Гномон что это по географии 5 класс
Что такое гномон и для чего он нужен?
Гномон – это один из древнейших географических и астрономических инструментов, изобретенных человеком. Он представляет собой вертикальный шест, стоящий на основании (обычно круглом). Шест может иметь разную форму, главное его назначение – отбрасывать тень на основание.
Именно на измерении тени и основан принцип работы гномона. Она становится кратчайшей в полдень, то есть с помощью гномона можно определять время. При этом в полдень направление тени совпадает с направлением меридиана, то есть тень начинает указывать на северный географический полюс Земли. Это правило верно в Северном полушарии, в Южном тень будет указывать на юг.
По длине тени можно определить и широту, в которой находится гномон и, соответственно, использующий его человек. Чем ближе гномон к полюсу, тем длиннее тень в полдень. При приближении же к экватору тень становится более короткой.
Надо заметить, что определять момент, когда тень наиболее коротка, не всегда удобно. Поэтому иногда измеряют положение двух одинаковых по длине теней, измеренных утром и вечером. Они образуют угол, для которого можно построить биссектрису. Эта биссектриса также в зависимости от полушария будет указывать либо на север, либо на юг.
Однако важно учитывать, что показания таких часов зависят от места их расположения. Верные данные они будут показывать только в одном месте, при их перевозке шкалу на часах нужно будет перекалибровать.
Список использованных источников
Значение слова «гномон»
[От греч. γνώμων — стержень солнечных часов, солнечные часы]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Искусство конструирования и изготовления гномонов и солнечных часов называется гномоникой.
Гномон позволяет определить:
астрономический полдень — момент, когда длина его тени наименьшая.
направление на север — по направлению тени в астрономический полдень.
широта места — по длине тени в астрономический полдень.
Для точности измерения важное значение имеет высота гномона — чем он выше, тем длиннее отбрасываемая им тень, что повышает точность измерения. Для удобства отсчёта на конце гномона было отверстие, которое было ярко видно в тени. Другой способ увеличения точности — находить биссектрису утренней и вечерней тени одинаковой длины: на рассвете и закате скорость изменения длины тени выше и её направление (для заданной длины) устанавливается точнее.
Тем не менее точность гномона в принципе невелика, так как угловой диаметр Солнца приблизительно равен 30′, использовать же гномон для измерения по звёздам невозможно.
Принято считать, что гномон изобрёл древнегреческий философ и астроном Анаксимандр Милетский.
ГНО’МОН, а, м. [греч. gnōmōn, букв. указатель] (науч.). Стержень, укрепленный на горизонтальной поверхности, служивший в древности для определения высоты солнца над горизонтом по отбрасываемой тени; солнечные часы.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
гно́мон
1. истор. древнейший астрономический инструмент, состоящий из вертикального стержня на горизонтальной площадке и служащий для определения высоты солнца над горизонтом, направления полуденной линии в данном месте и т. п. ◆ В египетских солнечных часах острый конец гномона (вертикаль в центре солнечных часов) отбрасывал четкую тень на круговую шкалу, проводя тем самым однозначную строгую грань между ушедшим и наступающим временем, между миром мертвых (вещей, событий, людей ― всего, оставшегося в прошлом) и миром живущих. «Мера времени — солнце, вода, огонь. история часов», 2002 г. // «Биржа плюс свой дом» (цитата из НКРЯ)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова кальцит (существительное):
Что такое гномон? Гномон в географии
Описание презентации по отдельным слайдам:
Описание слайда:
Что такое гномон?
Гномон в географии
Учитель географии:
Давыдова Д. Р.
Описание слайда:
Понятие «гномон»
ГНО́МОН, гномона, ·муж. (·греч. gnomon, ·букв. указатель) (научн.). Стержень, укрепленный на горизонтальной поверхности, служивший в древности для определения высоты солнца над горизонтом по отбрасываемой тени; солнечные часы. [1]
Описание слайда:
Гномическое расширение в природе
Гномическое расширение — это один из самых распространенных типов роста в природе, когда старая форма оказывается заключена в новую. Это расширение можно увидеть в спиральной раковине моллюска Наутилус или в чашечке подсолнуха. Это основа всех постоянных природных структур у животных — например, кости, зубы, рога и раковины. При гномическом расширении каждый последующий цикл роста спирально разворачивается во внешний мир, заключая в себе старый виток, примерно как древесные кольца. Гномическое расширение в природе обычно довольно легко заметить; оно оставляет видимые следы и показывает кристаллизацию лежащих в основе сил. [2]
Описание слайда:
Гномонические рисунки в природе.
