Гематоксилин эозин что это такое
Замечания по технике окрашивания
код для вставки на форум:
При окраске водными красителями срезы переносят в краситель из дистиллированной воды, а при окраске спиртовыми — из соответствующего раствора спирта. После того как препарат приобретает интенсивную окраску, его промывают в воде или спирте для удаления избытка красителя (дифференцировка), контролируя этот процесс под микроскопом.
Срезы тканей после целлоидиновой и парафиновой заливки, а также полученные на замораживающем микротоме окрашивают в широкогорлых бюксах или на часовых стеклах. Одновременно окрашивают несколько срезов, промывают, дифференцируют и т.д. каждый срез отдельно.
Препараты можно помещать в красящий раствор в специальных контейнерах, предназначенных для одновременного окрашивания большого количества стекол. Если препаратов немного, то рациональнее краситель наносить непосредственно на срез по каплям с помощью пипетки. Остатки красителя можно слить в склянку и использовать повторно. Д. Кисели (1962) предлагал накрывать при этом срезы стеклянным колпаком, а для увлажнения среды оставлять под колпаком смоченную водой вату.
1. ЯДЕРНЫЕ КРАСИТЕЛИ И ИХ ПРИГОТОВЛЕНИЕ
Окрашивание ядер клеток обусловлено двумя механизмами химического взаимодействия: 1) основные красители, например анилиновые, образуют соли в присутствии ДНК и РНК; 2) образуются комплексы с ионами металлов при применении протравы. В практической работе чаще используют протравные красители. К ним относятся гематоксилин, кармин, сафранин, галлоцианин, ализарин. Хорошо окрашивают ядра такие красители, как янус зеленый, основной коричневый, оксазиновые красители (крезиловый фиолетовый, нильский голубой), тионин, азуры, метиленовый синий, основной фуксин, метиловый зеленый и др. Следует упомянуть о хороших результатах окраски ядер соком черники, которая предложена М.Д. Лавдовским еще в 1887 г.
Гематоксилин и способы его приготовления
Гематоксилин имеет растительное происхождение: его получают из эфирного экстракта кампешевого дерева. Гематоксилин хорошо растворяется в спирте и плохо в воде. Красящими свойствами обладает продукт окисления гематоксилина — гематеин, поэтому краситель становится пригодным только после созревания — окисления, на которое требуется от 10 дней до 2—3 нед. Созревание можно ускорить с помощью солей алюминия, хрома, железа и др.
Гематоксилин Эрлиха
1. Гематоксилин кристаллический 2г
3. Дистиллированная вода 100 мл
5. Алюмокалиевые или алюмоаммонийные квасцы 3г
6. Ледяная уксусная кислота 10 мл
Гематоксилин растворяют в спирте, а квасцы — в дистиллированной воде, смешивают оба раствора и затем добавляют остальные компоненты. Раствор периодически перемешивают. Через 10—14 дней он приобретает темно-вишневый цвет, что свидетельствует о готовности красителя. Продолжительность окрашивания гематоксилином Эрлиха 4—6 мин. Затем следуют промывание в дистиллированной, потом в водопроводной воде, дифференцировка в 1 % солянокислом спирте, восстановление в аммиачной воде и окончательное промывание в дистиллированной воде. Для приготовления солянокислого спирта к 100мл-70% спирта добавляют 1мл концентрированной соляной кислоты. Для приготовления аммиачной воды к 50мл дистиллированной воды добавляют 2 капли крепкого аммиака.
Гематоксилин Делафильда
1. Гематоксилин кристаллический 4гр
3. Алюмокалиевые или алюмоаммониевые квасцы 40гр
4. Дистиллированная вода 400мл
Приготовление: спирт+гематоксилин+квасцы=3-4дня на свету, перемешывая,фильтруют+100мл глицерина+100мл метилового спирта=3-4 дня на свету, фильтруют. Перед применением разбавляют в 2 раза дистиллированной водой или 2% раствором алюмокалиевых квасцов.Окрашывание 4-6 минут, промывание в дистиллированной воде, дифференцировка в солянокислом спирте, восстановление в амиачной воде, промывание в ДВ.В результате хроматин и кариолемма ярко-синие.
Гематоксилин Гарриса
1. Кристалическый гематоксилин 5 гр + спирт 50мл-96%
2. Алюмоамонийные квасцы 100гр+ ДВ 1литр
3. Смешывают + 60мл глицерина + 2,5 оксида ртути. Нагревают до 100С, остужают, фильтруют. Перед использованием до 100мл раствора добавляют 2 мл ледяной уксусной кислоты. Окраска 3-4 минуты, дает чёткие ярко-синие ядра.
Гематоксилин Гарриса в модификации Кисели
1. Кристалическый гематоксилин 1 гр + спирт 10мл-96%
2. Кристалический гематоксилин 20гр + ДВ 200мл
3. Смешивают, доводят до кипения, + 500мг желтого оксида ртути. Остужают, фильтруют, готов к использованию. Окраска 4-6 минут, дает ярко-синие ядра.
Гематоксилин Ганзена
4. Кристалическый гематоксилин 1 гр + спирт 10мл-100%
5. Алюмокалиевые квасцы 20гр+ ДВ 100мл
6. Смешывают + 3мл насыщеного раствора перманганата калия. Нагревают до 100С, остужают, фильтруют. Окраска 3-4 минуты, дает красно-фиолетовые ядра.
Гематоксилин Маллори(водный)
Кристалическый гематоксилин 2,5 гр + алюмоамонийные квасцы 50гр+ ДВ 1литр
Выдержывают 10 суток при 25С, +440мг перманганата калия и 2,5гр тимола, перемешивают,
фильтруют. Синие ядра.
