Что внутри батарейки пальчиковые
Из чего состоит батарейка, как она устроена
Батарейки широко используются в повседневной жизни. Они позволяют сделать её немножечко проще. Например, не нужно тратить много усилий, чтобы включить телевизор при помощи пульта, воспользоваться калькулятором. Благодаря им вы всегда знаете время или можете воспользоваться беспроводной компьютерной мышкой. Однако не каждый знает, какие бывают виды батареек, а главное – что у них внутри.
Как устроены разные типы батареек, что у них внутри
Самые первые прототипы батарейки появились более 2 тыс. лет назад в Месопотамии. Да, это не шутка. Состоял такой элемент питания из глиняной вазы и медного стержня, который заливали специальным составом, напоминающим битум. Также этот состав можно было заменить винным уксусом. В итоге можно было получить напряжение около 0,5-1 В. Назвали такое приспособление «Багдадской батарейкой» (из-за места, где её нашли). Сегодня этот артефакт хранится в Национальном музее Ирака.
Однако это были самые первые элементы питания, устройство которых можно назвать примитивным. Сегодня же их производство и состав кардинально изменились, если сравнивать с «предками».
Устройство современных накопительных элементов отличается простотой. Различия между каждым типом минимальны. В основе любой конструкции есть положительный полюс (анод) и отрицательный (катод). Также в состав входит электролит. Именно от него зависят основные характеристики и параметры элемента питания:
Кроме основных элементов в любой батарейке есть вкладыш, который выступает в роли прокладки, диафрагма, футляр и стержень из угля.
В целом, сама «начинка» может быть литиевая, щелочная и солевая. Последний вариант, можно сказать, давно себя изжил. Дело в том, что солевые батарейки имеют больше минусов, чем плюсов (если сравнивать с другими элементами питания). Но как выглядит электролит?
Внутри корпуса находятся несколько химических веществ. В солевых батарейках это цинк, диоксид магния, гидроксид калия, а также пассивный уголь.
Справка. Когда батарейки не используются, они могут восстанавливать заряд или, другими словами, выравнивать локальные неоднородности, которые вызываются разрядом элемента. Данный процесс позволяет незначительно продлить срок службы изделия.
Кроме вышеперечисленных элементов в состав батарейки могут входить и другие:
В алкалиновых батарейках в роли электролита выступает щёлочь. Благодаря её свойствам данное изделие работает стабильно на протяжении всего срока эксплуатации, медленнее разряжается, работает даже при минусовой температуре и отличается более длительным сроком службы.
Неопытные пользователи могут подумать, что проходимые химические реакции отличаются своей сложностью. На самом деле, это не так — здесь всё довольно просто. Химическая реакция перемещает отрицательно заряженные частицы (электроны), что в итоге и создаёт электрический ток.
В состав литиевых элементов питания входит (как уже можно понять из названия) литий. Он выступает в роли катода и имеет наивысший отрицательный потенциал. Стоит отметить, что данный химический элемент — органический, благодаря чему батарейка получила улучшенные характеристики.
Если рассматривать по типам, то у каждой батарейки могут быть свои элементы. Например, у «таблетки» в составе имеется оксид ртути и порошок цинка. Крона отличается более сложным составом:
Также в состав такого изделия входит корпус, но о нём расскажем отдельно.
Из чего сделан корпус батареек
Любая батарейка обладает прочным корпусом, который защищает элемент и выполняет ряд важных функций. В него помещают различные составляющие будущей батарейки: диоксид марганца, загустители, сульфат бария, катализатор, цинк и т. д.
Однако не все знают, что его изготавливают из различных металлов. Для многих он просто металлический. На самом деле, нет — всё намного сложнее.
Прежде всего, его могут изготавливать из цинка. Чаще им оснащают солевые элементы питания. В последнее время встречается корпус, изготовленный из железа или особой нержавеющей стали. Такой корпус отличается повышенной прочностью и уровнем защиты.
