пиксели на экране, чтобы выводить время и пропущенные уведомления. В случае с IPS-матрицей будет светиться весь экран, хотя и черным цветом.
Если на OLED-матрице черный цвет — это выключенный пиксель, то на IPS-матрице черный цвет — это полностью горящая подсветка, которую мы не видим из-за того, что второй поляризатор гасит световую волну.
Таким образом, подобрав оформление интерфейса смартфона в темных цветах можно экономить энергию на OLED-дисплее, а для IPS-матрицы нет значения, какой цвет отображать — лампа всегда горит и освещает все пиксели.
+ Максимальные углы обзора
Если смотреть на экран любого смартфона даже под небольшим углом, наблюдается падение яркости. И у IPS-матрицы с этим все гораздо хуже, чем у OLED.
К примеру, если посмотреть на iPhone с IPS-экраном под углом в 30 градусов, падение яркости составит 55%. Для сравнения, под тем же углом падение яркости на iPhone c OLED-экраном не превысит 25%.
Что касается изменения цветопередачи, с этим нет проблем ни у современных IPS-экранов, ни у AMOLED.
+ Равномерность «подсветки»
Как мы знаем, на OLED-экране нет понятия «подсветки». В отличие от IPS-экранов, здесь не используются лампы, соответственно у AMOLED-экранов отсутствуют любые проблемы, связанные с подсветкой (так называемые «утечки света»).
Но проблема с IPS-дисплеями заключается в том, что их подсветка выглядит не совсем так, как я схематически изображал ее выше. Здесь нет огромной лампы, которая располагается за экраном.
В большинстве случаев, IPS-экран подсвечивается несколькими диодами, расположенными вдоль нижней грани экрана, свет проходит по специальному гибкому рассеивающему материалу — тонкой пленке, размером с экран:
Такая конструкция имеет свои недостатки. Во-первых, на многих экранах можно хорошо увидеть более яркую полоску в нижней части, где расположены диоды. А во-вторых, любая проблема с пленкой, по которой рассеивается свет, или неидеальная сборка, при которой свет лампочек не полностью блокируется, может привести к всевозможным дефектам подсветки, особенно хорошо заметным в темноте:
На этой фотографии очень хорошо видны проблемы с утечкой света на черном фоне. Ничего подобного быть не может на OLED-экранах.
Основные минусы AMOLED-дисплеев
Минусы OLED-экранов — это очень интересная и важная тема. Каждый из перечисленных ниже недостатков заслуживает отдельного подробного материала (которые обязательно выйдут на Deep-Review).
Поэтому здесь я лишь очень кратко перечислю основные проблемы, не акцентируя внимания на том, из-за чего они возникают и почему некоторые из них негативно влияют на организм человека.
— Выгорание дисплея
Этой проблеме подвержены все OLED-экраны. Если включить контрастное статическое изображение на максимальной яркости на очень длительный период времени, картинка может просто «отпечататься» на дисплее и будет видна всегда.
Вот как выглядит один из самых экстремальных случаев выгорания OLED-дисплея на примере Samsung Galaxy Note 8:
Вы можете прекрасно видеть на белом фоне остаточные изображения иконок, строки Google-поиска и других элементов. На самом же деле, на экране смартфона не должно быть ничего, кроме надписи вверху на белом фоне.
Конечно, настолько плачевной ситуации быть не может при обычном использовании смартфона. Это фотография Galaxy Note 8 со стенда в магазине, который работал беспрерывно на максимальной яркости в течение длительного времени, отображая одну и ту же картинку.
Но от частичного выгорания никто не застрахован.
— ШИМ
Пульсация света — довольно неприятное и вредное явление. Многие из нас ощущали последствия пребывания в помещении, освещенном плохими люминесцентными лампами с очень сильным мерцанием. Это и головная боль, и раздражение в глазах, и быстрая утомляемость.
Какая связь между OLED-экраном и мерцающими лампами? К сожалению, прямая. Управление яркостью AMOLED-экранов устроено следующим образом. Когда мы включаем яркость на максимум, маленькие светодиоды работают с высокой частотой.
Но как только мы начинает понижать яркость, происходит интересное явление. Вместо того, чтобы снижать силу тока, диоды начинают работать с небольшими паузами. Образно говоря, если на 100% яркости диоды горели 0.9 мс в течение 1 секунды, то на яркости 50% светодиоды будут работать 0.45 мс в течение 1 секунды. Это условное объяснение, а подробный материал выйдет на Deep-Review чуть позже.
