Врд что это такое
Врд что это такое
Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с., С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
вспомогательная рулёжная дорожка
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
высокоразрешающая рентгеновская дифрактометрия
вычислитель разрешённой дальности
вспомогательный ракетный двигатель
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
ведомственный руководящий документ
Источник: Из материалов ВНИИГАЗ
ВРД 39-1.10-074-2003 Нормы производственных запасов материально-технических ресурсов (МТР) по дочерним обществам ОАО «Газпром»
Полезное
Смотреть что такое «ВРД» в других словарях:
ВРД — ВРД аббревиатура, может иметь следующие значения: Воздушно реактивный двигатель Вентильный реактивный электродвигатель Список значен … Википедия
ВРД — авиац. воздушно реактивный двигатель … Универсальный дополнительный практический толковый словарь И. Мостицкого
ВРД — воздушно реактивный двигатель вспомогательная рулежная дорожка вычислитель разрешённой дальности … Словарь сокращений русского языка
ВРД 39-1.10-064-2002: Оборудование для сжиженного природного газа (СПГ). Общие технологические требования при эксплуатации систем хранения, транспортировке и газификации — Терминология ВРД 39 1.10 064 2002: Оборудование для сжиженного природного газа (СПГ). Общие технологические требования при эксплуатации систем хранения, транспортировке и газификации: Безопасное дренажное устройство (БДУ) устройство, служащее для … Словарь-справочник терминов нормативно-технической документации
ВРД 39-1.10-069-2002: Положение по технической эксплуатации газораспределительных станций магистральных газопроводов — Терминология ВРД 39 1.10 069 2002: Положение по технической эксплуатации газораспределительных станций магистральных газопроводов: Авария на опасном производственном объекте ОАО «Газпром» разрушение сооружений и (или) технических устройств,… … Словарь-справочник терминов нормативно-технической документации
ВРД 66 116-87: Методические указания по расчету валовых выбросов загрязняющих веществ в атмосферу предприятиями Минсевзапстроя СССР. Часть 6. Автотранспортные предприятия — Терминология ВРД 66 116 87: Методические указания по расчету валовых выбросов загрязняющих веществ в атмосферу предприятиями Минсевзапстроя СССР. Часть 6. Автотранспортные предприятия: Аппарат очистки газа Элемент установки, в котором… … Словарь-справочник терминов нормативно-технической документации
ВРД 39-1.10-004-99: Методические рекомендации по количественной оценке состояния магистральных газопроводов с коррозионными дефектами, их ранжирования по степени опасности и определению остаточного ресурса — Терминология ВРД 39 1.10 004 99: Методические рекомендации по количественной оценке состояния магистральных газопроводов с коррозионными дефектами, их ранжирования по степени опасности и определению остаточного ресурса: 5.1.1. Разрушение… … Словарь-справочник терминов нормативно-технической документации
ВРД 39-1.10-005-2000: Положение по технической эксплуатации газораспределительных станций магистральных газопроводов — Терминология ВРД 39 1.10 005 2000: Положение по технической эксплуатации газораспределительных станций магистральных газопроводов: 1.3.4. ВАХТЕННАЯ с круглосуточным дежурством обслуживающего персонала на ГРС посменно в соответствии с утвержденным … Словарь-справочник терминов нормативно-технической документации
ВРД 39-1.13-057-2002: Регламент организации работ по охране окружающей среды при строительстве скважин — Терминология ВРД 39 1.13 057 2002: Регламент организации работ по охране окружающей среды при строительстве скважин: 2.2. Вопросы инструктажа на предприятии 2.2.1. Журнал учета источников загрязнения. 2.2.2. Журнал учета загрязняющих веществ. 2.2 … Словарь-справочник терминов нормативно-технической документации
Воздушно-реактивный двигатель
Воздушно-реактивный двигатель (ВРД) — тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается и, расширяясь, истекает из двигателя с большой скоростью, создавая реактивную тягу.
Воздушно-реактивные двигатели используются, как правило, для приведения в движение аппаратов, предназначенных для полётов в атмосфере.
Содержание
История
История воздушно-реактивных двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения.
