частотный преобразователь для электродвигателя что это такое
Принцип работы частотного преобразователя для асинхронного двигателя
Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.
С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.
Что такое частотный преобразователь
Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.
Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.
В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.
В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.
Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.
Принцип действия частотного преобразователя
Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.
В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.
Управление асинхронными двигателями осуществляется двумя способами:
Настройка частотного преобразователя для электродвигателя
Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.
Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.
При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».
Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.
После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.
Частотные преобразователи для асинхронных двигателей
Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.
Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.
Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.
Схема частотного преобразователя асинхронного двигателя
Принцип работы частотного преобразователя
Частотные преобразователи: принцип работы
Схема частотного преобразователя
Регулировка оборотов асинхронного двигателя
Преобразователи частоты. 12 важных вопросов при выборе и установке
Преобразователи частоты (ПЧ) — один из основных элементов комплексных решений для энергетических и промышленных проектов. Современные частотные преобразователи — это продукт высоких технологий, они выпускаются с применением новейших разработок и способны не только управлять скоростью вращения электродвигателя, но и защищать электропривод от преждевременного выхода из строя, обеспечивать контроль множества параметров во время его работы. Грамотно выбрать преобразователь частоты, сориентировавшись в многообразии предложений — задача сложная и ответственная, ведь от принятого решения зависит стабильность производственных процессов. Разобраться со всеми тонкостями выбора поможет эта статья.
Часть 1. Зачем нужен преобразователь частоты?
Частотный преобразователь — незаменимое оборудование в любой сфере, где используются электродвигатели. Он обеспечивает плавный пуск, непрерывное автоматическое регулирование скорости и момента во время работы, а также множество других параметров работы электродвигателя. В ряде применений преобразователи обеспечивают снижение потребления электроэнергии до 50 %. Современные ПЧ с широтно-импульсной модуляцией (ШИМ) способны снижать пусковые токи в среднем в 4-5 раз и выдерживать перегрузки до 200 %.
На сегодняшний день в интернете можно найти большое количество рекомендаций и советов по подбору ПЧ, однако в большинстве случаев они являются общими, неконкретными и никак не применимыми на практике. Как же сориентироваться в огромном количестве критериев и выбрать подходящее оборудование? Рекомендации дают специалисты IEK GROUP, одного из ведущих российских производителей и поставщиков электротехнического оборудования: Артем Мошечков (ведущий инженер) и Петр Ивлев (специалист по техническому обучению Академии IEK GROUP).
— Зачем устанавливать и использовать преобразователь частоты?
Артем Мошечков: «Данное оборудование решает сразу несколько задач: управляет скоростью вращения электродвигателя, защищает его и в определенных режимах обеспечивает энергосбережение. ПЧ снижает слишком большой пусковой ток и момент, исключая удары, рывки и повышенные механические нагрузки на привод. Также преобразователь частоты позволяет защищать электродвигатель при коротком замыкании, страхует при отклонениях от номинального напряжения сети, контролирует температуру механизма, не допускает перегрева. Таким образом ПЧ обеспечивает более длительную и надежную работу привода, минимизирует затраты на обслуживание и ремонт. Кроме того, в определенных сферах применения и режимах работы преобразователь частоты снижает потребление электроэнергии на 30-50 %».
— Есть задача: выбрать и купить преобразователь частоты. С чего начать?
Петр Ивлев: «Модельный и функциональный ряд современного оборудования предлагает множество вариантов для решения широкого спектра задач. От самых простых до обеспечивающих управление сложнейшими автоматизированными электроприводами. Существует несколько основных критериев, основываясь на которых следует принимать решение о выборе той или иной модели частотного преобразователя».
Чтобы подобрать нужный вариант ПЧ, необходимо прежде всего определиться: для каких именно целей выбирается оборудование, какие конкретные задачи оно должно выполнять. Разумеется, необходимо знать условия эксплуатации и основные характеристики электродвигателя, для управления которым необходим ПЧ.
Современные серии преобразователей частоты включают до нескольких десятков моделей. Например, в линейке CONTROL-L620 IEK®, выведенной на рынок нашей компанией в 2017 году, представлено оборудование от 0,75 до 560 киловатт. В семействе CONTROL-А310 IEK® диапазон мощностей — до 22 киловатт, при этом уже с 11 киловатт есть возможность изготовить преобразователь со встроенным дросселем постоянного тока, что продлевает срок службы преобразователя. Номинальные напряжения — 220 и 380 В.
| |
| |
| |
— Мощность, номинальный ток, напряжение питающей сети: как сориентироваться в этих параметрах?
Петр Ивлев: «Указанные критерии очень важны для оптимальной работы оборудования».
— Какой преобразователь частоты лучше — однофазный или трехфазный?
Артем Мошечков: «В интернете можно прочитать, что однофазный преобразователь частоты обладает менее широким спектром возможностей, но это не так. Он способен решать все поставленные задачи».