Состоит он из верхней и нижней пластины, на которых помечено, где «минус», а где «плюс». Также в состав корпуса входит боковая пластина. Она и является основной его частью. По сути, само производство начинается с того, что на станке нарезаются такие пластины. После чего они скручиваются в трубочку, которая и именуется корпусом.
Справка. Корпус может быть изготовлен не в виде трубочки, а в форме квадрата. Элементы питания такого строения обладают самым большим напряжением – до 9 Вольт.
Несмотря на высокое напряжение, данный тип батареек не пользуется популярностью и не особо востребован среди отечественных потребителей. Причины кроются на поверхности, причём в прямом смысле этого слова. Во-первых, такое изделие отличается толстой оболочкой, которая защищает химические элементы от внешних неблагоприятных воздействий и падений. Во-вторых, лишь малая часть приборов заточены под такую форму батарейки, т. е. попросту элементы питания в них не поместятся и не подойдут в разъём.
Батарейка (гальванический элемент) — как работает, из чего состоит
Батарейка это прижившееся и не совсем корректное название одиночного гальванического элемента. А уже их соединение в источниках питания для создания нужного напряжения — это батарея. Поэтому не стоит путать эти определения. И если называя гальванический элемент батарейкой, мы поступаем не совсем верно (но смысл понятен), то слово батарея абсолютно никакого отношения не имеет к одиночным химическим источникам электрического тока.
Данный обзор посвящен гальваническому элементу (батарейке) — химическому источнику электрического тока, основанному на взаимодействии двух металлов и (или) их оксидов в электролите, приводящих к возникновению в замкнутой цепи электрического тока. Мы подробно рассмотрим конструктивные особенности элемента, определимся с классификацией и разберемся, как работает батарейка.
История батарейки — гальванического элемента
Свое название гальванические элементы получили по имени итальянского врача и анатома Луиджи Гальвани (1737 — 1798). Проводя опыты с лягушками, Гальвани заметил, что свежепрепарированная лягушачья лапка, подвешенная на медном крючке к железному стержню, сокращается, когда к ней прикасались железом. Наблюдения были истолкованы им как проявление «животного электричества».
Объясняя это явление позже итальянский физик Александро Вольта установил, что причиной сокращения мышц служит не «животное электричество», а наличие цепи из разных проводников в жидкости. Сама лягушачья лапка играла роль чувствительного прибора.
Александро Вольта создал первый источник тока («Вольтов столб»), который можно было использовать на практике. Этот источник состоял из медных и цинковых пластин, между которыми были проложены кружочки ткани, пропитанные раствором щелочи.
Александро Вольта предложил разделить все проводники на два рода:
Шведский ученый Сванте Аррениус, изучая электропроводимость растворов различных веществ, в 1877 году пришел к выводу, что причиной электропроводимости является наличие в растворе ионов, которые образуются при растворении электролита в воде.
Процесс распада электролита на ионы называется электрической диссоциацией. При диссоциации в воде электролиты диссоциируют на положительно и отрицательно заряженные ионы. Под действием электрического поля, положительно заряженные ионы движутся к отрицательному полюсу источника тока (катоду) и называются катионами, а отрицательно заряженные – к положительному полюсу (аноду) и называются анионами. Таким образом электролиты обладают электронной проводимостью.