Первый самолёт, самостоятельно оторвавшийся от Земли («Флайер-1» конструкции братьев Райт США 1903г), был оснащён поршневым двигателем внутреннего сгорания, и на протяжении сорока лет этот тип двигателя оставался основным в самолётостроении. Но к концу Второй мировой войны требование повышения мощности поршневых двигателей вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневого двигателя становилось невозможным, и реальной альтернативой ему явился воздушно-реактивный двигатль, различные варианты которого предлагались ещё в XVIII и XIX вв.
Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178 [источник не указан 399 дней] (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года). Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч, [источник не указан 399 дней] но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.
С августа 1944 года в Германии началось серийное производство реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями. Единственным реактивным самолётом союзников по антигитлеровской коалиции, формально принимавшим участие во Второй мировой войне, был «Глостер Метеор» (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла (серийное производство которого началось даже раньше, чем немецких). [источник не указан 399 дней]
В послевоенные годы реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов.
Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением РД-10. [3]
А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1, [4] разработанный в КБ А. М. Люльки (ныне НПО «Сатурн»).
Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина.
Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).
Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом. [источник не указан 399 дней] Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть). [9]
Общие принципы работы
Реактивная тяга
Воздушно-реактивный двигатель — реактивный двигатель, развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. С этой точки зрения ВРД подобен ракетному двигателю (РД), но отличается от последнего тем, что большую часть рабочего тела он забирает из окружающей среды — атмосферы, в том числе и кислород, используемый в ВРД в качестве окислителя. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере. Если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2-8 раз, в зависимости от вида горючего, то аппарат, оснащённый ВРД должен иметь на борту только запас горючего.
Рабочее тело ВРД на выходе из сопла представляет собой смесь продуктов сгорания горючего с оставшимися после выгорания кислорода фракциями воздуха. Если для полного окисления 1 кг керосина (обычного горючего для ВРД) требуется около 3,4 кг чистого кислорода, то, учитывая, что атмосферный воздух содержит лишь 23 % кислорода по массе, для полного окисления этого горючего требуется 14,8 кг воздуха, и, следовательно, рабочее тело, как минимум, на 94 % своей массы состоит из исходного атмосферного воздуха. На практике в ВРД, как правило, имеет место избыток расхода воздуха (иногда — в несколько раз, по сравнению с минимально необходимым для полного окисления горючего), например, в турбореактивных двигателях массовый расход горючего составляет 1 % — 2 % от расхода воздуха. [10] Это позволяет при анализе работы ВРД, во многих случаях, без большого ущерба для точности, считать рабочее тело ВРД, как на выходе, так и на входе, одним и тем же веществом — атмосферным воздухом, а расход рабочего тела через любое сечение проточной части двигателя — одинаковым.
Динамику ВРД можно представить следующим образом: рабочее тело, поступает в двигатель со скоростью полёта, а покидает его со скоростью истечения реактивной струи из сопла. Из баланса импульса, получается простое выражение для реактивной тяги ВРД: [10]
(1)
Где — сила тяги,
— скорость полёта,
— скорость истечения реактивной струи (относительно двигателя),
— секундный расход массы рабочего тела через двигатель. Очевидно, ВРД эффективен (создаёт тягу) только в случае, когда скорость истечения рабочего тела из сопла двигателя превышает скорость полёта:
v» border=»0″ />.
Скорость истечения газа из сопла теплового реактивного двигателя зависит от химического состава рабочего тела, его абсолютной температуры на входе в сопло, и от степени расширения рабочего тела в сопле двигателя (отношения давления на входе в сопло к давлению на его срезе).
Химический состав рабочего тела для всех ВРД можно считать одинаковым, что же касается температуры, и степени расширения, которые достигаются рабочим телом в процессе работы двигателя — имеют место большие различия для разных типов ВРД и разных образцов ВРД одного типа.
С учётом вышесказанного можно сформулировать и главные недостатки ВРД в сравнении с РД:
Термодинамические свойства
Термодинамика процесса превращения тепла в работу для ПВРД и ТРД описывается циклом Брайтона, а для ПуВРД — циклом Хамфри. В обоих случаях полезная работа, за счёт которой формируется реактивная струя, выполняется в ходе адиабатического расширения рабочего тела в сопле до уравнивания его статического давления с забортным, атмосферным. Таким образом, для ВРД обязательно условие: давление рабочего тела перед началом фазы расширения должно превышать атмосферное, и чем больше — тем больше полезная работа термодинамического цикла, и выше КПД двигателя. Но в окружающей среде, из которой забирается рабочее тело, оно находится при атмосферном давлении. Следовательно, чтобы ВРД мог работать, необходимо тем или иным способом повысить давление рабочего тела в двигателе по отношению к атмосферному. Основные типы ВРД (прямоточный, пульсирующий и турбореактивный) различаются, в первую очередь, способом, которым достигается необходимое повышение давления.