Кислый гемалаун Майера(водный)
1. Кристалический гематоксилин 1 гр
2. Алюмоамонийные квасцы 50гр
4. Йодат натрия 200мг
5. Хлоралгидрат 50гр
6. Лимонная кислота 1 гр
Продолжительность окрашивания 4—6 мин.
Результат: ядра красно-фиолетовые.
Гематоксилин Кораци (водный)
1. Гематоксилин кристаллический 0,1 г
2. Йодат калия 2—3 кристал
3. Алюмокалиевые квасцы 5 г
4. Дистиллированная вода (теплая) 100 мл
Смесь перемешивают до полного растворения и добавляют 25 мл глицерина. Раствор перед использованием фильтруют. Продолжительность окрашивания 1—2 мин. Результат: ядра ярко-синие.
Железный гематоксилин Гейденгайна
1. Гематоксилин кристаллический 1 г
3. Дистиллированная вода 90 мл
Краситель созревает 4 нед. Добавление 100 мг йодата натрия ускоряет «созревание» — он готов к использованию уже через 1 ч после приготовления. Окрашивание проводят разведенным в 2 раза раствором.
Продолжительность окрашивания 1 —36 ч.
1. Препарат помещают в 2,5 % раствор железоаммонийных квасцов на 2—12 ч.
2. Ополаскивают в дистиллированной воде.
3. Окрашивают гематоксилином Гейденгайна 1—36 ч.
4. Промывают в водопроводной воде — 3 смены по 10 мин, затем обезвоживают, просветляют, заключают.
Результат: ядра и цитоплазматические структуры черные и синевато-черные.
Железный гематоксилин Брусси
1. Гематоксилин кристаллический 1 г I
2. Дистиллированная вода при 40 «С 100 мл I
3. Железоаммонийные квасцы 8 г II
4. Дистиллированная вода при 40 «С 100 мл II
Растворы I и II смешивают, фильтруют. Продолжительность окрашивания 30 с—1 мин. Затем промывают в водопроводной воде, обезвоживают, просветляют заключают.
Результат: ядра синевато-черные.
Железный гематоксилин Вейгерта
1. Гематоксилин кристаллический 1 г А
2. Спирт 96 % 100мл А
3. Раствор трихлорида железа гексагидрата 50%-4 мл В
4. Дистиллированная вода 95 мл В
5. Концентрированная соляная кислота 1 мл В
Растворы хранят в отдельных склянках с притертыми пробками. Перед использованием нужное для окрашивания количество краски получают путем смешивания растворов А и Б в пропорции 1:1.
Продолжительность окрашивания 1—2 мин, затем промывают в водопроводной воде.
Результат: ядра черно-синие.
Другие ядерные красители
Кармин
Продолжительность окрашивания 30 мин—24 ч. Затем следует промывание в дистиллированной воде, дифференцировать в солянокислом спирте, обезвоживание, просветление и заключение.
Результат: ядра ярко-красные.
Сафранин
Обеспечивает получение хороших результатов после фиксации ткани в тетраоксиде осмия и особенно после применении фиксаторов, содержащих хром.
Продолжительность окрашивания 24 ч. Затем следуют промывание дистиллированной водой, дифференцировка в солянокислом спирте, дистиллированная вода, обезвоживание, просветление и заключение.
Результат: хроматин ядер и кариолемма ярко-красные.
Галлоцианин
Рекомендуется для окрашивания тканей, залитых в желатин.
Сначала растворяют квасцы, затем добавляют Галлоцианин, раствор кипятят при постоянном помешивании, охлаждают, фильтруют. Срок годности красителя 1 мес.
Продолжительность окрашивания 24—48 ч. Затем следуют промывание в 2 сменах дистиллированной воды, обезвоживание, просветление и заключение.
Результат: хроматин и тигроидное вещество синевато-черные.
Сок черники
Свежие чистые ягоды черники разминают в фарфоровой ступке, смешивают с равным объемом 96 % спирта, настаивают 1— 2 сут и фильтруют. Перед окрашиванием часть раствора разводят равным количеством 2 % водного раствора алюмокалиевых квасцов и добавляют 2—3 кристаллика тимола.
Продолжительность окрашивания 5—7 мин. Затем следуют промывание в дистиллированной воде, дифференцировка в солянокислом спирте, промывание в дистиллированной воде, обезвоживание, просветление и заключение.
Результат: ядра темно-фиолетовые.
2. ЦИТОПЛАЗМАТИЧЕСКИЕ КРАСИТЕЛИ
Окрашивание цитоплазмы клеток происходит в результате связывания оснований и белков кислотными красителями. В группу диффузных (кислых) красителей входят карбоновые и сульфоновые кислоты, нитро-, азокрасители и др. В гистологической практике постоянно применяют эозины, пикриновую кислоту, оранжевый Г, кислый фуксин, конго красный (конгорот), азокармин, эритрозин. Чаще используют 1 % водные растворы этих красителей, но можно применять и 1 % спиртовой раствор.
Продолжительность окрашивания колеблется от 5 с до 3—5 мин в зависимости от сорта и серии красителя. Если препарат перекрашивается, то излишек краски легко удаляется при ополаскивании в дистиллированной воде и последующем обезвоживании препарата или среза в спиртах.
Смесь кислого фуксина и пикриновой кислоты (пикрофуксин) готовят из насыщенного водного раствора пикриновой кислоты и 1 % водного раствора кислого фуксина (см. главу 22).