Наутилус
Описание слайда:
Гномонические «рисунки» в природе
Описание слайда:
Геохронологическая шкала, изображённая в виде спирали.
Описание слайда:
Гномическое расширение очерчивает сонический процесс, который лежит в основе роста. С перспективы вибрации каждая замкнутая система в природе определяется резонансной частотой стоячих волн её модели. Этот сонический уровень лежит в основе явления. Как уже было сказано выше, явления начинают существовать тогда, когда стоячие волны настраиваются на основные ноты природы. Это позволяет им при помощи симпатических вибраций получать энергию от постоянно движущихся по спирали космических сил. [2]
Гномическое расширение в природе
Описание слайда:
Описание слайда:
Гномон – что это?
Как отмечал в 1790 году сам великий Гёте: «Теперь мы можем в точности определить всю последовательность формирования листьев, ведь все действия Природы проходят шаг за шагом перед нашими глазами.»
Такое изобилие спиралей и самоподобных фигур в природе не осталось незамеченным — с древнейших времен человек использует спиральные мотивы в архитектуре и декоративных искусствах.
Открытые не так давно швейцарским математиком Бенуа Мандельбротом фракталы великолепно иллюстрируют концепцию самоподобия. Олицетворением же самоподобия является логарифмическая спираль: если начертить такую спираль и затем фотографически увеличить ее, то полученная фигура окажется абсолютно идентична исходной с точностью до поворота на угол, величина которого зависит от степени увеличения.
Мидхат Газале описывает и объясняет свойства гномонов (самоповторяющихся форм), повествует об их долгой и живописной истории, исследует математические и геометрические чудеса, возможные с их помощью. [3]
Описание слайда:
Описание слайда:
Что такое гномон?
Древнейшими солнечными часами был гномон – вертикальный стержень на ровной площадке, служивший циферблатом. На циферблате имелось только одна отметка – прямая линия к северу от столба, куда тень падает в полдень. Экран гномона можно разбить на часы, но все часы дня будут иметь разную продолжительность, и, кроме того, день ото дня длительность такого «часа» тоже будет меняться.
Чтобы гномон показывал всегда время правильно, его надо наклонить в направлении земной оси, т. е. на Полярную звезду. Такое усовершенствование гномона предпринял грек Анаксимен Милетский, около 530 г. до н. э. построивший в спартанской столицы Лакедемоне солнечные часы.
С той поры более 2 тысячелетий этот прибор оставался главным измерителям времен.
Солнечные часы, сооруженные на площадях древних и средневековых городов, размеряли жизнь горожан, а в парках и садах служили забавным и поучительным украшением.
Чаще всего их устанавливали либо на тумбе с горизонтальным циферблатом, либо на стене здания – это были вертикальные солнечные часы.
Обычно на циферблате отмечали только часы. В средние века лишь астрономы для своих нужд делили часы на минуты. В повседневной жизни минуты значения не имели.
Описание слайда:
Что им можно определить?
Полуденную линию и стороны света; Высоту Солнца над горизонтом и широту места, момент наступления истинного полдня, а по нему и долготу места.
В полдень тень от всех предметов направлены вдоль линии, точно указывающей с юга на север. Она называется полуденной.
Зная ее направление можно установить солнечные часы.
Определить направление полуденной линии в любой точке Земли поможет древнейший астрономический прибор – гномон. Для того чтобы его изготовить, понадобиться прямой шест, который необходимо вертикально вбить в землю, пользуясь отвесом. За 1-2 часа до полудня отметим конец тени от шеста колышком.
Возьмем шнур. Один конец его привяжем к основанию гномона. Используя свободную часть шнура как циркуль начертим на земле окружность, проходящую через вбитый колышек.
Тень от шеста будет сначала сокращаться, а потом расти и при этом медленно поворачиваться. Когда она вновь коснется начерченной нами окружности, отметим конец тени другим колышком. Прямая, проходящая через середину линии, соединяющий первый и второй колышки, и основание гномона – полуденная линия. Теперь мы в любой точке сможем определить момент истинного полдня.