Примеры гальванических элементов:
Название элемента | Отрицательный электрод | Положительный электрод | Электролит |
Вольтов столб | Цинк | Медь | Раствор щелочи |
Первый элемент Вольта | Цинк | Медь | Раствор серной кислоты |
Элемент Даниэля | Цинк | Медь | Раствор сульфата цинка |
Элемент Грине | Цинк | Угольный стержень | Раствор сульфата меди и бихромата калия |
Элемент Лекланше | Цинковый цилиндр | Угольный стержень | Раствор нашатыря и оксид марганца |
Сухой элемент | Цинковый цилиндр | Угольный стержень | Густой клейстер, приготовленный из муки на растворе нашатыря |
Эволюция батарейки — солевой гальванический элемент
Одним из первых гальванических элементов, которым можно было пользоваться вне лабораторий, была конструкция Жоржа Лекланше (1866 год). Она состояла из цинкового анода, катода из диоксида марганца с углем и электролита из хлорида аммония. Со временем элемент Лекланше эволюционировал в солевой (сухой) гальванический элемент следующим образом:
Конструкция сухой батареи:
1 — воздушная прослойка | |
2 — цинковый стакан | |
3 — электролит (NH4CL + ZnCl2) | |
4 — смесь графита и MnO2 | |
5 — угольный стержень | |
6 — защитный корпус |
Как работает сухая батарейка (солевой гальванический элемент)
Рассмотрим процессы, происходящие в сухом элементе. При потреблении тока электроны поступают через внешнюю электрическую цепь с цинкового электрода на угольный стержень. Происходят следующие реакции:
Во время разрядки цинковый стакан растворяется. Во избежание вытекания электролита или продуктов реакции цинковый стакан имеет запас по толщине или окружен железной защитной оболочкой.
Что находится внутри щелочной батарейки
Впервые щелочные (алкалайновые) батарейки выпустила компания Eveready (Energizer) в 1959 году. Ее принципиальное отличие от сухой батарейки — состав электролита и конструкция. Электролит состоит не из соли аммония, как в солевой, а из раствора щелочи (обычно гидроксида калия). Конструкция элемента вывернута наизнанку по сравнению с конструкцией солевого элемента. То есть, если у солевого элемента корпус (-), а центральный токоотвод (+), то у щелочного элемента наоборот, корпус (+), а центральный токоотвод (-).
В солевых элементах при химической реакции расходуются все реагенты, составляющие этот элемент — анод, катод, электролит. А в щелочном элементе при химической реакции расходуется только анод и катод, электролит не расходуется. Поэтому электролита там совсем мало, и освободившееся место электролита заполнено увеличенным количеством анода и катода, что значительно увеличивает электроемкость щелочного элемента.
Типичная щелочная батарея выполнена в форме стального цилиндра, покрытого изолирующей пластиковой оболочкой. Положительный конец батарейки (катод) имеет выступающую наружу поверхность. Отрицательный конец (анод) — плоский. Эти две клеммы батарейки электрически изолированы друг от друга.
1 — никелированный стальной стакан | |
2 — латунный токосъемник | |
3 — анодная паста | |
4 — сепаратор | |
5 — катодная паста | |
6 — защитная оболочка | |
7 — предохранительная мембрана | |
8 — прокладка | |
9 — стальная тарелка |
Корпус батарейки обычно делается из стали с никелевым покрытием. Внутри находится несколько слоев различных материалов, химические реакции которых создают определенные уровни напряжений и токов:
Как работает батарейка
Рассмотрим как работает электрическая батарейка и какие реакции взаимодействия происходят между ее химическими компонентами:
Пока есть полная цепь между выводами батарейки, химическая реакция будет продолжаться, и электроны будут течь от отрицательного клеммника к положительному. Если разорвать цепь, то химическая реакция прекратится.
Наглядно понять, как работает батарейка и что у нее происходит внутри, можно, ознакомившись с представленной ниже видео демонстрацией.