Такое мерцание довольно плохо влияет на организм человека и речь идет не только о неприятных ощущениях в глазах, которые многие пользователи попросту не ощущают. Последствия гораздо шире, но это уже тема другого разговора.
К слову, во всех дальнейших обзорах смартфонов на Deep-Review мы будем проводить тестирование их OLED-экранов на ШИМ и указывать подробную информацию влияния каждого испытуемого устройства на организм человека.
— Смещение цветов и оттенков
Именно так называет эту проблему компания Apple на своем официальном сайте, говоря, что это совершенно нормальное явление. А еще нормальным явлением компания также считает выгорание дисплея, называя это «особенностью OLED-технологии».
О чем идет речь? Когда вы слегка наклоняете OLED-экран в разные стороны, можно заметить проплывающие по дисплею цветные разводы. Иногда это розовые пятна, иногда зеленые, иногда — комбинация этих оттенков. Они смещаются в зависимости от угла наклона.
Однако стоит отметить, что подобный эффект наблюдается не на всех экранах с одинаковой интенсивностью. На некоторых моделях он почти незаметен, на других — ярко выражен. И здесь уже — как повезет.
— Цена
Вместо заключения…
Несмотря на то, что статья получилась довольно объемной, мне пришлось оставить «за кадром» очень многое (pentile, delta-E, цветовой охват и прочие интересные параметры экранов).
Но, надеюсь, даже этой информации хватит, чтобы в общих чертах представлять себе устройство экранов современных смартфонов и понимать разницу между AMOLED и IPS дисплеями.
P.S. Не забудьте подписаться в Telegram на первый научно-популярный сайт о мобильных технологиях — Deep-Review, чтобы не пропустить очень интересные материалы, которые мы сейчас готовим!
Как бы вы оценили эту статью?
Нажмите на звездочку для оценки
Внизу страницы есть комментарии.
Напишите свое мнение там, чтобы его увидели все читатели!
Если Вы хотите только поставить оценку, укажите, что именно не так?
Как на самом деле работает шумоподавление (ANC) в наушниках
Фитнес-браслеты и смарт-часы с измерением давления. Как работает эта технология и можно ли ей доверять?
Что такое Huawei TruSleep. Или анализ сна от Гарвардской медицинской школы
Глаз человека против матрицы смартфона: мегапиксели, разрешение и не только!
Как работает процессор смартфона #2. От бездушного электричества к логике
Как работает смартфон #1. Что стоит за «разумом» этого устройства?
Как фитнес-браслет считает калории? Или «простой» способ похудеть со смартфоном и браслетом!
Камеры смартфонов с матрицами Sony и Samsung. Что такое Tetracell и Quad Bayer?
Спасибо. Коротко и понятно.
Для меня решающий фактор — нагрузка на зрение. Как раз выбираю новый смартфон и столкнулся с вопросом: с каким экраном смартфон выбрать? Продавец только положительно отзывался об AMOLED.
Спасибо Вам за статью.
Автор прочитав статью, я опять ЗАДУМАЛСЯ так стоит покупать смарт с экраном IPS или…. Потому как я вроде и ПОНЯЛ но НИЧЕГО не понял. Вот хочу приобрести POCO x3 pro, начинаю КОЛЕБАТЬСЯ.
Почему Вы колеблетесь?) Что Вас смущает, какие вопросы не дают покоя?
Только ips,omoled-заговор офтальмологов
Белый цвет на ips гораздо лучше любых amoled.Мой телефон asus zenfone 3.Сравнивал с флагманами самсунг,все белый цвет выдают желтизну.Кому что нравится,чёрный или белый.
Да это так, как и пиковая яркость, если заполнять экран светлым содержимым. Что хорошо видно при сравнении в салунах даже старых поработавших моделей с IPS и новейшие топы с AMOLED. Проигрыш IPS очевиден.
Что за «салуны»? У нас, чай, не дикий запад)).
Хорошая краткая статья для общего понимания различий.