3. Методика окраски гематоксилином и эозином
Процедура окрашивания срезов, полученных на замораживающем микротоме, после парафиновой или целлоидиновой заливки различается лишь по техническим приемам, а порядок проведения окраски одинаков.
Результат: ядра синие, цитоплазма и межклеточное вещество розовые.
похожие статьи
Классификация медико-криминалистических ситуационных экспертиз / Нагорнов М.Н., Леонова Е.Н., Ломакин Ю.В., Светлаков А.В., Емелин В.В., Кочоян А.Л. // Судебно-медицинская экспертиза. — М., 2019. — №3. — С. 4-8.
Практическое применение источника экспертного света «Светоч-Х» в работе медико-криминалистического отделения / Девятериков А.А., Куличкова Д.В., Шаповалова Е.С. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 70-73.
Апробация модификации метода цветных отпечатков с использованием тонкого целлофана вместо фотобумаги / Девятериков А.А., Нестеров А.В. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2017. — №16. — С. 18-24.
Особенности внутрикишечной опухолевой инвазии в проксимальном направлении при раке прямой кишки
И.А. Нечай, Г.И. Суханкина
Городская больница № 40
СПбГУ, медицинский факультет, кафедра хирургии
Аннотация. Представлены результаты гистологических исследований распространения «ракового поля» в проксимальном направлении при раке прямой кишки. Необходимость таких исследований обусловлена важностью сохранения дистальных отделов сигмовидной кишки, при выполнении передней резекции прямой кишки, с целью улучшения резервуарной и эвакуаторной функций. В результате определено минимальное расстояние от верхнего края опухоли, которое необходимо отступить при пересечении кишки, не нарушая онкологических принципов оперирования.
Клинические наблюдения о несомненной важности бережного отношения к дистальной части сигмовидной кишки при передних резекциях прямой кишки (ПК), побудили нас изучить распространенность ракового поля в проксимальном направлении от верхнего края раковой опухоли. Знания эти должны лечь в основу рекомендаций, насколько минимально допустимо отступать от верхнего края опухоли при резекции сигмовидной кишки, не нарушая онкологических принципов оперирования. Такая озабоченность связана с тем, что у больных, у которых при резекции ПК для анастомоза использовалась самая дистальная часть низводимой сигмовидной кишки, резервуарно-накопительная и эвакуаторная функции оказывались заметно лучше. Вместе с тем, заботясь об улучшении функциональных результатов операций, мы постоянно имели в виду важность соблюдения онкологических принципов оперирования, поскольку главным при лечении онкологических больных является, конечно, улучшение пятилетней выживаемости.
Распространение ракового процесса внутристеночно от края видимой опухоли ПК в дистальном направлении привлекало внимание ряда авторов. Такие исследования имеют чрезвычайно важное значение при оперативном лечении больных с низкой раковой опухолью ПК. При этой локализации злокачественной опухоли, с позиций функциональных результатов, важен каждый сантиметр сохраненной дистальной части кишки. Использование сшивающих аппаратов при резекции ПК позволяет в техническом плане проводить максимально низкие резекции кишки.
Распространенность инвазии в дистальном направлении при раке прямой кишки.
Распространенность раковой инвазии в дистальном направлении изучалась целенаправленными и тщательными морфологическими исследованиями. R.Willis приводит концепцию «опухолевого поля», в соответствии с которой новообразование развивается мультицентрически с формированием затем единого опухолевого узла. В.Ю.Клур с соавт. проводил серийные гистологические срезы не только в дистальном направлении, но и радиарно. Они установили, что контуры «опухолевого поля» имеют эксцентрическое распространение от основного узла с внутристеночной инвазией, которая в дистальном направлении составляет не менее 3,5-4,0 см при экзофитных опухолях, а при эндофитном росте увеличивается еще на 1,0-1,5 см. Г.И. Воробьев с соавт. исследовал 71 препарат прямой кишки, удаленный при брюшно-промежностной экстирпации. Они установили, что глубина опухолевой инвазии прогрессивно уменьшается в направлении от центра к периферии опухоли. Дистальный внутристеночный рост по подслизистому слою был зарегистрирован лишь в 2,2 % случаев и не превышал 15 мм. Глубина инвазии колоректального рака изучалась также с помощью компьютерного исследования, эндоректоэхографии. В результате была установлена незначительная по протяженности от опухолевого узла внутрикишечная инвазия опухолевого процесса в дистальном направлении. Практически это было претворено в жизнь, и на смену «правила 5 см» пришло «правило 2 см», т. е. достаточно отступить от нижнего края опухоли 2 см с тем, чтобы не нарушить основной онкологический принцип оперирования.
Распространенность опухолевой инвазии в проксимальном направлении в меньшей мере привлекала внимание специалистов. При пересечении кишки выше опухоли не возникает необходимости в строгой экономичности сохранения кишки, примыкающей к опухоли, так как всегда имеется достаточная часть остающегося участка левого фланга ободочной кишки. Вместе с тем наши специальные исследования с анализом длины сигмовидной кишки по дооперационным ирригограммам и размера резецированной части ее после передней резекции ПК показали несомненную важность максимально возможного сохранения для анастомоза дистальной части сигмовидной кишки. К подобному заключению нас подвело изучение функциональных результатов сфинктеросохраняющих резекций ПК. Все это побудило специально изучить распространенность ракового поля в проксимальном направлении от верхнего края видимой опухоли. Результаты таких исследований были нужны для определения минимального расстояния, которое необходимо отступать от верхнего края раковой опухоли при пересечении кишки для соблюдения онкологических принципов оперирования.