Как работает батарейка — видео
Химическая реакция в батарейке, к которой подключен потребитель:
Форм-фактор распространенных гальванических элементов
Название | Напряжение, V | Диаметр, мм | Высота, мм | Стандарт (щелочные/солевые) | |
ANSI | IEC | ||||
Пальчиковая | 1,5 | 14,5 | 50,5 | AA | LR6/R6 |
Мизинчиковая | 1,5 | 10,5 | 44,5 | AAA | LR03/R03 |
Baby | 1,5 | 26,2 | 50 | C | LR14/R14 |
Mono | 1,5 | 34,2 | 61,5 | D | LR20/R20 |
9 V Bloc, Крона | 9 | 26 × 22 ×67 | 1604D | 6LR61/6F22 | |
CR2032 (монета) | 3 | 20 | 3,2 | 5004LC | CR2032 |
Подведем итог. Гальванический элемент (батарейка) — это источник электрического тока, основанный на химической реакции двух металлов (или их оксидов). Один из металлов (анод) всегда более активный, чем второй (катод). Анод и катод помещены в токопроводящую среду (электролитом). При соединении концов элемента проводником образуется электрическая цепь, начинает вырабатываться ток, который бежит от анода (-) к катоду (+). Несмотря на то, что реальные переносчики заряда (электроны) перемещаются от «минуса» к «плюсу», принято считать, что ток течет от «плюса» к «минусу» (так исторически сложилось).
Как делают батарейки
В быту нас окружает множество устройств, для работы которых необходим источник электричества. Некоторые из них в качестве элемента питания используют батарейки.
Между тем мало кто задумывается над вопросом, из чего состоит этот небольшой источник тока и как его изготавливают. А если такой вопрос и появился, то многие разбирают устройство и обнаруживают непонятные элементы.
Давайте вместе изучим строение элемента питания и узнаем, где и как его производят.
Из чего делают батарейки
Существует четыре типа элементов питания. Несмотря на то что принцип работы у них одинаковый, все источники тока имеют уникальную конструкцию и состоят из разных деталей.
«Пальчиковые» и «мизинчиковые» батарейки
«Пальчиковые» и «мизинчиковые» источники тока представляют собой цилиндр небольшого размера. Это одни из самых распространённых вариантов батареек. Они состоят из следующих элементов:
Это стандартная конструкция большинства цилиндрических батареек. Но есть устройства, состоящие из стержня, изготовленного из угля, металлических деталей и специального порошка.
Из чего состоит круглая батарейка
Элемент питания, имеющий необычную приплюснутую форму, ещё называют «таблетка». Чаще его используют в часах и различных сигнализациях. Он состоит из следующих элементов:
Справка. Если нагреть «таблетку», она попросту взорвётся.
Батарея сотового телефона
Конструкция элемента питания сотового телефона несколько сложнее, чем устройство обычных батареек. В неё входят:
Из чего состоит «крона»
Источник питания прямоугольной формы конструктивно отличается от других батареек. Положительный и отрицательный контакт находятся друг над другом. Располагаются они в верхней части устройства. Снизу находится основа, выполненная из пластмассы. От минусового контакта отходит пластина, которая фиксируется на минусовом полюсе.
Корпус устройства выполнен из металла. Внутри него располагаются шесть небольших приплюснутых прямоугольников, каждый из которых — индивидуальная батарейка. Заряд такого «бочонка» составляет 1,5 В. Между пластинами находится ещё одна — специальная.
Строение источника питания достаточно простое:
Из чего изготовлен корпус элементов питания
Корпус — один из важнейших элементов конструкции источника тока. Он выполняет защитную функцию, удерживая внутри содержимое батарейки и предотвращая её разрушение.
У каких источников питания корпус изготовлен из цинка
Многие неспроста задаются подобным вопросом, ведь Zn можно применять в разнообразных опытах. Или просто продать. Так, корпусом из цинка снабжены все солевые элементы питания. Обычно это непосредственно на нём и указывается.
В последнее время всё чаще можно встретить источники тока с корпусом, изготовленным из жести или железа. Материал изготовления зависит от внутренней конфигурации батареек. Железо и жесть способны обеспечить максимальную защиту и повышенную прочность.
Из чего изготавливают корпус цилиндрических батареек
Он имеет простую конструкцию, в которую входят:
Справка. Многие ошибочно под корпусом подразумевают отсек, в котором размещают батарейки.