Так вам же сказали… Без подробностей.. Читайте книги
Тема не раскрыта полностью. Эффекты Мура при невысокой яркости и использовании DC Dimming, розовящий белый на амолед из за структуры pentile, и её отсутствие в экранах Super AMOLED Plus, которые используют классическую RGB структуру пикселей.
Осталось найти смартфоны с Super AMOLED Plus, да еще с приемлемым ШИМ…
Вы просто немножко перепутали типы матриц. Все эти «темные темы» появились после того, как производители начали использовать на смартфонах OLED-экраны. Вот в этих матрицах черный цвет можно получить только, если выключить «лампочку» (пиксель).
Но Вы процитировали мои слова об IPS-матрицах, в которых отдельные пиксели отключить вообще невозможно, так как «лампочка» здесь одна на весь экран. Таким образом, если на смартфоне установлен IPS-экран, во всех этих «темах» нет никакого смысла. «Темные темы» продлевают работу только смартфонов с OLED-дисплеями.
Добрый день! А как происходит изменение яркости IPS экранов? Они же подсвечиваются условно такими же светодиодами только белыми… или нет? Почему эти экраны не мерцают?
нашел ниже в комментариях ) как узнать, каким способом регулируется яркость конкретной модели экрана IPS? ШИМ или током?
К сожалению, без приборов — никак. Или поискать в интернете конкретную модель. Дело в том, что даже если IPS регулируется при помощи ШИМ, то частота модуляции там очень высокая (зачастую, свыше 1000 и даже 10,000 Гц), так что, вряд ли это будет заметно на камеру смартфона (как часто проверяют ШИМ на AMOLED).
Белый «светодиод» это источник света состоящий из светодиода возбуждения и люминофора.
Люминофор имеет большое время послесвечения. Это интегрирует вспышки светодиода возбуждения.
Да ну перестаньте писать подобное. Пальцем покрутите на любом с AMOLED при яркости ниже 50% и сразу увидите кучу фаз пальца или карандаша. А уж если камерой другого смартфона его экран снять (особенно исключив интерференцию с освещением места), то вообще все наглядно без усилий с быстрым смещением карандаша или пальца.
Человек спрашивал, как определить ШИМ на IPS, на что и был дан мой ответ. В основном, если ШИМ и используется на IPS, то работает на частотах в несколько тысяч или десятков тысяч герц. Естественно, в этом случае карандашный тест ничего не покажет.
Наличие ШИМ можно обнаружить карандашным тестом или камерой смартфона, наложение частот ШИМ и затвора (опроса матрицы) камеры даёт видимую глазом интерференцию. Кстати, можно сделать видео витрин включенных светильников в хозмаге, иногда прикольно.
Да, карандашный тест работает, когда частота ШИМ небольшая, но вопрос-то был в том, как определить, что используется на IPS. А ведь если частота ШИМ несколько тысяч герц (что является нормой для IPS), карандашный тест ничего не покажет.
Так в ip12 ШИМ от 60Гц и легко обнаруживается при низкой яркости. Как это «чудо» пользовать в темноте дома, например решив перед сном почитать новости?
Хм, видимо я не совсем понимаю, о чем идет речь. Я никогда не встречал ШИМ на IPS, чтобы работал карандашный тест. В основном, ШИМ либо вообще не используется на IPS, либо работает на очень высоких частотах. Например, на iPad Pro — около 60 000 Гц, MacBook Air 2020 — 120 000 Гц и т.п.
Тут скорее задается другой фундаментальный вопрос — почему частота ШИМ такая низкая у AMOLED, а у ШИМ подсветки IPS высокая, потому что на их экранах в большинстве смартфонов невозможно ее обнаружить бытовыми методами. А например в ноутбуках (что поразительно, т.к. это устройства куда как чаще используются для длительного визуального использования в течение суток), поганый низкочастотный шим с огромной амплитудой — зачастую бывает даже в моделях за 3000$. Это кажется полным маразом, на фоне почти эталонных IPS в смартфонах, но это факт. Единственные матрицы IPS, который 100% Flicker Free — от LG в ноутбуках. Их можно смело заказывать даже без проверки на эту тему дистанционно (хотя засветы их бич, как и у большинства остальных).