Описание слайда:
Описание слайда:
Описание слайда:
Первое упоминание гномона в географии
Метод, примененный Эратосфеном для определения окружности Земли, был подробно описан им в специальном сочинении; метод состоял в измерении длины тени, отбрасываемой гномоном в Александрии в тот самый момент, когда в Сиеие (Ассуане), находившейся приблизительно на том же меридиане, Солнце стоит прямо над головой. Угол между вертикалью и направлением на Солнце оказался (в Александрии) равным 1/50 полного круга. [4]
Описание слайда:
Считая расстояние между Александрией и Сиеной равным 5000 стадиев (немного менее 800 км), Эратосфен получил для окружности земного шара приближенное значение 250 000 стадиев. Более точные вычисления дали значение 252 000 стадиев, или 39 690 км, что всего лишь на 310 км отличается от истинной величины. Этот результат Эрастофена оставался непревзойденным вплоть до XVII в. [4]
Первое упоминание гномона в географии
Описание слайда:
Описание слайда:
Практическое использование гномона в географии
Описание слайда:
Практическое использование гномона в географии
Описание слайда:
Описание слайда:
Описание слайда:
Гномоническая или гномическая проекция в картографии
В этой азимутальной проекции центр Земли используется как точка перспективы. Все большие окружности
представляют собой прямые линии, независимо от ориентировки проекции. Эту проекцию полезно использовать при разработке маршрутов навигации, поскольку большие окружности представляют маршруты с кратчайшим расстоянием.
Искажение возрастает по мере удаления от центра;
умеренное искажение наблюдается в пределах 30° от
центральной точки.[7]
Описание слайда:
Использованная литература
Д.Н. Ушаков Большой толковый словарь [1]
http://www.classes.ru/all-russian/russian-dictionary-Ushakov-term-10511.htm
Рост посредством гномического расширения [2]
http://www.bb-celitel.ru/iscelit/69.html
Cайт профессиональных трейдеров [3]
http://www.virtuosclub.ru/main/library/f06/skachat-knigu-m-gazale-gnomon-ot-faraonov-do-fraktalov
Газале Гномон От фракталов до фараонов
Античная наука [4]
http://antic.portal-1.ru/geog.html
Профессия физической географии [5]
http://globscience.ru/node/40
Географическая площадка и занятия на ней[6] http://antonioracter.narod.ru/nayka/geograf/metodika/geogrPlojadka.htm
Картографические проекции[7] http://grinikkos.com/Donlowd/61/ArcGIS%209.1/ArcGIS%209%20%ca%e0%f0%f2%ee%e3%f0%e0%f4%e8%f7%e5%f1%ea%e8%e5%20%ef%f0%ee%e5%ea%f6%e8%e8.pdf
http://ru.wikipedia.org/wiki/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:Cite&page=Chimaira&id=6888247
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Гномон, ориентирование и определение времени с его помощью
Гномон — самый древний астрономический инструмент, позволяющий определить истинный меридиан, то есть направление на север или юг, а также высоту Солнца над горизонтом в полдень.
Типичный гномон в оригинальном виде
Также гномоном принято называть часть солнечных часов, отбрасывающую тень на циферблат.
Гномоника — наука, изучающая солнечные часы. На сегодняшний день гномоника является не более, чем научным хобби, поскольку для определения истинного меридиана и времени созданы более точные и удобные в обращении приборы.
Далее рассмотрим оба варианта, но в начале разберемся с теорией, на основе которой работает гномон и солнечные часы.
Теоретические сведения
Перечислим некоторые факты, основанные на знаниях астрономии, которые помогут разобраться в принципе работы гномона.
Факт №1. Солнце всегда движется с востока на запад, а значит тень от гномона движется в противоположном направлении, то есть с запада на восток.
Факт №2. Во время восхода и захода Солнца, когда оно находится непосредственно над горизонтом, тень от гномона имеет самую большую длину, а в солнечный полдень — самую короткую.
Факт №3. Самая короткая тень от гномона получается, когда Солнце находится в зените, то есть наивысшей точке траектории своего движения по небосводу. В этот момент Солнце пересекает истинный меридиан, то есть линию, соединяющую север с югом.