Химический состав элементов питания
Химический состав зависит от конкретного вида источника тока. В состав большинства элементов питания входят следующие химические соединения:
Справка. Стоит иметь в виду, что одна батарейка не может содержать все химические элементы сразу.
Как изготавливают батарейки
Производство элементов питания выглядит следующим образом:
Оборудование для производства батареек
Для производства элементов питания на заводах используют различные автоматизированные установки. Состав линии может меняться, но в большинстве случаев в неё входят:
На каких заводах собирают батарейки
На территории России располагаются пять заводов, занимающихся сборкой элементов питания:
Теперь вы знаете из чего состоят источники питания, и как их производят. Однако не стоит забывать, что каждый производитель использует свои наработки, поэтому устройство батареек и состав линии может существенно отличаться от стандартного варианта.
Устройство пальчиковой батарейки
Самые разные батарейки ежедневно эксплуатируются человеком в потребителях с малыми токами как главные элементы автономного питания.
Несмотря на внешние кажущиеся отличия, устройство пальчиковой батарейки практически не изменяется.
Черты различия батареек затрагивают только:
Устройство пальчиковой батарейки: состав реагентов/реакция
Стандартная заводская батарейка содержит в своей основе ряд особых химических реагентов, вступающих в реакцию, выделяющих 2 вида энергии:
Любая пальчиковая батарейка обязательно имеет:
При помощи особой внутренней прокладки, помещенные в батарейку реагенты, разграничены между собою.
При этом прокладка способна пропускать электролит, заполняющий батарейку жидким составом.
Полюсная ориентировка заряда батарейки зависит от химических свойств реагентов.
А внутренняя прокладка блокирует нейтрализацию и естественное гашение разности потенциалов.
Устройство пальчиковой батарейки солевого состава
Для того чтобы снять возникшие заряды и направить их в нужное русло (на электрод), внутри анодного реагента размещается токовод (токосниматель).
По сути, графитовый стержень, располагающийся в центре батарейки.
Внешне токовод незаметен, т.к. прикрыт защитной оболочкой — гильзой.
Аналогичный токовод присутствует в районе катодного реагента и также собирает заряд, противоположный анодному («-«).
В результате на обеих концах батарейки возникает разность напряжений, снятых с различных токоведущих систем.
Главное же отличие солевой батарейки заключается в использовании цинкового корпуса в роли катодного токоотвода.
Центральный токосниматель — угольный или графитовый стержень, а электролит — соль соляной кислоты (отсюда и название — солевые).
Устройство пальчиковой батарейки щелочного состава
СОСТАВ: 1-катод, 2-сепаратор с электролитом, 3-корпус, 4-футляр, 5-токоотвод, 6-анод, 7-дно, 8-прокладка
В элементах питания щелочного состава (алкалиновых батарейках) используется порошковый цинк (иногда с добавками кадмия или ртути — в старых батарейках; индий, свинец — в современных батарейках).
Порошок цинка — это катодный реагент.
В качестве анодного реагента щелочной батарейки применяют оксид марганца.
В роли электролита — щелочь (отсюда и название — щелочные).
Меры предосторожности
При нарушении устройства пальчиковой алкалиновой батарейки из нее протекает щелочь.
Аналогичные последствия возникают:
И хотя солевые пальчиковые батарейки устроены по аналогичной схеме, их стоимость ниже.
То есть щелочные элементы тока дороже, чем солевые!
Как работает батарейка: строение и состав
Батарейки являются наиболее распространенным источником питания. Современный мир не представляет себя без различной электроники, для нее необходима электроэнергия. Не всегда получается применять обычные сетевые источники, для этого и нужны гальванические элементы. Глядя на них наверняка каждый задавался вопросом из чего состоит батарейка и как она работает?
Что такое батарейка
Обыкновенная батарейка представляет собой некий источник электрического тока в котором несколько электрохимических элементов объединены между собой в пакет. Стоит обратить внимание, что батарея — это именно несколько объединенных между собой гальванических элементов. Электричество в батарейке вырабатывается вследствие протекающей химической реакции. Изобретателем батареек принято считать ученого Алессандро Вольта, который создал в 1800 г. «Вольтов столб» — первый в мире электрохимический источник тока, ставший прародителем современных батарей.