Очевидно, что низкачастотный шим на AMOLED выбран по тупой причине — быстрый износ огранических светодиодов в основе, при частом включении и выключении. Т.е. частота выбрана так, чтобы это было выгодно производителям, а не глазам потребителей, на них просто плюнули, как незначимый фактор, прикинув, что большинство не заметит проблемы, а если и заметит какую-то повышенную утомляемость (если ССЗБ и часто серфит с него или читает, в играх и видео это не так критично), то предъявлять юридически значимые претензии в суде к производителю точно не станет. Это надо уже коллективный иск оформлять. А его до сих пор нет даже в США. Удивительно правда? Хотя вред очевиден.
А в РФ есть санпин (с 2021 пока не в курсе, как он заменен) по которому до 2021 — мерцание матрицы (легко доказываемое на шаблонах VCOM) прямо является недостатком по ЗоЗПП. Т.е. все экраны AMOLED по факту — бракованные и такой товар легко сдается по ЗоЗПП при малейшем желании потребителя.
Вот насколько все далеко зашло. Но большинство населения безграмотны в этих вопросах, да и производителя старательно не афишируют эту тему, как и обман с PenTile матрицами по цветному разрешению. Хотя это тоже тема коллективного судебного иска.
И можно так продолжать очень долго…
Добрый день Петр, изменение в айпиэс экранах происходит подавлением света через «решетку», выходит что свет есть а решетка просто закрывает его, это будто закрыть палцем вспышку из телефона, а в Олед экране пиксель просто отключается, поэтому и более насыщеный
Он насыщенный только при высокой яркости, в темных оттенках идет тотальный слив IPS по цветопередаче, даже на новом экране AMOLED «из коробки».
Несмотря на минусы будущее все равно за OLED экранами.
Очень на них надеюсь, но мне что-то подсказывает, что они также будут с мерзким низкочастотным ШИМ — а это главный бич AMOLED.
Потому что высокочастотный — а как они решили проблемы ресурса подсветки каждого субпикселя? Чем чаще включается светодиод, тем быстрее он изнашивается. Один большой, как сумели стабилизировать, но когда их несколько миллионов, шансов на этом мало.
Вообщем конечно скрестим пальцы, но надежды почти нет.
Будущее за NEorganic OLED.
Очень досконально подошли к вопросу, напишите что то подобное про быстрые зарядки их стандарты и тд и про извечный вопрос вредна ли быстрая зарядка или нет. БУДЕ интересно почитать ваше виденье вопроса
Рад Вас снова видеть в комментариях! Материал о быстрых зарядках у нас уже давно запланирован, так что, скоро обязательно появится на сайте.
100% вредна. Если брать типовую батарею. Проверено на практике многократно. Мой постоянный совет — заряжайте смартфоны/гаджеты только от 5В/1-1.2А не более (например некоторые усиленные порты на ноутбуках). Или специально купите зарядку с таким током на 5В, где это еще возможно. Батарея, заряжается медленнее, но и живет по циклам в разы дольше. Конечно при очень качественном электролите и аноде/катоде, т.е. при литий-ферро-фосфатном высокого качества он и при 9-12Вт вполне протянет циклов 400-500, но если нет желания менять его куда чаще, чем хочется (да и оригинал/одинаковый по качеству с заводским) найти весьма нетривиальная тема на рынке даже на повышенную цену — везде кромешный обман на рынке ЗИПа), то лучше с Quick Charge зарядками дела не иметь и ни в коем случае не использовать такую из комплекта смартфона. Производителю в общем-то выгодно, чтобы вы побыстрее пришли за новой моделью или как минимум переплатили многократно за заменую батареи в АСЦ.
Литий-ферро-фосфатную батарею вряд ли поставят в смартфон, у этой химии значительно ниже удельная ёмкость, а вот литий-никель-кобальт-марганцевую (используется в электроинструменте) вполне возможно, именно такая химия допускает заряд токами 3-4 ёмкости (15-20 ампер для батареи ёмкостью 5000мАч), но думаю такой режим довольно рискован, да и не имеет например для меня смысла — поставил на ночь на зарядку, утром получи готовый к работе аппарат, при моём режиме эксплуатации к ночи остается в среднем 60% заряда. Батареи литий-титановой химии, способные заряжаться за 15 минут, думаю вообще смартфонам не грозят, потому как имеют еще более низкую удельную ёмкость, но развитие электротранспорта ощутимо подтолкнуло исследования по улучшению аккумуляторов, с целью увеличения удельной ёмкости и ускорению времени заряда, думаю наиболее успешные решения будут приходить и в смартфоны.