После фиксации препарата в проксимальном направлении от видимого верхнего края опухоли последовательно проводились пересечения кишечной стенки с интервалом 5мм (рис. 1).
Результаты исследования. Представляем наблюдение, характеризующее отсутствие опухолевой инвазии по кишечной стенке.
Мужчина 54 года, рак анального канала и ПК, выполнена брюшнопромежностная экстирпация ПК. Гистологическое исследование 31261−31272.
Макропрепарат: блюдцеобразно возвышающееся над поверхностью кишки новообразование диаметром 6 см, прорастает все стенки кишки. От края опухоли в проксимальном направлении макроскопически определяется инфильтрация стенки на протяжении 3,5 см.
Микроскопическое исследование: высокодифференцированная слизеобразующая аденокарцинома ПК, прорастание всей толщи стенки кишки, врастание опухоли в жировую ткань. В опухоли очаги некроза, выраженная мононуклеарная реакция. От проксимального края видимой инвазии уже в 1 мм внутристеночного роста опухоли нет. (Рис. 2). Метастазов аденокарциномы в лимфатических узлах и жировой ткани не выявлено.
Рис. 2. Микропрепарат слизеобразующей аденокарциномы ПК
Такие данные были получены и при аденокарциноме, и при плоскоклеточном раке ПК. Приведем наблюдение, свидетельствующее о распространении опухолевого роста по кишке в проксимальном направлении. Мужчина 73 года, рак ПК, выполнена передняя резекция ПК. Гистологическое исследование № 869−870; 871−882. Макропрепарат: опухоль 5 см с кратером, циркулярно охватывающая просвет кишки, прорастание всех слоев кишки и прилежащей жировой ткани, участки абсцедирования.
Микроскопическое исследование: аденокарцинома разной степени дифференцировки. В 5 мм вне видимой опухоли − аденокарцинома в подслизистом, мышечных слоях, в клетчатке, с абсцедированием (рис 3). На срезах через 10 мм от видимого края новообразования опухолевого роста нет.
А | Б |
Рис. 3. Микропрепарат аденокарциномы ПК разной степени дифференцировки
Приведем еще одно наблюдение, свидетельствующее о несомненном распространении опухолевого роста по кишке в проксимальном направлении. Женщина 73 года, рак ПК, выполнена резекция ПК по Гартману. Макропрепарат: экзофитная опухоль 5 х 5 см, прорастание всех слоев кишки, регионарные лимфоузлы не определяются.
А | Б | В |
Рис. 4. Микропрепарат аденокарциномы ПК разной степени дифференцировки
Рак прямой кишки. Инвазия опухоли. Обсуждение результатов исследования.
Данные исследования убедительно свидетельствуют, что раковая инвазия в проксимальном направлении от верхнего видимого края раковой опухоли ПК не имеет тенденции к значительному распространению, а в основном ограничена контурами макроскопического «ракового узла» или инвазией по кишечной стенке не более чем на 5мм от него. Лишь в 23,5 % случаев было установлено распространение ракового поля в проксимальном направлении, причем максимально зарегистрированная инвазия была в 20мм от видимого края опухоли ПК.
Вопреки ожиданиям не выявилось повышенной тенденции к внутристеночному росту при низкодифференцированной аденокарциноме, слизистых и плоскоклеточных формах рака ПК. Следовательно, отступление от верхнего края опухоли на 4−5 см в проксимальном направлении с онкологических позиций вполне оправдано и нет необходимости удалять здоровую и функционально полноценную часть кишки. Однако нужно учитывать, что уровень пересечения кишки выше опухоли во многом определяется высотой перевязки основного кровеносного сосуда, которым для этой зоны является нижняя брыжеечная артерия, особенностями кровоснабжения конкретного участка кишки и вовлеченностью в онкопроцесс лимфатического аппарата. Намечая линию пересечения сигмовидной или нисходящей части ободочной кишки, нужно учитывать эти обстоятельства и по возможности бережно, экономно относиться к удалению этого отдела толстой кишки, помня, что инвазия опухоли по стенке кишки незначительна.
Таким образом, внутрикишечная инвазия злокачественного роста в проксимальном направлении от видимого края опухоли ПК наблюдается в 23,5 % случаев и не превышает по протяженности 20 мм. В остальных случаях «раковое поле» ограничивается контурами основного видимого новообразования или распространяется не более чем на 5 мм от него.
Уровень пересечения кишки на 4−5 см выше проксимального края видимой раковой опухоли ПК онкологически оправдан, если учесть распространение «ракового поля» по кишечной стенке. Однако объем операции, конечно, зависит от особенностей кровоснабжения конкретного участка кишки, вовлеченностью в онкопроцесс лимфатических узлов и некоторых других факторов.