Факт №4. Самое быстрое изменение длины тени наблюдается в часы восхода и захода Солнца за горизонт. В середине же дня скорость изменения длины тени минимальна.
Факт №5. Из-за наклона оси вращения Земли по отношению к плоскости земной орбиты на угол примерно равный 23,5 градуса, а также из-за вращения Земли вокруг Солнца наблюдаемое движение Солнца по небосводу происходит то ниже небесного экватора (в северном полушарии с сентября по март), то выше него (в северном полушарии с марта по сентябрь). И только в дни весеннего и осеннего равноденствий движение Солнца совпадает с плоскостью небесного экватора. При этом дальше всего от небесного экватора траектория движения Солнца лежит в дни зимнего и летнего солнцестояний.
К слову, небесный экватор — это большой круг небесной сферы, расположенный перпендикулярно оси вращения Земли, плоскость которого совпадает с плоскостью земного экватора.
Факт №6. Солнце движется по небосводу с угловой скоростью примерно равной 15 градусам в час.
Факт №7. Усредненное «земное» время не всегда совпадает с астрономическим временем по ряду причин.
Факт №8. Видимый с Земли диаметр Солнца равен приблизительно тридцати угловым минутам. Это делает тени от предметов размытыми.
Факт №9. Если стать таким образом, чтобы перед лицом оказался север, то позади окажется юг, справа — восток, а слева — запад.
Понимание процессов, лежащих в основе работы гномона и солнечных часов, необходимо не только для того, чтобы самостоятельно сделать эти приборы, но и для того, чтобы корректно ими пользоваться. Один раз довелось наблюдать забавную картину: человек, имея купленные солнечные часы, так и не смог понять, почему время на них и на часах в телефоне отличается. В видео показан этот пример:
Как с помощью гномона определить истинный меридиан
Гномон в этом случае представляет собой столб, колонну или другой прямой вертикальный объект, расположенный на ровной горизонтальной открытой для Солнца площадке. Считается, что увеличение длины гномона будет способствовать увеличению точности измерений, поскольку в этом случае становятся более заметны изменения длины тени. Тем не менее, не стоит забывать, что с увеличением длины будет снижаться четкость отбрасываемой тени, что может негативно сказаться на точности измерений. Также на точность результатов влияет толщина верхней части гномона, именно поэтому ее зачастую делают заостренной.
В ясный солнечный день самая короткая тень от гномона свидетельствует о наступлении астрономического полдня и указывает на север (в средних и высоких широтах северного полушария) и на юг (в средних и высоких широтах южного полушария). В тропиках и на экваторе ситуация может меняться в течение года, о чем мы подробно рассказывали здесь.
Таким образом, по самой короткой тени удается определить, как истинный полдень, так и направление истинного меридиана. Кроме прочего зная высоту гномона (В) и длину тени (L), нетяжело рассчитать угловую высоту (Н) Солнца над горизонтом. Для этого пользуются формулой tgH=B/L.
Однако из-за слабовыраженного изменения в длине тени от гномона в обеденные часы определить самую короткую тень не всегда получается точно. При необходимости получения более точных результатов можно воспользоваться другим способом. Для этого определяют биссектрису между двумя одинаковыми тенями гномона, отмеренными в утреннее и вечернее время, когда скорость изменения длины тени более существенна. Именно этот метод лежит в основе одного из способов ориентирования по тени от Солнца.
Зная истинный меридиан, можно легко сориентироваться на местности, определив направление на север или юг, а затем — и все остальные стороны света.
Как с помощью гномона определить широту местности
Кроме определения истинного меридиана, с помощью гномона можно приблизительно рассчитать широту местности, в которой проводятся измерения. Далее рассмотрим несколько способов, которые вытекают из знаний по астрономии.
Способ №1. В день осеннего или весеннего равноденствия в истинный полдень по рассмотренной ранее формуле определяется угловая высота Солнца. От 90 градусов отнимается полученное значение. Результатом вычислений станет широта местности.