Устройство батарейки
Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.
Принцип работы батарейки
На аноде проходит реакция окисления цинка. Вначале образуется гидроксид цинка
Zn + 2OH − → Zn(OH)2 + 2e −
На катоде проходит реакция восстановления оксида марганца IV в оксид марганца III
Общая картина следующая
Zn + 2KOH + 2MnO2 + 2e − → 2e − + ZnO + 2KOH + Mn2O3
Из первой формулы видно, что на аноде имеется избыток электронов. Но ведь анод это «+»? Дело в том, что в физике принято считать за направление тока движение положительных зарядов, т.е. от плюса (анода) к минусу (катоду). Но электрический ток это упорядоченное движение электронов, которые имеют отрицательный заряд. Поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления, катодом же считается электрод, где происходит реакция восстановления.
Интересно знать! В результате химических реакций внутри элемента питания происходит необратимое разрушение металлических элементов питания, батарейка теряет свою емкость.
Важно! Поскольку химические изменения в процессе разряда батарейки необратимы — они не подлежат восстановлению заряда.
Разновидности
По форме и размерам согласно мировым стандартам элементы питания разделяются на такие виды:
В настоящее время существует большое количество разнообразных источников питания. Между собой они отличаются материалами, применяемыми для изготовления электродов и электролита. Среди многочисленных батареек выделяют несколько основных видов:
Солевые
Такие гальванические элементы имеют низкую стоимость относительно аналогов, однако имеется один существенный недостаток это низкая внутренняя емкость таких батареек.
Щелочные
Состав батарейки такого вида отличается от своих аналогов применяемым электролитом, в них используется активная щелочь гидроксид калия KOH. Электрод выполнен из двуокиси таких металлов, как цинк и марганец. Нашли широкое применение в современной электронике, на корпусе элементов указывается маркировка «ALKALINE».
Основным плюсом такой батарейки является продолжительный срок службы, в процессе эксплуатации номинальное напряжение понижается с меньшей скоростью. К минусам относят повышенную стоимость.
Серебряные
В качестве электролита применяют КОН, в состав электродов включено серебро. В таких элементах отмечают значительно увеличение срока службы, повышенную энергетическую плотность, постоянное номинальное напряжение, а также полную безвредность. Недостатками являются высокая цена.
Ртутные
В строении таких батареек используется цинк в качестве металла для анода, катод выполняется из ртутного оксида. Электроды разделяются сепаратором пропитанным электролитом. Такой элемент питания способен выполнять функции аккумулятора, однако емкость будет постепенно понижаться с каждым циклом восстановления заряда. При разряде происходит слипание ртути, а при заряде образуются дендриты цинка. Во время эксплуатации не допускается разгерметизация корпуса в связи с повышенной вредностью паров ртути. К преимуществам относят сохранение длительных значений плотности энергии, емкости и напряжения.
Внимание! Ртутные источники питания являются потенциально опасными для здоровья человека и окружающей среды.
Литиевые
Данные элементы питания постепенно вытесняют все аналоги в своей области применения. Отрицательные электроды такой батарейки сделаны из лития. В них постоянно совершенствуются основные технические характеристики. К плюсам батареек с литиевым электродом относят увеличение срока хранения, широкий диапазон рабочих температур, повышенная внутренняя емкость. Основным минусом является повышенная стоимость.
Применение
Различные виды могут применяться по-разному, зависит это от их основных конструктивных свойств и характеристик:
Выбор источника питания
Для правильного выбора элементов питания необходимо обратить внимание на следующие факторы:
Правильный выбор и соблюдение требований к безопасной эксплуатации позволит продлить работу любого элемента питания. Для определенных видов техники необходим свой вид батарейки.