Эффективность
Эффективность ВРД определяют несколько КПД или коэффициентов полезного действия.
Эффективность ВРД как теплового двигателя определяет эффективный КПД двигателя:
(2)
где Q1 — количество теплоты отданное нагревателем,
Q2 — количество теплоты полученное холодильником.
Эффективность ВРД как движителя определяет полётный или тяговый КПД: (3)
Сравнивая формулы (1) и (3) можно прийти к выводу, что чем выше разница между скоростью истечения газов из сопла и скоростью полета, тем выше тяга двигателя и тем ниже полетный КПД. При равенстве скоростей полета и истечения газов из сопла полетный КПД будет равен 1, то есть 100 %, но тяга двигателя будет равна 0. По этой причине проектирование ВРД является компромиссом между создаваемой им тягой и его полетным КПД.
Общий или полный КПД ВРД является произведением двух приведенных выше КПД: (4)
Воздушно-реактивные двигатели можно разбить на две основные группы. ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи истекающей из сопла. И ВРД непрямой реакции, в которых тяга кроме или вместо реактивной струи создается посредством использования специального движителя, например пропеллера или несущего винта вертолёта. Применяется также классификация по признаку наличия механического воздушного компрессора в тракте двигателя: в этом случае ВРД подразделяются на бескомпрессорные (ПВРД с его вариантами, ПуВРД с его вариантами) — и компрессорные, где компрессор приводится от газовой турбины — ТРД, ТРДД, ТВД с их вариантами, а также мотокомпрессорный воздушно-реактивный двигатель, в котором компрессор приводится не от турбины, а от отдельного двигателя внутреннего сгорания (с воздушным винтом или без него).
Прямоточный воздушно-реактивный двигатель
Дозвуковые прямоточные двигатели
Дозвуковые ПВРД предназначены для полётов на скоростях с числом Маха от 0,5 до 1. Торможение и сжатие воздуха в этих двигателях происходит в расширяющемся канале входного устройства — диффузоре.
Из-за низкой степени повышения давления при торможении воздуха на дозвуковых скоростях (максимально — 1,9 при М=1) эти двигатели имеют очень низкий термический КПД (16,7% при М=1 в идеальном процессе, без учёта потерь), вследствие чего они оказались неконкурентоспособными в сравнении с авиадвигателями других типов и в настоящее время серийно не выпускаются.
Сверхзвуковые прямоточные двигатели
СПВРД предназначены для полётов в диапазоне 1-5 Махов. Торможение сверхзвукового газового потока происходит всегда разрывно (скачкообразно) с образованием ударной волны, называемой также скачком уплотнения. Чем интенсивнее скачок уплотнения, то есть чем больше изменение скорости потока на его фронте, тем больше потери давления, которые могут превышать 50 %.
Потери давления удаётся минимизировать за счёт организации сжатия не в одном, а в нескольких последовательных скачках уплотнения меньшей интенсивности, после каждого из которых скорость потока снижается. В последнем скачке скорость становится дозвуковой и дальнейшее торможение и сжатие воздуха происходит непрерывно в расширяющемся канале диффузора.
Фактором, ограничивающим рабочие скорости СПВРД сверху, является температура заторможенного воздуха, которая при M>5 превышает 1500 °C, и существенный дополнительный нагрев рабочего тела в камере сгорания становится проблематичным из-за ограничения жаропрочности конструкционных матриалов.
Гиперзвуковой ПВРД
Теоретически ГПВРД позволяет добиться более высоких полётных скоростей, по сравнению с СПВРД, за счёт того, что входной поток воздуха в ГПВРД тормозится лишь частично, так что течение рабочего тела на протяжении всей проточной части двигателя остаётся сверхзвуковым. При этом поток сохраняет бо́льшую часть своей начальной кинетической энергии, а повышение его температуры при торможении и сжатии относительно невелико. Это позволяет значительно разогреть рабочее тело, сжигая горючее в сверхзвуковом потоке, и, расширяясь, оно истекает из сопла со скоростью, превышающей скорость полёта.