Способ №2. В день зимнего солнцестояния в истинный полдень определяется угловая высота Солнца. Поскольку в этот момент Солнце находится ниже небесного экватора на угол, равный углу наклона земной оси, то есть на 23,5 градуса, то прибавляя этот угол к полученной из формулы угловой высоте Солнца, мы можем получить угловую высоту небесного экватора. При вычитании из 90 градусов высоты небесного экватора получается величина, соответствующая широте местности.
Движение Солнца по небосводу в летнее время в высоких широтах.
Этот способ может быть применен и в день летнего солнцестояния. Для этого из угловой высоты Солнца нужно отнять 23,5 градусов, чтобы получить угол наклона небесного экватора, а зная угол наклона, — и значения широты местности.
Движение Солнца в высоких широтах летом, когда оно не заходит за горизонт.
Способ №3. В истинный полдень ежедневно проводятся измерения длины тени. В результате этих измерений нужно получить самую длинную или самую короткую тень, что будет соответствовать зимнему или летнему солнцестоянию соответственно, а затем действовать по второму способу. Либо же, определив самую длинную и короткую тень, найти среднее значение длины, рассчитать по формуле угловую высоту Солнца, ориентируясь на полученное среднее значение, и действовать в соответствии с алгоритмом первого способа.
При получении результатов одним из приведенных методов следует помнить, что на видимую высоту Солнца над горизонтом в некоторой степени влияет эффект преломления света — рефракция, о которой мы рассказывали здесь. Из-за этого эффекта все небесные светила могут казаться выше того места, где они расположены в действительности. И тем больше будет выражен этот эффект, чем ближе к горизонту будет расположен наблюдаемый объект.
Из этого следует, что вблизи полюсов в дни весеннего и осеннего равноденствий, когда Солнце проходит низко над горизонтом, результаты измерений могут несколько отличаться от реальных в сторону понижения широты.
А теперь рассмотрим, как с помощью гномона определять время и дату.
Гномон и солнечные часы
Солнечные часы — древний инструмент, позволяющий определять время по тени от Солнца в светлое время суток.
Одни из самых первых солнечных часов появились в Египте. Они представляли собой каменный брусок длиной примерно 30 см. Брусок этот располагался вдоль направления восток-запад. С одной стороны этих часов находился «Т»-образный брусок, тень от которого, уменьшаясь, «ползла» по бруску с утра до полдня, после чего солнечные часы поворачивали на 180 градусов и тень «ползла» в обратном направлении. По насечкам, сделанным на бруске определялось время.
Эскиз «египетских» солнечных часов.
Самые первые заметки о солнечных часах встречаются в египетских рукописях и датируются 1306—1290 годами до нашей эры. Найденные египетские солнечные часы, по мнению ученых, были сделаны задолго до найденных рукописей, их описывающих, — еще в 1479—1425 годах до нашей эры.
Одни из первых солнечных часов.
В Египте также были обнаружены и другие модели древних солнечных часов, отличающихся от описанной модели, но их возраст, если верить показаниям ученых, более молодой, поэтому рассматривать их, как самые древние солнечные часы, не приходится.
Реконструкция древних солнечных часов в Египте, экспонат каирского музея.
Независимо от Египта, солнечные часы появлялись и в других уголках мира, например, древнем Китае и в Древней Греции, откуда их идея перекочевала в Древний Рим.
На Руси в качестве солнечных часов стали использовать башни соборов, отбрасывающих тень. Но это все практиковалось уже аж в XI веке нашей эры.
Однако такие часы не могли показывать точное время, поскольку насечки делались путем равномерного деления шкалы на фиксированное число частей.
И только много веков спустя человечество придумало солнечные часы, которые показывали более точное время. Они были больше похожи на современные аналоговые часы за тем только исключением, что шкала у них была рассчитана лишь на промежуток времени с утра до вечера и выглядела более сжато.
Такие солнечные часы можно встретить и сегодня: ими стало модно украшать площади в скверах. Иногда солнечные часы можно встретить и на садовых и дачных участках, где они могут неплохо смотреться на пересечении дорожек.
Солнечные часы, как декоративный элемент.
Вот об этих солнечных часах и поговорим далее.
Гномон является неотъемлемой частью солнечных часов. Именно он отбрасывает на циферблат тень, образующую «стрелку».