На вход инвертора такого ПЧ подается однофазное напряжение соответствующей сети, которое на выходе формируется в трехфазное с частотой от 0 до 400 и выше Гц. Таким образом, при помощи однофазного ПЧ можно подключить обычный асинхронный трехфазный двигатель к однофазной сети. Для этого требуется подключить двигатель к преобразователю, правильно скоммутировав обмотки двигателя (на напряжение 220 В). Такие преобразователи частоты есть в семействе ONI — это серия А400, которая предназначена для управления асинхронными двигателями в системах небольшой мощности, но с большими перегрузками.
Трехфазные преобразователи частоты более распространены. Они преобразуют напряжение трехфазной промышленной сети и регулируют большое количество параметров электродвигателя. Примеры оборудования:
Часть 2. Нюансы
— Как правильно подобрать диапазон регулирования частоты и какой способ управления выбрать?
Петр Ивлев: «Использование ПЧ позволяет регулировать скорость электродвигателя от нуля до номинального значения и выше. При этом важно помнить, что преобразователь может обеспечить на выходе напряжение, равное напряжению питающей сети. Образно говоря, если двигателю нужно 690 В, а ПЧ рассчитан на 380 В — это в корне неправильный подбор оборудования».
О способах управления
В интернете много теоретической информации о том, какой вариант лучше. На самом деле основывать свой выбор надо не на оценках метода управления, а на области применения преобразователя частоты. В оборудовании, которое работает с кранами, подъемными механизмами или протяжными станками используется векторный способ. В насосах и вентиляторах, то есть в тех механизмах, где скорость практически не меняется, обычно используется скалярный. Оба этих метода решают одну задачу: регулировки скорости и изменения момента.
— Что такое ПИД-регулятор, управляющие входы/выходы, и насколько это важно?
Петр Ивлев: «Пропорционально-интегрально-дифференцирующий регулятор (ПИД-регулятор) управляет внешними процессами, анализируя сигналы обратной связи, поступающие на преобразователь частоты. Этот регулятор есть в 95 % современных преобразователей частоты».
Самый простой пример его использования: требуется поддерживать постоянное давление в трубе 5 Бар. ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим работы ПЧ.
ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим его работы
Что касается входов и выходов
Сегодня большинство преобразователей частоты имеют в базовой комплектации аналоговые и цифровые входы/выходы, последовательный интерфейс и т.д. Такой набор функций позволяет интегрировать ПЧ в большинство автоматических систем, без ограничений в выборе способов управления преобразователем.
— На что еще стоит обратить внимание, выбирая преобразователь частоты?
Артем Мошечков: «Разумеется, на функциональность, эргономичность оборудования, наличие дополнительных возможностей, понятный интерфейс. Важный для многих вопрос — условия работы и монтажа ПЧ. Например, преобразователи частоты серии CONTROL-А310 и L620 IEK ® требуют достаточного свободного пространства для охлаждения, а ONI-А400 можно монтировать по принципу «стенка к стенке». Но все эти серии отличаются малыми габаритами и неприхотливостью в монтаже».
В некоторых линейках есть возможность использования стандартной витой пары UTP кат. 5e для выносного монтажа идущей в комплекте панели управления, что позволяет максимально упростить и до 10 раз удешевить монтаж панели управления по сравнению с преобразователями, использующими специальные коммутационные шлейфы.
Обязательно поинтересуйтесь, какие силовые ключи используются при сборе ПЧ — одними из самых надежных являются IGBT производства компании Infineon. Они позволяют существенно повысить надёжность и отказоустойчивость оборудования.
Система управления частотным преобразователем должна быть интуитивно понятной, функциональной, вариативной. В передовых моделях, например, таких как серия ONI-M680, источником управляющего сигнала может быть кнопочная панель, промышленная сеть, цифровые входы и импульсный вход. Имеется возможность подключения исполнительных устройств, датчиков, программируемых логических контроллеров. Некоторые входы и выходы способны функционировать в различных режимах.
Часть 3. Особенности применения ПЧ для различного оборудования
— Преобразователь частоты для насосного оборудования: что он дает?
Артем Мошечков: «В случае с насосным оборудованием чаще всего требуется защитить трубопровод от гидроударов во время запуска насоса, а сам электропривод — от преждевременного выхода из строя и работы в аварийном режиме. Немаловажное значение имеет оптимизация расхода электроэнергии и поддержание постоянного давления в системе водоснабжения».
Для решения этих задач требуется обеспечить плавный пуск насосов и плавное же изменение частоты вращения электродвигателя. Причем диапазон значений должен быть достаточно широк: во время пиковой нагрузки электропривод работает на номинальных оборотах, обеспечивая необходимый расход воды. При малом разборе поддерживается в рабочем состоянии, потребляя тот минимум электроэнергии, который необходим в данный момент. Также в сфере ЖКХ с помощью ПЧ возможно создание автоматизированной каскадной системы насосов, когда, в зависимости от разбора воды в жилых домах, работает один насос или, например, три. С помощью специальных функций преобразователь частоты позволяет экономить электроэнергию — это происходит за счет автоматической остановки работающего насоса при отсутствии расхода воды в системе.