Применение дополнительных гистологических методов окраски в доклинических исследованиях
Я.А. Гущин, руководитель отдела гистологии и патоморфологии, ORCID 0000-0002-7656-991Х
188663, Россия, Ленинградская обл., Всеволожский р-н, г.п. Кузьмоловский, ул. Заводская, д. 3, корп. 245
Резюме
В клинической практике и при фармакологических исследованиях микроскопический анализ является неотъемлемой частью изучения, как нормального строения тканей, так и патологически измененных органов. Один из основных этапов подготовки материала к гистологическому исследованию – визуализация, которая достигается окрашиванием структур тканей красителями. Чаще применяют обзорную окраску гематоксилином и эозином, которой недостаточно для раскрытия полной картины процесса. Поэтому необходимо использовать ряд дополнительных окрасок. Часть из них можно применять как обзорные и заменить ими классические гематоксилин и эозин, например окраски по Ван Гизону или трихром по Маллори. Большая часть окрасок более специфична, и они служат для выявления конкретных структур или химических соединений в клетках и тканях. Это позволяет получить значительный объем информации, что облегчает понимание течения как нормальных, так и патологических процессов. Методики выявления мукополисахаридов альциановым синим применяются при исследовании желудочно-кишечного тракта и дыхательной системы. ШИК-реакция необходима в диагностике болезней накопления, ряда онкологических процессов и грибковых инфекций. «Жировые красители», прежде всего судан III и шарлах красный, используются повсеместно при исследовании дистрофических заболеваний и атеросклероза. Краситель Oil Red O применим для макроскопической оценки площади атеросклеротического поражения аорты. Конго красный незаменим для обнаружения амилоида. Рассмриваются специализированные окраски, направленные на диагностику повреждений миокарда (ГОФП-методика и применение солей тетразолия) для визуализации площади поражения сердечной мышцы и головного мозга.
В данном обзоре рассматривается ряд гистологических окрасок, некоторые особенности их применения, а также механизмы взаимодействия краситель–субстрат в тканях. Данные методы можно, а часто и необходимо использовать при гистологической работе. Исследователям при планировании следует учитывать возможность их применения, что поможет выявлять, а также всесторонне изучать патологические процессы, моделируемые в доклинических исследованиях.
Введение
Неотъемлемая часть доклинических исследований – патоморфологическое изучение экспериментальных животных, сначала макроскопическое – органов и систем органов, а в последующем микроскопическое – отдельных органов и тканей. Именно гистологическое исследование позволяет более точно определить патологические процессы, выявить ткани-мишени, механизм и степень их повреждения. Основным этапом подготовки материала к гистологическому исследованию является визуализация, которая достигается окрашиванием структур тканей красителями. Цель окрашивания – более четкое выделение различных компонентов клеток и тканей [2].
Общие механизмы окрашивания тканей и клеточных структур
Существует много классификаций красителей; их делят в зависимости от их химической природы [3], в зависимости от реакции с субстратом на субстантивные (прямые) и адъективные (непрямые) [4, 5]. Однако чаще применяют деление на основные или базофильные (ядерные), кислые или ацидофильные (цитоплазматические), нейтральные и флюорохромы [2, 3]. По механизму действия красителя со структурами тканей и клеток выделяют ионное взаимодействие, слабые электрические взаимодействия, ковалентное связывание, взаимодействие с металлами и др.
Ионное взаимодействие – самое распространенное и сильное, но оно чувствительно к pH среды и концентрации солей. Так, например, катионные красители при pH 5 будут окрашивать почти все структуры, поскольку карбоксильные группы белков хорошо ионизированы, при pH 4 окрашиванию подвергаются ядра клеток и хрящевая ткань, а при pH 1 слабые фосфорно-кислые группы ДНК не ионизируются, и ядра будут плохо визуализированы. При увеличении концентрации солей в растворе, наблюдается конкуренция между ионами солей и ионами красителя за субстрат и окрашивание будет менее эффективно. Также при высоких концентрациях солей в растворе наблюдается агрегация частиц красителя в коллоидные частицы, что затрудняет их диффузию к субстрату и окрашивание также будет менее эффективно. Электронное взаимодействие слабее ионного, поэтому можно рассматривать 2 основных механизма – водородные связи, силы Ван дер Ваальса и гидрофобное связывание [6, 7].
Водородные связи обеспечивают прикрепление анионов красителей к незаряженным субстратам в тканях (например, целлюлоза с множеством ОН-групп и коллаген, богатый NH и NH2-групп). В водных растворах большая часть молекул кислорода и азота уже связаны с молекулами воды, и в данном случае взаимодействие обусловлено силами Ван дер Ваальса [6].
Гидрофобное окрашивание является следствием взаимодействия водородных связей молекул воды и агрегации гидрофобных участков молекул силами дисперсионного взаимодействия (силами Лондона), которые из области высокой концентрации (краситель) поступают в область низкой концентрации (клетки), где удерживаются слабыми силами Ван дер Ваальса [6, 7].
Хорошим примером ковалентных связей является реактив Шифа в реакциях PAS (Periodic acid – Schiff reaction), который взаимодействует с альдегидными группами, образуя окрашенный продукт [7]. Другой пример – образование ковалентных связей между органическими группировками и ионами металлов. Так, ализариновый красный образует в тканях хелатные комплексы с ионами кальция, а гематоксилин, являясь комплексом гематина с ионами алюминия, взаимодействует, вероятно, с амино- и гуанидино-группами ДНК в ядре, что и придает ему синий цвет [7].
Как видно существует много вариантов взаимодействия красителя с субстратом; они различаются специфичностью и условиями использования и служат для достижения своих, подчас узкоспециализированных, задач. Однако в рутинной гистологии главной и основной окраской остается методика с применением гематоксилина и эозина. Это простой, дешевый и повсеместно используемый метод, который имеет много модификаций и может применяться в большинстве случаев. Именно поэтому его еще называют обзорной окраской. Но подчас этого недостаточно и тогда необходимы дополнительные методы [8, 9], которые в значительной мере улучшат качество не только диагностики заболеваний, но и качество исследовательских работ с привлечением гистологических методов.
Рассмотрим ряд гистологических окрасок, некоторые особенности их применения, а также механизмы взаимодействия краситель-субстрат в тканях. Данные методики можно, а часто и необходимо, использовать при гистологической работе, а исследователям при планировании следует учитывать возможность их применения, что поможет выявлять, а также всесторонне изучать патологические процессы, моделируемые в доклинических исследованиях.