Нужно понимать, что солнечные часы могут показывать, как астрономическое, так и усредненное «земное» время: тут все зависит от разметки при их конструировании. Поэтому при создании самодельных часов нужно заранее определиться с тем, какое именно время мы хотим видеть на таких часах.
Кроме времени солнечные часы также могут показывать дату и месяц. Для этого на них наносятся дополнительные разметки.
Важно понимать, что корректно указывать дату и месяц такие часы могут только в случае, если они «откалиброваны» строго для конкретного места установки.
Но не нужно возлагать большие надежды на самодельные солнечные часы: из-за ряда неточностей, связанных с конструированием часов, неровностью поверхности для установки, ориентированием часов в пространстве, угловым диаметром Солнца, уравнением времени и другими факторами особо точных показаний от таких часов ждать не приходится.
Рассмотрим несколько основных моделей солнечных часов, которые можно сконструировать своими руками из дерева, пластика или картона.
Экваториальные солнечные часы
Свое название такие солнечные часы получили из-за того, что плоскость их циферблата параллельна плоскости небесного экватора.
Наклон шкалы у этих часов требуется для того, чтобы даже стоящее в полном зените Солнце отбрасывало тень.
Такие часы желательно сделать в виде плоского круга, в центр которого воткнут гномон, причем таким образом, чтобы одна его часть возвышалась с одной стороны циферблата, а другая — торчала с другой. Если этого не сделать, то в период с сентября по март (в средних и высоких широтах северномго полушария) такими часами пользоваться не получится, ведь Солнце опустится ниже небесного экватора, а значит верхняя часть часов перестанет освещаться его лучами.
Экваториальные часы устанавливают так, чтобы гномон по отношению к горизонту оказался приподнят на угол, соответствующий широте местности, и указывал на географический север. В этом случае плоскость циферблата окажется параллельной плоскости небесного экватора.
Часто встречается рекомендация устанавливать солнечные часы, используя компас. Однако, зачастую это создает дополнительную погрешность, поскольку географический север далеко не всегда совпадает с магнитным, на который указывает стрелка магнитного компаса, о чем было подробно рассказано в этой статье. Кроме того, дополнительная ошибка в этом случае может возникать из-за различных магнитных девиаций.
От точки крепления гномона к циферблату в северном направлении (для средних и высоких широт северного полушария) по циферблату проводится ровная линия. Эту линию тень от гномона будет пересекать в истинный (астрономический) полдень.
С помощью транспортира или любым другим доступным способом на циферблат наносятся и другие деления в виде лучей с центром в месте крепления гномона. Угол между соседними «лучами» должен соответствовать 15 градусам — именно это угловое расстояние, как помним, Солнце, а соответственно и тень, проходят за один час.
Над центральной разметкой, соответствующей полдню, ставится цифра «12». Лучи, расположенные западнее нумеруются в обратном порядке, то есть «11», «10», «9» и так далее, а лучи, расположенные восточнее, нумеруются по возрастанию, то есть «13», «14, «15»» и так далее. В результате получается циферблат.
Аналогичная шкала делается и на нижней части часов.
Такие часы можно быстро изготовить из транспортира, однако в этом случае вместо цифр, соответствующих часам, нужно будет пользоваться отметками углов. Так, отметка в 90 градусов будет соответствовать 12 часам дня, а за каждый час тень гномона будет смещаться либо в одну, либо в другую сторону на 15 градусов, из чего делается вывод, сколько времени прошло либо должно пройти, чтобы «стрелка» оказалась на 90 градусах, то есть дала понять, что наступил полдень. Это не очень удобно, однако же и времени на сооружение таких солнечных часов уйдет минимум.
Кстати, в районе экватора такие часы будут стоять вертикально, подобно колесу. А на полюсах — горизонтально, подобно волчку во время его вращения.
В видео показано, как такие часы изготавливаются своими руками:
Несмотря на простоту конструкции, такие часы обладают недостатком: ими сложно пользоваться в дни близкие к моменту весеннего и осеннего равноденствий, поскольку плоскость движения Солнца по небосводу в этом случае располагается параллельно плоскости циферблата экваториальных солнечных часов.