Мнение: Преобразователь частоты ONI-К800 был применен в приводе насоса системы водоснабжения и в приводе конвейера. Зарекомендовал себя с положительной стороны. При настройке и в ходе эксплуатации легко монтировались силовые и контрольные кабели, преобразователь просто настраивался с лицевой панели. Обладает большим функционалом защит, большим количеством входов-выходов.
Начальник отдела ЭМП АО «Уралгипромез» Д.Н. Томашевский.
— Какие преобразователи частоты подойдут для грузоподъемных механизмов (крановое оборудование, лебёдки)?
Петр Ивлев: «Современный крановый механизм — очень сложная система. Поэтому преобразователь частоты для электропривода такого механизма должен соответствовать высоким требованиям: обладать высокой перегрузочной способностью (до 200 %), уметь управлять механическим тормозом электродвигателя, иметь возможность подключения тормозного резистора (встроенный тормозной модуль) и организации обратной связи для регуляции скорости вращения электродвигателя. Последняя необходима для обеспечения быстрого обмена информацией между звеньями системы, непрерывного мониторинга всех процессов и точного управления параметрами во время работы сложнейшего кранового механизма».
Преобразователи частоты для электродвигателей грузоподъемных механизмов позволяют организовать надежное управление электроприводом при подъеме и опускании груза, поворотах стрелки, обеспечивая вертикальное и горизонтальное перемещение без раскачивания, с различными скоростями, таким образом гарантируя максимальную производительность.
В зависимости от модели крана, это могут быть следующие виды частотных преобразователей:
— Как преобразователь частоты работает в случае с транспортерным и конвейерным оборудованием?
Артем Мошечков: «При запуске таких механизмов возникает пусковой ток, превышающий номинальный в 6-7 раз, а также — большая нагрузка на детали механизма и, как следствие, повышенный износ узлов или перегрев электродвигателя. Это самая частая причина отказов подобного оборудования. Далее, в процессе работы привод обычно вращается с одинаковой скоростью. Поэтому для механизмов непрерывного транспорта очень важны плавный разгон и торможение без рывков, пробуксовок, остановок, а также постоянная заданная скорость движения. Следовательно, преобразователь частоты для такого оборудования решает задачи по обеспечению постоянной скорости транспортера или конвейера, повышению уровня надежности (так как значительно снижает количество отказов как механического, так и электрического происхождения), устранению перегрузок во время запуска».
Использование преобразователей частоты с электродвигателями конвейеров и транспортеров позволяет не просто автоматизировать запуск, регулирование скорости и остановки ленты, но и создавать более сложные алгоритмы работы оборудования (зависит от выбранной модели ПЧ и подключенных датчиков).
Мнение: Преобразователь частоты CONTROL-L620 IEK ® номинальной мощностью 5.5 был установлен на подающем конвейере в установке № 2 для сушки травяной муки. Режим работы преобразователя — круглосуточный «старт-стоп». Оборудование зарекомендовало себя с положительной стороны. Во время тестирования все функции работали в заявленном штатном режиме, замечаний во время эксплуатации выявлено не было.
Заместитель генерального директора по IT ПАО «Птицефабрика Боровская» С.М. Солкин.
— Есть ли смысл использовать преобразователи частоты для вентиляторного оборудования?
Петр Ивлев: «Есть. ПЧ для вентиляторного оборудования регулирует скорость вращения вала электропривода, позволяя экономить на электричестве. В случае установки дополнительного датчика, который передает оперативные данные о текущей потребности в воздухе на преобразователь, последний изменяет скорость вращения электродвигателя. Это позволяет экономить электроэнергию на 20-40 %. Кроме того, ПЧ надежно защищает электропривод вентилятора от бросков тока и перегрузок за счет плавного пуска и такой же плавной остановки вала».
— «Тяжелый» или «нормальный» режим работы преобразователя частоты — какой выбрать?
Артем Мошечков: «Современные ПЧ обеспечивают пуск и работу двигателей в нормальном или тяжелом режиме. Для их обозначения используются аббревиатуры ND — нормальный и HD — тяжелый».
В режиме ND величина вращающего момента постоянна, независимо от скорости вращения двигателя. В частности, таким образом работают насосы.
Тяжелый режим (НD) характеризуется нагрузкой с переменным вращающим моментом — как в случае с экструдерами, конвейерами или компрессорами. При этом существуют частотные преобразователи, которые поддерживают сразу два указанных режима, что позволяет экономить бюджет при проектировании различных систем. Например, преобразователи частоты IEK ® серий CONTROL-A310 и L-620 могут работать как в ND-режиме, так и в режиме HD. Также оба режима поддерживают ПЧ ONI-М680.