Окраска соединительной ткани. Окраска соединительной и мышечной тканей гематоксилин-пикрофуксином по методу Ван Гизона (рис. 1). Это второй наиболее часто используемый в гистологической практике метод. Им можно заменить окраску гематоксилин-эозином и применять как основной для получения обзорных препаратов, но все же чаще он дополняет исследование [10]. Этот метод имеет ряд преимуществ по сравнению с окраской гематоксилин-эозином, так как по-разному окрашивает различные ткани: соединительная ткань после окраски пикрофуксином имеет ярко-красный цвет, а все остальные ткани – буровато-желтый или желто-зеленый. Механизм действия основан на большем сродстве кислого фуксина к коллагену, что, с одной стороны, объясняется параллельной волокнистой организацией белка, открывающей большое количество пептидных групп, содержащих карбоксильные аминокислоты (аспарагиновую и глутаминовую), легко образовывающих водородные связи с красителем, а, с другой стороны, наличием ионных связей, которые могут быть нарушены обработкой ткани кислотами, т.е. дезаминированием белков. Цитоплазматическое окрашивание более характерно для пикриновой кислоты, поскольку она, за счет меньшего размера, имеет более высокую скорость диффузии в клетки, а также, являясь выраженным анионным красителем, проявляет более сильное ионное взаимодействие с положительно заряженными аминогруппами цитоплазматических белков [11] (рис. 2).
В качестве ядерной окраски можно использовать гематоксилин Майера, Эрлиха, но железный гематоксилин Вейгерта дает лучшую черную или буро-черную окраску ядер. Данный метод необходим при дифференцировке соединительной ткани от мышечной в случаях, когда их трудно различить на препаратах, окрашенных другими методами (например, при исследовании хронических заболеваний с развитием фиброза или при опухолевых процессах).
Некоторые особенности не позволили данному методу стать основным, например, необходимость контроля под микроскопом, поскольку пикрофуксин как дифференцирующее соединение, ослабляет интенсивность окраски гематоксилином, и если ядра приобретают бурый, а не черный цвет, то следует использовать более длительную экспозицию срезов в гематоксилине или меньшую в пикрофуксине [2]. Но более существенным недостатком является выцветание препаратов за счет потери окраски фуксинофильных коллагеновых волокон, а это значит, что препараты нельзя хранить длительное время [12].
Окраска эластических волокон фуксин-резорцином по Вейгерту. Окраска (рис. 3) позволяет выявить эластические волокна в тканях, что полезно при изучении заболеваний и патологических процессов, поражающих сосуды или, например кожу. Взаимодействие между эластином и красителем осуществляется за счет сложных эфирных групп, а также путем образования водородных связей между фенольными гидроксильными группами красителя и эластином [14] (рис. 4). При этом хлорид железа, используемый при окраске, с одной стороны, взаимодействуя с резорцином, дает насыщенный синий цвет, а, с другой, увеличивая насыщенность раствора солями, препятствует окрашиванию таких базофильных структур, как хроматин и рибосомы цитоплазмы, а значит повышает селективность метода [15]. Но специфичность метода все равно остается низкой, причем возможно окрашивание и других структур коллагена, а также базальных мембран. Поэтому для лучшей визуализации эластических волокон необходимо проводить тщательное дифференцирование под микроскопом в процессе окраски [13].
Есть возможность использовать данный метод в комбинации с окраской по Ван Гизону, что позволяет одновременно выявить также коллаген и окрашивать ядра. Тогда результатом будет следующая картина: ядра – черные, эластические волокна – от темно-синих до черного, коллагеновые волокна – оттенки красного, цитоплазма, гладкая и поперечнополосатая мышечная ткань, ороговевающий эпителий, нейроглия и эритроциты – желтые [2, 13].
Орсеин – еще один распространенный краситель, позволяющий выявить эластические волокна в тканях, прежде всего в сосудах (рис. 5, 6). Результат – эластические волокна – от темно-красных до коричневых [10, 11]. За счет окрашивания белков, связанных с медью, данная методика применяется для диагностики заболеваний накопления меди (болезнь Вильсона). Кроме того, связываясь с поверхностными антигенами вируса гепатита В, позволяет использовать краситель для визуализации пораженных клеток [16].
Механизм окрашивания до конца неясен. Возможно, краситель взаимодействует с эластином за счет образования в кислой среде водородных связей между фенольными группами орсеина, заряженными положительно, и отрицательно заряженными боковыми цепями белка, который отличается от коллагеновых волокон меньшим содержанием аргинина, гистидина и лизина и большим количеством нейтральных лейцина и валина. Кроме того, повышенное (до 90%) содержание неполярных аминокислот делает эластические волокна, в отличие от коллагеновых, малорастворимыми в большинстве органических и неорганических растворителей, что может быть применено для выделения компонентов ткани [17].