При обращении к многочисленным Интернет-источникам, мне доводилось встречать информацию о том, что экваториальные солнечные часы не могут работать в указанные дни, и ни разу не попадалась информация, как определять время в этих случаях. Поэтому поделюсь своими соображениями. На самом деле все просто: нужно на стороне циферблата, противоположной направлению Солнца, сделать небольшой бортик, выступающий над поверхностью. На этом бортике тень от гномона будет видна даже в дни равноденствия.
Экваториальные солнечные часы удобны своей универсальностью, поскольку будут работать в любой точке Земли в ясный солнечный день. Однако определить с их помощью дату и месяц будет сложно из-за слишком длинной тени и ограниченных размеров циферблата. Зато с функцией календаря с легкостью справляются горизонтальные солнечные часы, о которых и поговорим далее.
Горизонтальные солнечные часы
В горизонтальных солнечных часах циферблат располагается горизонтально. Гномон в этом случае по аналогии с экваториальными часами расположен в северном (для средних и высоких широт северного полушария) направлении под углом к горизонту, равном широте местности.
Старинные солнечные часы из меди на стене крепости в крепости на горе Святого Михаила, Корнуолл, Великобритания.
Такие солнечные часы также располагаются строго по географическим сторонам света.
Пометка на циферблате, соответствующая 12 часам дня, делается по аналогии с предыдущим вариантом солнечных часов. В момент пересечения тени гномона этой отметки фиксируется время на обычных часах. После этого ровно через час делается следующая пометка. И так до тех пор, пока Солнце не скроется за горизонт. Все пометки соединяются прямыми с местом установки гномона — получаются своего рода лучи.
Лучи, соответствующие утренним часам, рисуются на циферблате зеркально вечерним. Далее каждый луч нумеруется по аналогии с предыдущим вариантом солнечных часов.
На таком циферблате также можно сделать пометки для определения даты. Для этого:
Для того, чтобы приблизительно определить дату по таким часам, нужно посмотреть, на какой кривой находится конец тени гномона или между какими кривыми, а затем методом интерполяции определить приблизительную дату и месяц. Для этого конечно необходимо знать хотя бы, в какой период проводится измерение, ведь, например, 21 ноября тень будет примерно той же длины, что и 21 января.
Вертикальные солнечные часы
Вертикальные солнечные часы, как уже понятно из названия, имеют вертикально расположенный циферблат. Такой циферблат зачастую крепят к столбу или стене здания. Однако следует заметить, что для удобства такой циферблат нужно располагать строго на юг (для средних и высоких широт северного полушария) или строго на север (для средних и высоких широт южного полушария).
Подмосковье, фасад храма Серафима Саровского, вертикальные солнечные часы, выполненные из инкерманского известняка. Размер плиты — 100х50 см.
Гномон в этом случае, как и в предыдущем, должен быть наклонен под углом по отношению к горизонту равным широте местности, где устанавливаются солнечные часы.
Разметка циферблата и календаря в этих часах осуществляется аналогично горизонтальным солнечным часам.
Главный недостаток вертикальных солнечных часов — невозможность использования их в тропической и экваториальной зоне, когда расположение Солнца в полдень смещается с севера на юг или наоборот. В этом случае можно поступить по аналогии с экваториальными солнечными часами, сделав их циферблат двусторонним. Тем не менее, пользоваться календарем в таких часах не получится из-за слишком длинной тени от гномона.
По сути, на экваторе вертикальные солнечные часы являются частным случаем экваториальных солнечных часов, поскольку здесь плоскость их циферблата параллельна небесному экватору, а гномон расположен перпендикулярно этой плоскости.
Перевод астрономического времени в местное время
Для того, чтобы узнать «земное» время, зная астрономическое, определенное по солнечным часам, нужно учесть два основных момента: долготу местности, где проводится измерение времени, и уравнение времени. О том, почему это важно, и как это влияет на разницу в показаниях времени на обычных и солнечных часах, мы рассказывали здесь.
Для того, чтобы сделать поправку на первый момент, связанный с долготой, нужно вспомнить, что Земля вращается вокруг своей оси с угловой скоростью приблизительно равной 15 градусам в час. Таким образом, можно определить разницу между астрономическим временем в этой местности и астрономическим временем в нулевом меридиане, то есть в Гринвиче.
Чтобы учесть поправку, связанную с уравнением времени, нужно иметь таблицу либо график уравнения времени. Его удобно нанести прямо на солнечные часы в том месте, где он не будет мешать другим измерениям.