Уважаемый автор, подскажите пожалуйста, как долго на AMOLED можно показывать статичную картинку без риска для выгорания? У меня конкретный случай: приложение с интервальным таймером для упражнений, есть упражнение длительностью под 1,5 часа (отображается на экране с таймером выполнения), и я опасаюсь использовать на AMOLED смартфоне, или зря опасаюсь? хотелось бы максимальной жизни экрану.
Владимир, благодарю за вопрос! Да, Вы зря опасаетесь. Просто, на всякий случай, не включайте яркость на максимум во время упражнений. Худшее, что может произойти с AMOLED-экраном Вашего смартфона при таком сценарии использования — это кратковременное остаточное изображение, которое исчезнет еще до того, как Вы успеете его обнаружить (за пару минут).
Чтобы экран выгорел, нужны более жесткие условия. Идеальный пример — 10-часовая поездка на автомобиле со смартфоном в качестве навигатора в солнечную погоду, чтобы дисплей перешел в режим повышенной яркости. Или, как вариант, тестовые смартфоны на стендах в торговых центрах, которые работают по 12 часов в сутки на максимальной яркости, отображая статическую картинку.
В лавках они не работают на повышенной яркости, т.к. пиковая достигается только при внешнем освещении выше 5000 люкс, что в офисных-витринных вариантах попросту исключено. Т.е. горят они в условия 65-80% яркости в реальности только так.
Впервые попал на deep-review и мне понравилось!
Спасибо, Константин! Будем рады видеть Вас здесь почаще!
Есть один громадный минус у AMOLED-дисплеев, который в статье не упомянут хотя и должен стоять номером 1 в списке.
Ближе к финалу я приведу пример, которым я постараюсь объяснить суть недостатка.
Так же к габаритам этого недостатка добавлю, что благодаря только ему AMOLED-дисплей уже проигрывает IPS-дисплею еще на старте.
О остальных минусах после можно даже не писать, этого будет вполне достаточно.
AMOLED излишне обогащен в цветопередаче, т.е. приторно перенасыщает цвета, а это значит, что он максимально отдаляет нас от нормы восприятия колористики оригинала.
Да, для обывателя это не будет недостатком ведь для него это как красочная обертка конфеты или не менее красочный пластмасс игрушки для ребенка, взявшие на себя роль наживки.
Не будем забывать и о том, что IPS технология максимально правдиво отображает цветопередачу как ее и воспринимает человеческий глаз.
Фотографии, сделанные на ваш s9+ выглядят красочными только на экранах AMOLED, а это значит, что эти фотографии, они же именуемые «файлом», не несут в себе никакой информации о подобной «красочности» (возвращаемся к оберткам конфет).
.
.
.
Как и обещал, приведу пример, в котором недостаток Оледовских экранов играет ключевую роль.
Если же ваша работа тесно связана с профессиональной обработкой изображения, я уверен, что вы вряд ли возьметесь обрабатывать изображение на AMOLED, т.к. он абсолютно не пригоден для этого.
Почти у всех дисплеев на смартфонах есть один серьезный дефект — усиление красных оттенков. А т.к. у AMOLED-экраны перенасыщают действительное еще сильнее чем IPS это оборачивается серьезной проблемой.
Я занимаюсь художественной татуировкой и обработка фотографий моих работ является важной и неотъемлемой частью этой профессии. Волей не волей за 6 лет практики ты начнешь замечать все косяки дисплеев любого типа.
Так же я сразу обратил внимание на то как на AMOLEDах отображается одна и та же фотография в разных приложениях.
В Галерее телефона фотография отображается хорошо, никаких придирок нет
В Инстаграме (за счет белого фона) фотография смотрится более контрастной.
В приложении ВК и вовсе происходит что-то непонятное. Фотография мало того что становится жутко контрастной, так еще и по непонятным причинам теряет насыщенность, в совершенно другой цветовой диапазон и приобретает лишь на долю секунды стоит вам нажать кнопку «свернуть все приложения». На фотографиях татуировок это тут же бьет по глазам.
После такого говорить о каких-то преимуществах AMOLED перед IPS смысла не имеет.
Проверял это на других самсунгах серии s9 — везде та же ерунда. И не имеет значения — американец или европеец.