Трихром по Маллори. Дифференцировка коллагеновых волокон хорошо достигается при окраске по Ван Гизону, но другие компоненты ткани (фибрин, хрящевая и мышечная ткань, форменные элементы крови) окрашиваются хуже и не столь специфично, поэтому для более детальной одновременной визуализации можно использовать трихромные окраски, которые окрашивают компоненты тканей в 3 цвета (красный, желтый и синий) с их вариантами. Например, метод окрашивания по Маллори, включает в себя несколько компонентов: анилинового синего, фосфомолибденовую кислоту, пикриновую кислоту и фуксин [12] (рис. 7). Специфичность действия трихрома объясняется различной степенью сродства между его компонентами и макромолекулами соединительной ткани, которая из-за наличия большого числа основных групп ацидофильна и обладает высоким сродством к кислым красителям (пикриновая кислота и оранжевый G), но низким по отношению к слабым основным и амфотерным красителям (кислый фуксин и пунцовый фуксин). Фосфомолибденовая кислота как крупный гетерополианион легко и прочно связывается с катионными группами тканевых структур (волокна коллагена, клеточные мембраны), блокируя таким образом воздействие на них анилинового синего (основный краситель с частичными амфотерными свойствами) [10, 13, 16, 18] (рис. 8). Результат следующий: ядра – темно-коричневые; коллагеновые волокна – темно-синие; хрящ, кость, мукополисахариды, амилоид – оттенки синего; фиброглия, нейроглия, фибрин – красные; мышечная ткань, миелин и эритроциты – желтые; эластические волокна – розовые.
Данная окраска дает более яркие и выраженные результаты, если использовать для фиксации материала жидкость Ценкера, и перед окраской обработать срезы 3% раствором бихромата калия примерно в течение 20 мин [12].
Окраска мукоплисахаридов. Мукополисахариды – это полимерные углеводно-белковые комплексы, содержащиеся в соединительной ткани (хрящевой ткани, роговице) и в жидкостях (слизь, гепарин, синовиальная жидкость, стекловидное тело). В гистологии окраски на мукополисахариды применяются при изучении, прежде всего структур, выделяющих слизь – кишечника, бронхов, муцинозные опухоли, а также заболеваний хрящевой ткани.
Альциановый синий (рис. 9) по химической структуре является медьсодержащим фталоцианином, который образует прочную связь с полианионами мукополисахаридов, избирательно взаимодействуя с их карбоксильными группами и сульфогруппами [пирс]. Краситель под воздействием тетрабората натрия становится плохо растворимым синим пигментом, который хорошо визуализируется. На реакцию значительно влияет кислотность раствора, так альциановый синий рН 1,0 образует связи с мукополисахаридами с большим содержанием сульфо-групп, а альциановый синий рН 2,5 способен к окрашиванию всех кислых мукополисахаридов [2,13,16] (рис. 10). Это позволяет добиться селективного окрашивания кислых сиаломуцинов и сульфомуцинов бокаловидных клеток толстой кишки, в то время как нейтральный муцин желудка или желез Бруннера не реагируют с альциановым синим при рН 2,5 [16].
Результат окрашивания будет следующим – кислые мукополисахариды – бирюзово-голубые, хрящевая ткань – от пурпурного до темно синего.
Для выявления гликогена в нормальных и патологически измененных тканях используют ШИК-реакцию (Шифф-йодная кислота) (рис. 11). В данном случае йодная кислота окисляет и разрывает связи в соединениях, содержащих 2 смежные гликолевые группы, образуя диальдегид. Последний образует с серосодержащим фуксином из реактива Шиффа нерастворимое окрашенное соединение, сходное с основным фуксином [13, 17] (рис. 12).
В результате гликоген окрашивается в красные цвета. Таким образом, этот метод широко используется при изучении болезней накопления гликогена, ряда опухолевых заболеваний при которых происходит накопление муцина, грибковых поражений для визуализации клеточной стенки, а также для изучения лимфопролиферативных заболеваний для детализации патологических клеток крови.
Окраска жиров. Обнаружение липидов в клетках и тканях осуществляется группой жировых красителей под общим названием «Суданы» (Судан черный, Судан III, Судан IV и др.), а также нильблаусульфатом и осмиевой кислотой. Эти жирорастворимые вещества легко проникают в липидсодержащие структуры, и не взаимодействует с гидротированными белками (рис. 13, 14). Таким образом, процесс окрашивания липидов представляет собой не гидрофобное взаимодействие, а имеет чисто физический характер, что не позволяет проводить избирательное окрашивание отдельных липидов разного химического состава. Для этой цели перед проведением гистохимической реакции необходимо использовать методы экстракции отдельных групп липидов разными системами растворителей [7, 19,].
Наиболее часто применяют Судан III и шарлах красный. Они выявляют все жиры, липоиды и нейтральные жиры, интенсивно окрашивая их в оранжево-красный цвет. При этом следует помнить о существенных особенностях обработки материала. Прежде всего формалиновая фиксация не должна быть более 48 ч. После чего на замораживающем микротоме сразу изготавливают срезы, поскольку при обычной проводке эфир, ксилол и крепкие спирты растворяют и извлекают жиры из клеток в растворы, именно поэтому после окраски срезы нельзя обезвоживать и заключать обычным способом. Препараты заключают в глицерин или глицерин-желатин, которые не растворяют жиры и хорошо просветляют необезвоженный препарат, но при длительном хранении препаратов наблюдается выпадение Судана в осадок в виде красных кристаллов. Лучше использовать специальные монтирующие среды на водной основе [13, 20]. Несмотря на используемый метод заключения, краситель все равно быстро выцветает, поэтому желательно исследовать препараты вскоре после их изготовления [10, 20].
Стоит отметить метод окраски макропрепаратов при помощи Sudan Red 5B или масляный красный (Oil Red O), которые применяются для визуализации атеросклеротического повреждения сосудов. Oil Red O – это лизохромный диазокраситель, используемый для окрашивания нейтральных триглицеридов и липидов. Он окрашивает липиды в красный цвет с максимальным поглощением при 500–600 нм. На интиме аорты, после обработки красителем, можно обнаружить даже ранние стадии патологического процесса, поскольку жировые включения окрашиваются красным и хорошо визуализируются глазом [20] (рис. 15).