Этот график показывает, насколько раньше или позже 12-ти «земных» часов в заданный день Солнце окажется в зените, то есть показывает разницу в астрономическом и «земном» времени в заданный день на «средней» долготе, по которой определяется часовой пояс.
Сделав поправку на долготу и уравнение времени, можно получить гринвичское «земное» время. А зная гринвичское время и свой часовой пояс — легко посчитать местное «земное» время.
Конечно, можно пойти и другим путем, не пытаясь вычислять время по Гринвичу, но тогда придется ориентироваться на часовые пояса, которые не всегда четко соответствуют астрономическим показаниям ввиду политической составляющей, а значит и объяснение получится более путанным.
В связи с этим рассмотрим на примере указанный ранее алгоритм.
Измерения проводятся на местности с долготой 32 градусов 30 минут восточной долготы. Дата на календаре — 20 февраля. Показания на солнечных часах — 16 часов. Нужно определить усредненное «земное» время.
Решение выглядит так:
Если солнечные часы не планируется переносить в местность с другой долготой, поправку на долготу можно написать на самих часах, чтобы всякий раз ее не пересчитывать.
Также важно при переводе астрономического времени в «земное» не забывать, что в некоторых регионах часы переводят на летнее время. Если этого не сделать, ошибка может составить 1 час.
Можно ли купить солнечные часы?
На сегодняшний день в продаже можно увидеть множество различных моделей солнечных часов. К сожалению, многие из них выполняют чисто декоративную функцию и для точных измерений времени не пригодны. Лично мне посчастливилось лишь раз лицезреть такую модель, с помощью которой действительно можно определять время.
При покупке «рабочих» солнечных часов в первую очередь следует обратить внимание на то, к какому типу они относятся. Экваториальный тип солнечных часов, как было сказано ранее, универсален, а значит есть вероятность того, что они смогут быть нормально установлены в любой местности и обеспечат корректную работу.
Такие часы должны быть оснащены механизмом, позволяющим регулировать наклон циферблата, и по возможности — вращающейся шкалой, позволяющими использовать в любой местности.
Существуют также фирмы, занимающиеся изготовлением солнечных часов под заказ, но их услуги, насколько мне известно, весьма дорогостоящие.
Исходя из этого, как мне кажется, проще самому изготовить солнечные часы из картона или фанеры. В этом случае человек не только обзаведется реально работающим инструментом, но и лучше усвоит принципы, на которых эти часы работают. А принципы эти — основополагающая вещь всех методов ориентирования по Солнцу, звездам и Луне, так необходимых путешественникам, рассматривающих риски чрезвычайных ситуаций и изучающие способы выхода из них.
Подводя итог всему вышесказанному, можно отметить несколько моментов.
Для человека, оказавшегося в дикой природе, солнечные часы и гномон в частности позволят сориентироваться на местности. Переносные солнечные часы в этом плане — более универсальный инструмент, так как дают возможность найти приблизительное расположение сторон света в любой момент дня, если известно время, координаты местности, а Солнце не скрыто облаками. Со стационарными солнечными часами все еще проще: они дают возможность сориентироваться в пасмурную погоду и даже ночью, поскольку, как правило, ориентированы строго по сторонам света.
Такие функции солнечных часов, как время и дата, не столь необходимы в условиях туризма и аварийного выживания. По крайней мере, мне ни разу не доводилось слышать про то, что кто-то сильно пострадал, не узнав день календаря или местное время. Если же все-таки необходимость сориентироваться во времени по Солнцу, как по мне, проще это сделать, зная стороны света и направление на Солнце в данный момент. Да, результат будет не очень точным, и в низких широтах такой метод мало чем сможет помочь, однако и носить с собой громоздкие солнечные часы либо тратить время на сооружение их на местности из подручных материалов тоже не придется.
Если все-таки появится острая необходимость в солнечных часах, то ориентировать их стоит не по компасу, а по Полярной звезде либо по сторонам света, определенным с помощью гномона. Как было сказано ранее, магнитные полюса не совпадают с географическими, а местность, где устанавливаются солнечные часы, может находиться в зоне магнитной аномалии. Все это не даст возможности корректно установить солнечные часы, используя магнитный компас.