Ядерный прямоточный двигатель
Возможное назначение летательного аппарата с таким двигателем — межконтинентальная крылатая ракета, носитель ядерного заряда. В обеих странах были созданы компактные малоресурсные ядерные реакторы, которые вписывались в габариты большой ракеты. В 1964 году в США, по программам исследований ядерного ПВРД «Pluto» и «Tory», были проведены стендовые огневые испытания ядерного прямоточного двигателя «Tory-IIC». Лётные испытания не проводились, программа была закрыта в июле 1964 года.
Область применения
Врд что это такое
ВРД — аббревиатура, может иметь следующие значения:
Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из другой статьи Википедии, пожалуйста, вернитесь и уточните ссылку так, чтобы она указывала на статью. |
Смотреть что такое «ВРД» в других словарях:
ВРД — воздушно реактивный двигатель Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с., С. Фадеев. Словарь сокращений современного русского языка. С … Словарь сокращений и аббревиатур
ВРД — авиац. воздушно реактивный двигатель … Универсальный дополнительный практический толковый словарь И. Мостицкого
ВРД — воздушно реактивный двигатель вспомогательная рулежная дорожка вычислитель разрешённой дальности … Словарь сокращений русского языка
ВРД 39-1.10-064-2002: Оборудование для сжиженного природного газа (СПГ). Общие технологические требования при эксплуатации систем хранения, транспортировке и газификации — Терминология ВРД 39 1.10 064 2002: Оборудование для сжиженного природного газа (СПГ). Общие технологические требования при эксплуатации систем хранения, транспортировке и газификации: Безопасное дренажное устройство (БДУ) устройство, служащее для … Словарь-справочник терминов нормативно-технической документации
ВРД 39-1.10-069-2002: Положение по технической эксплуатации газораспределительных станций магистральных газопроводов — Терминология ВРД 39 1.10 069 2002: Положение по технической эксплуатации газораспределительных станций магистральных газопроводов: Авария на опасном производственном объекте ОАО «Газпром» разрушение сооружений и (или) технических устройств,… … Словарь-справочник терминов нормативно-технической документации
ВРД 66 116-87: Методические указания по расчету валовых выбросов загрязняющих веществ в атмосферу предприятиями Минсевзапстроя СССР. Часть 6. Автотранспортные предприятия — Терминология ВРД 66 116 87: Методические указания по расчету валовых выбросов загрязняющих веществ в атмосферу предприятиями Минсевзапстроя СССР. Часть 6. Автотранспортные предприятия: Аппарат очистки газа Элемент установки, в котором… … Словарь-справочник терминов нормативно-технической документации
ВРД 39-1.10-004-99: Методические рекомендации по количественной оценке состояния магистральных газопроводов с коррозионными дефектами, их ранжирования по степени опасности и определению остаточного ресурса — Терминология ВРД 39 1.10 004 99: Методические рекомендации по количественной оценке состояния магистральных газопроводов с коррозионными дефектами, их ранжирования по степени опасности и определению остаточного ресурса: 5.1.1. Разрушение… … Словарь-справочник терминов нормативно-технической документации
ВРД 39-1.10-005-2000: Положение по технической эксплуатации газораспределительных станций магистральных газопроводов — Терминология ВРД 39 1.10 005 2000: Положение по технической эксплуатации газораспределительных станций магистральных газопроводов: 1.3.4. ВАХТЕННАЯ с круглосуточным дежурством обслуживающего персонала на ГРС посменно в соответствии с утвержденным … Словарь-справочник терминов нормативно-технической документации
ВРД 39-1.13-057-2002: Регламент организации работ по охране окружающей среды при строительстве скважин — Терминология ВРД 39 1.13 057 2002: Регламент организации работ по охране окружающей среды при строительстве скважин: 2.2. Вопросы инструктажа на предприятии 2.2.1. Журнал учета источников загрязнения. 2.2.2. Журнал учета загрязняющих веществ. 2.2 … Словарь-справочник терминов нормативно-технической документации