Окраска на амилоид. Для выявления скопления амилоида (патологический белково-полисахаридный комплекс, образующийся при хронических заболеваниях) в тканях наиболее простой и широко используемый краситель – конго красный (рис. 16). Данный краситель окрашивает белок в красный цвет. Кроме того, возможно изучение препаратов в поляризационном свете, при этом массы амилоида дают желто-зеленое свечение, однако рекомендуется заключение срезов в гуммиарабик для исключения свечения коллагеновых волокон [2, 21]. Прочное связывание амилоида с красителем не до конца изучено. Оно происходит таким образом: за счет водородных связей гидроксильных групп, с помощью положительно заряженных аминокислот и посредством полярных контактов [22] (рис. 17).
Специальные методы
Выявление повреждений миокарда по Ли (ГОФП-метод: гематоксилин – основной фуксин – пикриновая кислота). Liе и соавт. (1971) описали и дали название этому методу – «фуксиноррагический». Основной фуксин как катионный краситель взаимодействует с продуктами распада, высвобождаемых из саркоплазмы кардиомиоцитов (в частности с гликогеном), тем самым окрашивая их в красно- коричневый цвет. При этом интактные ткани остаются желто-коричневыми или бледно-зелеными, поскольку, как указано выше, хорошо воспринимают пикриновую кислоту (рис. 18, 19), тем самых создавая хороший контраст с поврежденными участками. ГОФП-метод эффективен для объективного выявления ишемизированных участков миокарда, причем при повреждении как коронарогенного, так и некоронарогенного генеза. Кроме того, опосредованно можно визуализировать соединительную ткань (например, рубцовая ткань после перенесенного инфаркта миокарда окрашивается в сиреневые оттенки, а эластические волокна становятся красными). Особенно эффективна методика на ранних этапах поражения сердечной мышцы, поскольку в поражённых кардиомиоцитах фуксинофильный субстрат появляется вначале вблизи ядра, затем распространяется по всей цитоплазме, а в дальнейшем и на большую часть мышечного волокна [12, 23]. Но впоследствии, когда мышечные волокна начинают разрушаться и рассасываться, фуксинофильный субстрат полностью исчезает, и окраска утрачивает свое значение [24].
Для макроскопической оценки площади ишемического повреждения тканей, а особенно миокарда и головного мозга, можно использовать соли тетразолия, в частности трифенилтетразолия хлорид (ТТХ) (рис. 20). Соли тетразолия, реагируя с дегидрогеназами (группы ферментов катализирующих окислительно-восстановительные реакции) восстанавливаются до окрашенных соединений – формазанов. Таким образом, в очаге повреждения высвобождается большое количество дегидрогеназ, которые при взаимодействии с тетразолием дают хорошо видимый глазом красный цвет (рис. 21). Реакция позволяет выявить ишемические повреждения на ранних донекротических стадиях патологического процесса [25, 26].
Заключение
В клинической практике и при фармакологических исследованиях микроскопический анализ – неотъемлемая часть изучения нормального строения тканей, а также патологически измененных органов. Приготовление гистологических препаратов включает в себя 5 этапов, каждый из которых важен и может повлиять на полученные результаты. Последний этап является – окрашивание, который обычно ограничен применением стандартной – обзорной окраски гематоксилином и эозином. Но для раскрытия более полной картины процесса необходимы дополнительные окраски; их можно применять как обзорные и заменить ими классические гематоксилин и эозин, например окраски по Ван Гизону или трихром по Маллори. Однако эти методы имеют ряд ограничений или трудоемки в исполнении, поэтому не получили широкого распространения и используются как дополнительные окраски для более детального анализа, в частности для изучения соединительной ткани и патологических процессов, связанных с фиброзом.
Большая часть окрасок более специфична, и их применение служит для выявления конкретных структур или химических соединений в клетках и тканях. Это позволяет получить значительный объем информации, что облегчает как понимание течения нормальных, так и патологических процессов. Так методики выявления мукополисахаридов альциановым синим широко применимы при исследовании желудочно-кишечного тракта и дыхательной системы, а ШИК-реакция незаменима в диагностике болезней накопления, ряда онкологических процессов и грибковых инфекций. Жировые красители, прежде всего Судан III и шарлах красный, используются повсеместно при исследовании дистрофических заболеваний и не в последнюю очередь атеросклероза, а методика применения красителя Oil Red O применима для макроскопической оценки площади атеросклеротического поражения аорты. Конго красный незаменим для обнаружения патологического белка амилоида, который образуется в тканях при аутоимунных и хронических заболеваниях – ревматоидном артрите, туберкулезе или нефропатии.
Кроме того, применяются специализированные окраски, направленные на диагностику повреждений миокарда. Выявить наиболее ранние признаки повреждения кардиомиоцитов позволяет ГОФП-методика. А при помощи солей тетразолия легко макроскопически визуализировать площадь поражения в тканях (не только в сердечной мышце, но и, например, в головном мозге).
В данном обзоре была рассмотрена только незначительная часть гистологических окрасок, их механизмы действия, химические реакции, позволяющие визуализировать микроскопические структуры тканей. Многие из этих методик нашли свое применение в практической деятельности лабораторий, при изучении эффективности и токсичности лекарственных средств. Конечно, существует еще множество красителей, методов, а также их сочетания. Все они могут быть использованы сами по себе, но скорее необходимо применять целый комплекс окрасок. Данный материал будет полезен как специалистам по планированию и проведению доклинических исследований на этапе подготовки к экспериментам, так и врачам-гистологам для понимания процессов, происходящих в тканях в момент окрашивания структур, что позволит выявлять ошибки и получать более объективный конечный результат.